// Boost.Units - A C++ library for zero-overhead dimensional analysis and // unit/quantity manipulation and conversion // // Copyright (C) 2003-2008 Matthias Christian Schabel // Copyright (C) 2007-2008 Steven Watanabe // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_UNITS_LIMITS_HPP #define BOOST_UNITS_LIMITS_HPP /// /// \file /// \brief specialize std::numeric_limits for units. /// #include <limits> #include <boost/units/units_fwd.hpp> namespace std { template<class Unit, class T> class numeric_limits< ::boost::units::quantity<Unit, T> > { public: typedef ::boost::units::quantity<Unit, T> quantity_type; static const bool is_specialized = std::numeric_limits<T>::is_specialized; static quantity_type (min)() { return(quantity_type::from_value((std::numeric_limits<T>::min)())); } static quantity_type (max)() { return(quantity_type::from_value((std::numeric_limits<T>::max)())); } static const int digits = std::numeric_limits<T>::digits; static const int digits10 = std::numeric_limits<T>::digits10; static const bool is_signed = std::numeric_limits<T>::is_signed; static const bool is_integer = std::numeric_limits<T>::is_integer; static const bool is_exact = std::numeric_limits<T>::is_exact; static const int radix = std::numeric_limits<T>::radix; static quantity_type epsilon() { return(quantity_type::from_value(std::numeric_limits<T>::epsilon())); } static quantity_type round_error() { return(quantity_type::from_value(std::numeric_limits<T>::round_error())); } static const int min_exponent = std::numeric_limits<T>::min_exponent; static const int min_exponent10 = std::numeric_limits<T>::min_exponent10; static const int max_exponent = std::numeric_limits<T>::max_exponent; static const int max_exponent10 = std::numeric_limits<T>::max_exponent10; static const bool has_infinity = std::numeric_limits<T>::has_infinity; static const bool has_quiet_NaN = std::numeric_limits<T>::has_quiet_NaN; static const bool has_signaling_NaN = std::numeric_limits<T>::has_signaling_NaN; static const bool has_denorm_loss = std::numeric_limits<T>::has_denorm_loss; static quantity_type infinity() { return(quantity_type::from_value(std::numeric_limits<T>::infinity())); } static quantity_type quiet_NaN() { return(quantity_type::from_value(std::numeric_limits<T>::quiet_NaN())); } static quantity_type signaling_NaN() { return(quantity_type::from_value(std::numeric_limits<T>::signaling_NaN())); } static quantity_type denorm_min() { return(quantity_type::from_value(std::numeric_limits<T>::denorm_min())); } static const bool is_iec559 = std::numeric_limits<T>::is_iec559; static const bool is_bounded = std::numeric_limits<T>::is_bounded; static const bool is_modulo = std::numeric_limits<T>::is_modulo; static const bool traps = std::numeric_limits<T>::traps; static const bool tinyness_before = std::numeric_limits<T>::tinyness_before; #if defined(_STLP_STATIC_CONST_INIT_BUG) static const int has_denorm = std::numeric_limits<T>::has_denorm; static const int round_style = std::numeric_limits<T>::round_style; #else static const float_denorm_style has_denorm = std::numeric_limits<T>::has_denorm; static const float_round_style round_style = std::numeric_limits<T>::round_style; #endif }; } #endif // BOOST_UNITS_LIMITS_HPP