/* ode-initval/odeiv2.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ /* Modified by Tuomo Keskitalo */ #ifndef __GSL_ODEIV2_H__ #define __GSL_ODEIV2_H__ #if !defined( GSL_FUN ) # if !defined( GSL_DLL ) # define GSL_FUN extern # elif defined( BUILD_GSL_DLL ) # define GSL_FUN extern __declspec(dllexport) # else # define GSL_FUN extern __declspec(dllimport) # endif #endif #include <stdio.h> #include <stdlib.h> #include <gsl/gsl_types.h> #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Description of a system of ODEs. * * y' = f(t,y) = dydt(t, y) * * The system is specified by giving the right-hand-side * of the equation and possibly a jacobian function. * * Some methods require the jacobian function, which calculates * the matrix dfdy and the vector dfdt. The matrix dfdy conforms * to the GSL standard, being a continuous range of floating point * values, in row-order. * * As with GSL function objects, user-supplied parameter * data is also present. */ typedef struct { int (*function) (double t, const double y[], double dydt[], void *params); int (*jacobian) (double t, const double y[], double *dfdy, double dfdt[], void *params); size_t dimension; void *params; } gsl_odeiv2_system; /* Function evaluation macros */ #define GSL_ODEIV_FN_EVAL(S,t,y,f) (*((S)->function))(t,y,f,(S)->params) #define GSL_ODEIV_JA_EVAL(S,t,y,dfdy,dfdt) (*((S)->jacobian))(t,y,dfdy,dfdt,(S)->params) /* Type definitions */ typedef struct gsl_odeiv2_step_struct gsl_odeiv2_step; typedef struct gsl_odeiv2_control_struct gsl_odeiv2_control; typedef struct gsl_odeiv2_evolve_struct gsl_odeiv2_evolve; typedef struct gsl_odeiv2_driver_struct gsl_odeiv2_driver; /* Stepper object * * Opaque object for stepping an ODE system from t to t+h. * In general the object has some state which facilitates * iterating the stepping operation. */ typedef struct { const char *name; int can_use_dydt_in; int gives_exact_dydt_out; void *(*alloc) (size_t dim); int (*apply) (void *state, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv2_system * dydt); int (*set_driver) (void *state, const gsl_odeiv2_driver * d); int (*reset) (void *state, size_t dim); unsigned int (*order) (void *state); void (*free) (void *state); } gsl_odeiv2_step_type; struct gsl_odeiv2_step_struct { const gsl_odeiv2_step_type *type; size_t dimension; void *state; }; /* Available stepper types */ GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_rk2; GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_rk4; GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_rkf45; GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_rkck; GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_rk8pd; GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_rk2imp; GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_rk4imp; GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_bsimp; GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_rk1imp; GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_msadams; GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_msbdf; /* Stepper object methods */ GSL_FUN gsl_odeiv2_step *gsl_odeiv2_step_alloc (const gsl_odeiv2_step_type * T, size_t dim); GSL_FUN int gsl_odeiv2_step_reset (gsl_odeiv2_step * s); GSL_FUN void gsl_odeiv2_step_free (gsl_odeiv2_step * s); GSL_FUN const char *gsl_odeiv2_step_name (const gsl_odeiv2_step * s); GSL_FUN unsigned int gsl_odeiv2_step_order (const gsl_odeiv2_step * s); GSL_FUN int gsl_odeiv2_step_apply (gsl_odeiv2_step * s, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv2_system * dydt); GSL_FUN int gsl_odeiv2_step_set_driver (gsl_odeiv2_step * s, const gsl_odeiv2_driver * d); /* Step size control object. */ typedef struct { const char *name; void *(*alloc) (void); int (*init) (void *state, double eps_abs, double eps_rel, double a_y, double a_dydt); int (*hadjust) (void *state, size_t dim, unsigned int ord, const double y[], const double yerr[], const double yp[], double *h); int (*errlevel) (void *state, const double y, const double dydt, const double h, const size_t ind, double *errlev); int (*set_driver) (void *state, const gsl_odeiv2_driver * d); void (*free) (void *state); } gsl_odeiv2_control_type; struct gsl_odeiv2_control_struct { const gsl_odeiv2_control_type *type; void *state; }; /* Possible return values for an hadjust() evolution method */ #define GSL_ODEIV_HADJ_INC 1 /* step was increased */ #define GSL_ODEIV_HADJ_NIL 0 /* step unchanged */ #define GSL_ODEIV_HADJ_DEC (-1) /* step decreased */ /* General step size control methods. * * The hadjust() method controls the adjustment of * step size given the result of a step and the error. * Valid hadjust() methods must return one of the codes below. * errlevel function calculates the desired error level D0. * * The general data can be used by specializations * to store state and control their heuristics. */ GSL_FUN gsl_odeiv2_control *gsl_odeiv2_control_alloc (const gsl_odeiv2_control_type * T); GSL_FUN int gsl_odeiv2_control_init (gsl_odeiv2_control * c, double eps_abs, double eps_rel, double a_y, double a_dydt); GSL_FUN void gsl_odeiv2_control_free (gsl_odeiv2_control * c); GSL_FUN int gsl_odeiv2_control_hadjust (gsl_odeiv2_control * c, gsl_odeiv2_step * s, const double y[], const double yerr[], const double dydt[], double *h); GSL_FUN const char *gsl_odeiv2_control_name (const gsl_odeiv2_control * c); GSL_FUN int gsl_odeiv2_control_errlevel (gsl_odeiv2_control * c, const double y, const double dydt, const double h, const size_t ind, double *errlev); GSL_FUN int gsl_odeiv2_control_set_driver (gsl_odeiv2_control * c, const gsl_odeiv2_driver * d); /* Available control object constructors. * * The standard control object is a four parameter heuristic * defined as follows: * D0 = eps_abs + eps_rel * (a_y |y| + a_dydt h |y'|) * D1 = |yerr| * q = consistency order of method (q=4 for 4(5) embedded RK) * S = safety factor (0.9 say) * * / (D0/D1)^(1/(q+1)) D0 >= D1 * h_NEW = S h_OLD * | * \ (D0/D1)^(1/q) D0 < D1 * * This encompasses all the standard error scaling methods. * * The y method is the standard method with a_y=1, a_dydt=0. * The yp method is the standard method with a_y=0, a_dydt=1. */ GSL_FUN gsl_odeiv2_control *gsl_odeiv2_control_standard_new (double eps_abs, double eps_rel, double a_y, double a_dydt); GSL_FUN gsl_odeiv2_control *gsl_odeiv2_control_y_new (double eps_abs, double eps_rel); GSL_FUN gsl_odeiv2_control *gsl_odeiv2_control_yp_new (double eps_abs, double eps_rel); /* This controller computes errors using different absolute errors for * each component * * D0 = eps_abs * scale_abs[i] + eps_rel * (a_y |y| + a_dydt h |y'|) */ GSL_FUN gsl_odeiv2_control *gsl_odeiv2_control_scaled_new (double eps_abs, double eps_rel, double a_y, double a_dydt, const double scale_abs[], size_t dim); /* Evolution object */ struct gsl_odeiv2_evolve_struct { size_t dimension; double *y0; double *yerr; double *dydt_in; double *dydt_out; double last_step; unsigned long int count; unsigned long int failed_steps; const gsl_odeiv2_driver *driver; }; /* Evolution object methods */ GSL_FUN gsl_odeiv2_evolve *gsl_odeiv2_evolve_alloc (size_t dim); GSL_FUN int gsl_odeiv2_evolve_apply (gsl_odeiv2_evolve * e, gsl_odeiv2_control * con, gsl_odeiv2_step * step, const gsl_odeiv2_system * dydt, double *t, double t1, double *h, double y[]); GSL_FUN int gsl_odeiv2_evolve_apply_fixed_step (gsl_odeiv2_evolve * e, gsl_odeiv2_control * con, gsl_odeiv2_step * step, const gsl_odeiv2_system * dydt, double *t, const double h0, double y[]); GSL_FUN int gsl_odeiv2_evolve_reset (gsl_odeiv2_evolve * e); GSL_FUN void gsl_odeiv2_evolve_free (gsl_odeiv2_evolve * e); GSL_FUN int gsl_odeiv2_evolve_set_driver (gsl_odeiv2_evolve * e, const gsl_odeiv2_driver * d); /* Driver object * * This is a high level wrapper for step, control and * evolve objects. */ struct gsl_odeiv2_driver_struct { const gsl_odeiv2_system *sys; /* ODE system */ gsl_odeiv2_step *s; /* stepper object */ gsl_odeiv2_control *c; /* control object */ gsl_odeiv2_evolve *e; /* evolve object */ double h; /* step size */ double hmin; /* minimum step size allowed */ double hmax; /* maximum step size allowed */ unsigned long int n; /* number of steps taken */ unsigned long int nmax; /* Maximum number of steps allowed */ }; /* Driver object methods */ GSL_FUN gsl_odeiv2_driver *gsl_odeiv2_driver_alloc_y_new (const gsl_odeiv2_system * sys, const gsl_odeiv2_step_type * T, const double hstart, const double epsabs, const double epsrel); GSL_FUN gsl_odeiv2_driver *gsl_odeiv2_driver_alloc_yp_new (const gsl_odeiv2_system * sys, const gsl_odeiv2_step_type * T, const double hstart, const double epsabs, const double epsrel); GSL_FUN gsl_odeiv2_driver *gsl_odeiv2_driver_alloc_scaled_new (const gsl_odeiv2_system * sys, const gsl_odeiv2_step_type * T, const double hstart, const double epsabs, const double epsrel, const double a_y, const double a_dydt, const double scale_abs[]); GSL_FUN gsl_odeiv2_driver *gsl_odeiv2_driver_alloc_standard_new (const gsl_odeiv2_system * sys, const gsl_odeiv2_step_type * T, const double hstart, const double epsabs, const double epsrel, const double a_y, const double a_dydt); GSL_FUN int gsl_odeiv2_driver_set_hmin (gsl_odeiv2_driver * d, const double hmin); GSL_FUN int gsl_odeiv2_driver_set_hmax (gsl_odeiv2_driver * d, const double hmax); GSL_FUN int gsl_odeiv2_driver_set_nmax (gsl_odeiv2_driver * d, const unsigned long int nmax); GSL_FUN int gsl_odeiv2_driver_apply (gsl_odeiv2_driver * d, double *t, const double t1, double y[]); GSL_FUN int gsl_odeiv2_driver_apply_fixed_step (gsl_odeiv2_driver * d, double *t, const double h, const unsigned long int n, double y[]); GSL_FUN int gsl_odeiv2_driver_reset (gsl_odeiv2_driver * d); GSL_FUN void gsl_odeiv2_driver_free (gsl_odeiv2_driver * state); __END_DECLS #endif /* __GSL_ODEIV2_H__ */