// Boost.Units - A C++ library for zero-overhead dimensional analysis and // unit/quantity manipulation and conversion // // Copyright (C) 2003-2008 Matthias Christian Schabel // Copyright (C) 2008 Steven Watanabe // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_UNITS_CODATA_PHYSICO_CHEMICAL_CONSTANTS_HPP #define BOOST_UNITS_CODATA_PHYSICO_CHEMICAL_CONSTANTS_HPP #include <boost/units/pow.hpp> #include <boost/units/static_constant.hpp> #include <boost/units/systems/detail/constants.hpp> #include <boost/units/systems/si/amount.hpp> #include <boost/units/systems/si/area.hpp> #include <boost/units/systems/si/electric_charge.hpp> #include <boost/units/systems/si/energy.hpp> #include <boost/units/systems/si/frequency.hpp> #include <boost/units/systems/si/mass.hpp> #include <boost/units/systems/si/power.hpp> #include <boost/units/systems/si/solid_angle.hpp> #include <boost/units/systems/si/temperature.hpp> #include <boost/units/systems/si/codata/typedefs.hpp> /// \file /// CODATA recommended values of fundamental physico-chemical constants /// CODATA 2006 values as of 2007/03/30 namespace boost { namespace units { namespace si { namespace constants { namespace codata { // PHYSICO-CHEMICAL /// Avogadro constant BOOST_UNITS_PHYSICAL_CONSTANT(N_A,quantity<inverse_amount>,6.02214179e23/mole,3.0e16/mole); /// atomic mass constant BOOST_UNITS_PHYSICAL_CONSTANT(m_u,quantity<mass>,1.660538782e-27*kilograms,8.3e-35*kilograms); /// Faraday constant BOOST_UNITS_PHYSICAL_CONSTANT(F,quantity<electric_charge_over_amount>,96485.3399*coulombs/mole,2.4e-3*coulombs/mole); /// molar gas constant BOOST_UNITS_PHYSICAL_CONSTANT(R,quantity<energy_over_temperature_amount>,8.314472*joules/kelvin/mole,1.5e-5*joules/kelvin/mole); /// Boltzmann constant BOOST_UNITS_PHYSICAL_CONSTANT(k_B,quantity<energy_over_temperature>,1.3806504e-23*joules/kelvin,2.4e-29*joules/kelvin); /// Stefan-Boltzmann constant BOOST_UNITS_PHYSICAL_CONSTANT(sigma_SB,quantity<power_over_area_temperature_4>,5.670400e-8*watts/square_meter/pow<4>(kelvin),4.0e-13*watts/square_meter/pow<4>(kelvin)); /// first radiation constant BOOST_UNITS_PHYSICAL_CONSTANT(c_1,quantity<power_area>,3.74177118e-16*watt*square_meters,1.9e-23*watt*square_meters); /// first radiation constant for spectral radiance BOOST_UNITS_PHYSICAL_CONSTANT(c_1L,quantity<power_area_over_solid_angle>,1.191042759e-16*watt*square_meters/steradian,5.9e-24*watt*square_meters/steradian); /// second radiation constant BOOST_UNITS_PHYSICAL_CONSTANT(c_2,quantity<length_temperature>,1.4387752e-2*meter*kelvin,2.5e-8*meter*kelvin); /// Wien displacement law constant : lambda_max T BOOST_UNITS_PHYSICAL_CONSTANT(b,quantity<length_temperature>,2.8977685e-3*meter*kelvin,5.1e-9*meter*kelvin); /// Wien displacement law constant : nu_max/T BOOST_UNITS_PHYSICAL_CONSTANT(b_prime,quantity<frequency_over_temperature>,5.878933e10*hertz/kelvin,1.0e15*hertz/kelvin); } // namespace codata } // namespace constants } // namespace si } // namespace units } // namespace boost #endif // BOOST_UNITS_CODATA_PHYSICO_CHEMICAL_CONSTANTS_HPP