r_c_shortest_paths.hpp 29.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
// r_c_shortest_paths.hpp header file

// Copyright Michael Drexl 2005, 2006.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at 
// http://boost.org/LICENSE_1_0.txt)

#ifndef BOOST_GRAPH_R_C_SHORTEST_PATHS_HPP
#define BOOST_GRAPH_R_C_SHORTEST_PATHS_HPP

#include <map>
#include <queue>
#include <vector>

#include <boost/graph/graph_traits.hpp>
#include <boost/graph/iteration_macros.hpp>
#include <boost/property_map/property_map.hpp>

namespace boost {

// r_c_shortest_paths_label struct
template<class Graph, class Resource_Container>
struct r_c_shortest_paths_label
{
  r_c_shortest_paths_label
  ( const unsigned long n, 
    const Resource_Container& rc = Resource_Container(), 
    const r_c_shortest_paths_label* const pl = 0, 
    const typename graph_traits<Graph>::edge_descriptor& ed = 
      graph_traits<Graph>::edge_descriptor(), 
    const typename graph_traits<Graph>::vertex_descriptor& vd = 
      graph_traits<Graph>::vertex_descriptor() )
  : num( n ), 
    cumulated_resource_consumption( rc ), 
    p_pred_label( pl ), 
    pred_edge( ed ), 
    resident_vertex( vd ), 
    b_is_dominated( false ), 
    b_is_processed( false ),
    b_is_valid( true )
  {}
  r_c_shortest_paths_label& operator=( const r_c_shortest_paths_label& other )
  {
    if( this == &other )
      return *this;
    this->~r_c_shortest_paths_label();
    new( this ) r_c_shortest_paths_label( other );
    return *this;
  }
  const unsigned long num;
  Resource_Container cumulated_resource_consumption;
  const r_c_shortest_paths_label* const p_pred_label;
  const typename graph_traits<Graph>::edge_descriptor pred_edge;
  const typename graph_traits<Graph>::vertex_descriptor resident_vertex;
  bool b_is_dominated;
  bool b_is_processed;
  bool b_is_valid;
}; // r_c_shortest_paths_label

template<class Graph, class Resource_Container>
inline bool operator==
( const r_c_shortest_paths_label<Graph, Resource_Container>& l1, 
  const r_c_shortest_paths_label<Graph, Resource_Container>& l2 )
{
  assert (l1.b_is_valid && l2.b_is_valid);
  return 
    l1.cumulated_resource_consumption == l2.cumulated_resource_consumption;
}

template<class Graph, class Resource_Container>
inline bool operator!=
( const r_c_shortest_paths_label<Graph, Resource_Container>& l1, 
  const r_c_shortest_paths_label<Graph, Resource_Container>& l2 )
{
  assert (l1.b_is_valid && l2.b_is_valid);
  return 
    !( l1 == l2 );
}

template<class Graph, class Resource_Container>
inline bool operator<
( const r_c_shortest_paths_label<Graph, Resource_Container>& l1, 
  const r_c_shortest_paths_label<Graph, Resource_Container>& l2 )
{
  assert (l1.b_is_valid && l2.b_is_valid);
  return 
    l1.cumulated_resource_consumption < l2.cumulated_resource_consumption;
}

template<class Graph, class Resource_Container>
inline bool operator>
( const r_c_shortest_paths_label<Graph, Resource_Container>& l1, 
  const r_c_shortest_paths_label<Graph, Resource_Container>& l2 )
{
  assert (l1.b_is_valid && l2.b_is_valid);
  return 
    l2.cumulated_resource_consumption < l1.cumulated_resource_consumption;
}

template<class Graph, class Resource_Container>
inline bool operator<=
( const r_c_shortest_paths_label<Graph, Resource_Container>& l1, 
  const r_c_shortest_paths_label<Graph, Resource_Container>& l2 )
{
  assert (l1.b_is_valid && l2.b_is_valid);
  return 
    l1 < l2 || l1 == l2;
}

template<class Graph, class Resource_Container>
inline bool operator>=
( const r_c_shortest_paths_label<Graph, Resource_Container>& l1, 
  const r_c_shortest_paths_label<Graph, Resource_Container>& l2 )
{
  assert (l1.b_is_valid && l2.b_is_valid);
  return l2 < l1 || l1 == l2;
}

namespace detail {

// ks_smart_pointer class
// from:
// Kuhlins, S.; Schader, M. (1999):
// Die C++-Standardbibliothek
// Springer, Berlin
// p. 333 f.
template<class T>
class ks_smart_pointer
{
public:
  ks_smart_pointer( T* ptt = 0 ) : pt( ptt ) {}
  ks_smart_pointer( const ks_smart_pointer& other ) : pt( other.pt ) {}
  ks_smart_pointer& operator=( const ks_smart_pointer& other )
    { pt = other.pt; return *this; }
  ~ks_smart_pointer() {}
  T& operator*() const { return *pt; }
  T* operator->() const { return pt; }
  T* get() const { return pt; }
  operator T*() const { return pt; }
  friend bool operator==( const ks_smart_pointer& t, 
                          const ks_smart_pointer& u )
    { return *t.pt == *u.pt; }
  friend bool operator!=( const ks_smart_pointer& t, 
                          const ks_smart_pointer& u )
    { return *t.pt != *u.pt; }
  friend bool operator<( const ks_smart_pointer& t, 
                         const ks_smart_pointer& u )
    { return *t.pt < *u.pt; }
  friend bool operator>( const ks_smart_pointer& t, 
                         const ks_smart_pointer& u )
    { return *t.pt > *u.pt; }
  friend bool operator<=( const ks_smart_pointer& t, 
                          const ks_smart_pointer& u )
    { return *t.pt <= *u.pt; }
  friend bool operator>=( const ks_smart_pointer& t, 
                          const ks_smart_pointer& u )
    { return *t.pt >= *u.pt; }
private:
  T* pt;
}; // ks_smart_pointer


// r_c_shortest_paths_dispatch function (body/implementation)
template<class Graph, 
         class VertexIndexMap, 
         class EdgeIndexMap, 
         class Resource_Container, 
         class Resource_Extension_Function, 
         class Dominance_Function, 
         class Label_Allocator, 
         class Visitor>
void r_c_shortest_paths_dispatch
( const Graph& g, 
  const VertexIndexMap& vertex_index_map, 
  const EdgeIndexMap& /*edge_index_map*/, 
  typename graph_traits<Graph>::vertex_descriptor s, 
  typename graph_traits<Graph>::vertex_descriptor t, 
  // each inner vector corresponds to a pareto-optimal path
  std::vector
    <std::vector
      <typename graph_traits
        <Graph>::edge_descriptor> >& pareto_optimal_solutions, 
  std::vector
    <Resource_Container>& pareto_optimal_resource_containers, 
  bool b_all_pareto_optimal_solutions, 
  // to initialize the first label/resource container 
  // and to carry the type information
  const Resource_Container& rc, 
  Resource_Extension_Function& ref, 
  Dominance_Function& dominance, 
  // to specify the memory management strategy for the labels
  Label_Allocator /*la*/, 
  Visitor vis )
{
  pareto_optimal_resource_containers.clear();
  pareto_optimal_solutions.clear();

  size_t i_label_num = 0;
  typedef 
    typename 
      Label_Allocator::template rebind
        <r_c_shortest_paths_label
          <Graph, Resource_Container> >::other LAlloc;
  LAlloc l_alloc;
  typedef 
    ks_smart_pointer
      <r_c_shortest_paths_label<Graph, Resource_Container> > Splabel;
  std::priority_queue<Splabel, std::vector<Splabel>, std::greater<Splabel> > 
    unprocessed_labels;

  bool b_feasible = true;
  r_c_shortest_paths_label<Graph, Resource_Container>* first_label = 
    l_alloc.allocate( 1 );
  l_alloc.construct
    ( first_label, 
      r_c_shortest_paths_label
        <Graph, Resource_Container>( i_label_num++, 
                                     rc, 
                                     0, 
                                     typename graph_traits<Graph>::
                                       edge_descriptor(), 
                                     s ) );

  Splabel splabel_first_label = Splabel( first_label );
  unprocessed_labels.push( splabel_first_label );
  std::vector<std::list<Splabel> > vec_vertex_labels_data( num_vertices( g ) );
  iterator_property_map<typename std::vector<std::list<Splabel> >::iterator,
                        VertexIndexMap>
    vec_vertex_labels(vec_vertex_labels_data.begin(), vertex_index_map);
  vec_vertex_labels[s].push_back( splabel_first_label );
  typedef
    std::vector<typename std::list<Splabel>::iterator> 
    vec_last_valid_positions_for_dominance_data_type;
  vec_last_valid_positions_for_dominance_data_type
    vec_last_valid_positions_for_dominance_data( num_vertices( g ) );
  iterator_property_map<
      typename vec_last_valid_positions_for_dominance_data_type::iterator,
      VertexIndexMap>
    vec_last_valid_positions_for_dominance
      (vec_last_valid_positions_for_dominance_data.begin(),
       vertex_index_map);
  BGL_FORALL_VERTICES_T(v, g, Graph) {
    put(vec_last_valid_positions_for_dominance, v, vec_vertex_labels[v].begin());
  }
  std::vector<size_t> vec_last_valid_index_for_dominance_data( num_vertices( g ), 0 );
  iterator_property_map<std::vector<size_t>::iterator, VertexIndexMap>
    vec_last_valid_index_for_dominance
      (vec_last_valid_index_for_dominance_data.begin(), vertex_index_map);
  std::vector<bool> 
    b_vec_vertex_already_checked_for_dominance_data( num_vertices( g ), false );
  iterator_property_map<std::vector<bool>::iterator, VertexIndexMap>
    b_vec_vertex_already_checked_for_dominance
      (b_vec_vertex_already_checked_for_dominance_data.begin(),
       vertex_index_map);

  while( !unprocessed_labels.empty()  && vis.on_enter_loop(unprocessed_labels, g) )
  {
    Splabel cur_label = unprocessed_labels.top();
    assert (cur_label->b_is_valid);
    unprocessed_labels.pop();
    vis.on_label_popped( *cur_label, g );
    // an Splabel object in unprocessed_labels and the respective Splabel 
    // object in the respective list<Splabel> of vec_vertex_labels share their 
    // embedded r_c_shortest_paths_label object
    // to avoid memory leaks, dominated 
    // r_c_shortest_paths_label objects are marked and deleted when popped 
    // from unprocessed_labels, as they can no longer be deleted at the end of 
    // the function; only the Splabel object in unprocessed_labels still 
    // references the r_c_shortest_paths_label object
    // this is also for efficiency, because the else branch is executed only 
    // if there is a chance that extending the 
    // label leads to new undominated labels, which in turn is possible only 
    // if the label to be extended is undominated
    assert (cur_label->b_is_valid);
    if( !cur_label->b_is_dominated )
    {
      typename boost::graph_traits<Graph>::vertex_descriptor
        i_cur_resident_vertex = cur_label->resident_vertex;
      std::list<Splabel>& list_labels_cur_vertex = 
        get(vec_vertex_labels, i_cur_resident_vertex);
      if( list_labels_cur_vertex.size() >= 2 
          && vec_last_valid_index_for_dominance[i_cur_resident_vertex] 
               < list_labels_cur_vertex.size() )
      {
        typename std::list<Splabel>::iterator outer_iter = 
          list_labels_cur_vertex.begin();
        bool b_outer_iter_at_or_beyond_last_valid_pos_for_dominance = false;
        while( outer_iter != list_labels_cur_vertex.end() )
        {
          Splabel cur_outer_splabel = *outer_iter;
          assert (cur_outer_splabel->b_is_valid);
          typename std::list<Splabel>::iterator inner_iter = outer_iter;
          if( !b_outer_iter_at_or_beyond_last_valid_pos_for_dominance 
              && outer_iter == 
                   get(vec_last_valid_positions_for_dominance,
                       i_cur_resident_vertex) )
            b_outer_iter_at_or_beyond_last_valid_pos_for_dominance = true;
          if( !get(b_vec_vertex_already_checked_for_dominance, i_cur_resident_vertex)
              || b_outer_iter_at_or_beyond_last_valid_pos_for_dominance )
          {
            ++inner_iter;
          }
          else
          {
            inner_iter = 
              get(vec_last_valid_positions_for_dominance,
                  i_cur_resident_vertex);
            ++inner_iter;
          }
          bool b_outer_iter_erased = false;
          while( inner_iter != list_labels_cur_vertex.end() )
          {
            Splabel cur_inner_splabel = *inner_iter;
            assert (cur_inner_splabel->b_is_valid);
            if( dominance( cur_outer_splabel->
                             cumulated_resource_consumption, 
                           cur_inner_splabel->
                             cumulated_resource_consumption ) )
            {
              typename std::list<Splabel>::iterator buf = inner_iter;
              ++inner_iter;
              list_labels_cur_vertex.erase( buf );
              if( cur_inner_splabel->b_is_processed )
              {
                cur_inner_splabel->b_is_valid = false;
                l_alloc.destroy( cur_inner_splabel.get() );
                l_alloc.deallocate( cur_inner_splabel.get(), 1 );
              }
              else
                cur_inner_splabel->b_is_dominated = true;
              continue;
            }
            else
              ++inner_iter;
            if( dominance( cur_inner_splabel->
                             cumulated_resource_consumption, 
                           cur_outer_splabel->
                             cumulated_resource_consumption ) )
            {
              typename std::list<Splabel>::iterator buf = outer_iter;
              ++outer_iter;
              list_labels_cur_vertex.erase( buf );
              b_outer_iter_erased = true;
              assert (cur_outer_splabel->b_is_valid);
              if( cur_outer_splabel->b_is_processed )
              {
                cur_outer_splabel->b_is_valid = false;
                l_alloc.destroy( cur_outer_splabel.get() );
                l_alloc.deallocate( cur_outer_splabel.get(), 1 );
              }
              else
                cur_outer_splabel->b_is_dominated = true;
              break;
            }
          }
          if( !b_outer_iter_erased )
            ++outer_iter;
        }
        if( list_labels_cur_vertex.size() > 1 )
          put(vec_last_valid_positions_for_dominance, i_cur_resident_vertex,
            (--(list_labels_cur_vertex.end())));
        else
          put(vec_last_valid_positions_for_dominance, i_cur_resident_vertex,
            list_labels_cur_vertex.begin());
        put(b_vec_vertex_already_checked_for_dominance,
            i_cur_resident_vertex, true);
        put(vec_last_valid_index_for_dominance, i_cur_resident_vertex,
          list_labels_cur_vertex.size() - 1);
      }
    }
    assert (b_all_pareto_optimal_solutions || cur_label->b_is_valid);
    if( !b_all_pareto_optimal_solutions && cur_label->resident_vertex == t )
    {
      // the devil don't sleep
      if( cur_label->b_is_dominated )
      {
        cur_label->b_is_valid = false;
        l_alloc.destroy( cur_label.get() );
        l_alloc.deallocate( cur_label.get(), 1 );
      }
      while( unprocessed_labels.size() )
      {
        Splabel l = unprocessed_labels.top();
        assert (l->b_is_valid);
        unprocessed_labels.pop();
        // delete only dominated labels, because nondominated labels are 
        // deleted at the end of the function
        if( l->b_is_dominated )
        {
          l->b_is_valid = false;
          l_alloc.destroy( l.get() );
          l_alloc.deallocate( l.get(), 1 );
        }
      }
      break;
    }
    if( !cur_label->b_is_dominated )
    {
      cur_label->b_is_processed = true;
      vis.on_label_not_dominated( *cur_label, g );
      typename graph_traits<Graph>::vertex_descriptor cur_vertex = 
        cur_label->resident_vertex;
      typename graph_traits<Graph>::out_edge_iterator oei, oei_end;
      for( boost::tie( oei, oei_end ) = out_edges( cur_vertex, g ); 
           oei != oei_end; 
           ++oei )
      {
        b_feasible = true;
        r_c_shortest_paths_label<Graph, Resource_Container>* new_label = 
          l_alloc.allocate( 1 );
        l_alloc.construct( new_label, 
                           r_c_shortest_paths_label
                             <Graph, Resource_Container>
                               ( i_label_num++, 
                                 cur_label->cumulated_resource_consumption, 
                                 cur_label.get(), 
                                 *oei, 
                                 target( *oei, g ) ) );
        b_feasible = 
          ref( g, 
               new_label->cumulated_resource_consumption, 
               new_label->p_pred_label->cumulated_resource_consumption, 
               new_label->pred_edge );

        if( !b_feasible )
        {
          vis.on_label_not_feasible( *new_label, g );
          new_label->b_is_valid = false;
          l_alloc.destroy( new_label );
          l_alloc.deallocate( new_label, 1 );
        }
        else
        {
          const r_c_shortest_paths_label<Graph, Resource_Container>& 
            ref_new_label = *new_label;
          vis.on_label_feasible( ref_new_label, g );
          Splabel new_sp_label( new_label );
          vec_vertex_labels[new_sp_label->resident_vertex].
            push_back( new_sp_label );
          unprocessed_labels.push( new_sp_label );
        }
      }
    }
    else
    {
      assert (cur_label->b_is_valid);
      vis.on_label_dominated( *cur_label, g );
      cur_label->b_is_valid = false;
      l_alloc.destroy( cur_label.get() );
      l_alloc.deallocate( cur_label.get(), 1 );
    }
  }
  std::list<Splabel> dsplabels = get(vec_vertex_labels, t);
  typename std::list<Splabel>::const_iterator csi = dsplabels.begin();
  typename std::list<Splabel>::const_iterator csi_end = dsplabels.end();
  // if d could be reached from o
  if( !dsplabels.empty() )
  {
    for( ; csi != csi_end; ++csi )
    {
      std::vector<typename graph_traits<Graph>::edge_descriptor> 
        cur_pareto_optimal_path;
      const r_c_shortest_paths_label<Graph, Resource_Container>* p_cur_label = 
        (*csi).get();
      assert (p_cur_label->b_is_valid);
      pareto_optimal_resource_containers.
        push_back( p_cur_label->cumulated_resource_consumption );
      while( p_cur_label->num != 0 )
      {
        cur_pareto_optimal_path.push_back( p_cur_label->pred_edge );
        p_cur_label = p_cur_label->p_pred_label;
        assert (p_cur_label->b_is_valid);
      }
      pareto_optimal_solutions.push_back( cur_pareto_optimal_path );
      if( !b_all_pareto_optimal_solutions )
        break;
    }
  }

  BGL_FORALL_VERTICES_T(i, g, Graph) {
    const std::list<Splabel>& list_labels_cur_vertex = vec_vertex_labels[i];
    csi_end = list_labels_cur_vertex.end();
    for( csi = list_labels_cur_vertex.begin(); csi != csi_end; ++csi )
    {
      assert ((*csi)->b_is_valid);
      (*csi)->b_is_valid = false;
      l_alloc.destroy( (*csi).get() );
      l_alloc.deallocate( (*csi).get(), 1 );
    }
  }
} // r_c_shortest_paths_dispatch

} // detail

// default_r_c_shortest_paths_visitor struct
struct default_r_c_shortest_paths_visitor
{
  template<class Label, class Graph>
  void on_label_popped( const Label&, const Graph& ) {}
  template<class Label, class Graph>
  void on_label_feasible( const Label&, const Graph& ) {}
  template<class Label, class Graph>
  void on_label_not_feasible( const Label&, const Graph& ) {}
  template<class Label, class Graph>
  void on_label_dominated( const Label&, const Graph& ) {}
  template<class Label, class Graph>
  void on_label_not_dominated( const Label&, const Graph& ) {}
  template<class Queue, class Graph>             
  bool on_enter_loop(const Queue& queue, const Graph& graph) {return true;}
}; // default_r_c_shortest_paths_visitor


// default_r_c_shortest_paths_allocator
typedef 
  std::allocator<int> default_r_c_shortest_paths_allocator;
// default_r_c_shortest_paths_allocator


// r_c_shortest_paths functions (handle/interface)
// first overload:
// - return all pareto-optimal solutions
// - specify Label_Allocator and Visitor arguments
template<class Graph, 
         class VertexIndexMap, 
         class EdgeIndexMap, 
         class Resource_Container, 
         class Resource_Extension_Function, 
         class Dominance_Function, 
         class Label_Allocator, 
         class Visitor>
void r_c_shortest_paths
( const Graph& g, 
  const VertexIndexMap& vertex_index_map, 
  const EdgeIndexMap& edge_index_map, 
  typename graph_traits<Graph>::vertex_descriptor s, 
  typename graph_traits<Graph>::vertex_descriptor t, 
  // each inner vector corresponds to a pareto-optimal path
  std::vector<std::vector<typename graph_traits<Graph>::edge_descriptor> >& 
    pareto_optimal_solutions, 
  std::vector<Resource_Container>& pareto_optimal_resource_containers, 
  // to initialize the first label/resource container 
  // and to carry the type information
  const Resource_Container& rc, 
  const Resource_Extension_Function& ref, 
  const Dominance_Function& dominance, 
  // to specify the memory management strategy for the labels
  Label_Allocator la, 
  Visitor vis )
{
  r_c_shortest_paths_dispatch( g, 
                               vertex_index_map, 
                               edge_index_map, 
                               s, 
                               t, 
                               pareto_optimal_solutions, 
                               pareto_optimal_resource_containers, 
                               true, 
                               rc, 
                               ref, 
                               dominance, 
                               la, 
                               vis );
}

// second overload:
// - return only one pareto-optimal solution
// - specify Label_Allocator and Visitor arguments
template<class Graph, 
         class VertexIndexMap, 
         class EdgeIndexMap, 
         class Resource_Container, 
         class Resource_Extension_Function, 
         class Dominance_Function, 
         class Label_Allocator, 
         class Visitor>
void r_c_shortest_paths
( const Graph& g, 
  const VertexIndexMap& vertex_index_map, 
  const EdgeIndexMap& edge_index_map, 
  typename graph_traits<Graph>::vertex_descriptor s, 
  typename graph_traits<Graph>::vertex_descriptor t, 
  std::vector<typename graph_traits<Graph>::edge_descriptor>& 
    pareto_optimal_solution, 
  Resource_Container& pareto_optimal_resource_container, 
  // to initialize the first label/resource container 
  // and to carry the type information
  const Resource_Container& rc, 
  const Resource_Extension_Function& ref, 
  const Dominance_Function& dominance, 
  // to specify the memory management strategy for the labels
  Label_Allocator la, 
  Visitor vis )
{
  // each inner vector corresponds to a pareto-optimal path
  std::vector<std::vector<typename graph_traits<Graph>::edge_descriptor> > 
    pareto_optimal_solutions;
  std::vector<Resource_Container> pareto_optimal_resource_containers;
  r_c_shortest_paths_dispatch( g, 
                               vertex_index_map, 
                               edge_index_map, 
                               s, 
                               t, 
                               pareto_optimal_solutions, 
                               pareto_optimal_resource_containers, 
                               false, 
                               rc, 
                               ref, 
                               dominance, 
                               la, 
                               vis );
  if (!pareto_optimal_solutions.empty()) {
    pareto_optimal_solution = pareto_optimal_solutions[0];
    pareto_optimal_resource_container = pareto_optimal_resource_containers[0];
  }
}

// third overload:
// - return all pareto-optimal solutions
// - use default Label_Allocator and Visitor
template<class Graph, 
         class VertexIndexMap, 
         class EdgeIndexMap, 
         class Resource_Container, 
         class Resource_Extension_Function, 
         class Dominance_Function>
void r_c_shortest_paths
( const Graph& g, 
  const VertexIndexMap& vertex_index_map, 
  const EdgeIndexMap& edge_index_map, 
  typename graph_traits<Graph>::vertex_descriptor s, 
  typename graph_traits<Graph>::vertex_descriptor t, 
  // each inner vector corresponds to a pareto-optimal path
  std::vector<std::vector<typename graph_traits<Graph>::edge_descriptor> >& 
    pareto_optimal_solutions, 
  std::vector<Resource_Container>& pareto_optimal_resource_containers, 
  // to initialize the first label/resource container 
  // and to carry the type information
  const Resource_Container& rc, 
  const Resource_Extension_Function& ref, 
  const Dominance_Function& dominance )
{
  r_c_shortest_paths_dispatch( g, 
                               vertex_index_map, 
                               edge_index_map, 
                               s, 
                               t, 
                               pareto_optimal_solutions, 
                               pareto_optimal_resource_containers, 
                               true, 
                               rc, 
                               ref, 
                               dominance, 
                               default_r_c_shortest_paths_allocator(), 
                               default_r_c_shortest_paths_visitor() );
}

// fourth overload:
// - return only one pareto-optimal solution
// - use default Label_Allocator and Visitor
template<class Graph, 
         class VertexIndexMap, 
         class EdgeIndexMap, 
         class Resource_Container, 
         class Resource_Extension_Function, 
         class Dominance_Function>
void r_c_shortest_paths
( const Graph& g, 
  const VertexIndexMap& vertex_index_map, 
  const EdgeIndexMap& edge_index_map, 
  typename graph_traits<Graph>::vertex_descriptor s, 
  typename graph_traits<Graph>::vertex_descriptor t, 
  std::vector<typename graph_traits<Graph>::edge_descriptor>& 
    pareto_optimal_solution, 
  Resource_Container& pareto_optimal_resource_container, 
  // to initialize the first label/resource container 
  // and to carry the type information
  const Resource_Container& rc, 
  const Resource_Extension_Function& ref, 
  const Dominance_Function& dominance )
{
  // each inner vector corresponds to a pareto-optimal path
  std::vector<std::vector<typename graph_traits<Graph>::edge_descriptor> > 
    pareto_optimal_solutions;
  std::vector<Resource_Container> pareto_optimal_resource_containers;
  r_c_shortest_paths_dispatch( g, 
                               vertex_index_map, 
                               edge_index_map, 
                               s, 
                               t, 
                               pareto_optimal_solutions, 
                               pareto_optimal_resource_containers, 
                               false, 
                               rc, 
                               ref, 
                               dominance, 
                               default_r_c_shortest_paths_allocator(), 
                               default_r_c_shortest_paths_visitor() );
  if (!pareto_optimal_solutions.empty()) {
    pareto_optimal_solution = pareto_optimal_solutions[0];
    pareto_optimal_resource_container = pareto_optimal_resource_containers[0];
  }
}
// r_c_shortest_paths


// check_r_c_path function
template<class Graph, 
         class Resource_Container, 
         class Resource_Extension_Function>
void check_r_c_path( const Graph& g, 
                     const std::vector
                       <typename graph_traits
                         <Graph>::edge_descriptor>& ed_vec_path, 
                     const Resource_Container& initial_resource_levels, 
                     // if true, computed accumulated final resource levels must 
                     // be equal to desired_final_resource_levels
                     // if false, computed accumulated final resource levels must 
                     // be less than or equal to desired_final_resource_levels
                     bool b_result_must_be_equal_to_desired_final_resource_levels, 
                     const Resource_Container& desired_final_resource_levels, 
                     Resource_Container& actual_final_resource_levels, 
                     const Resource_Extension_Function& ref, 
                     bool& b_is_a_path_at_all, 
                     bool& b_feasible, 
                     bool& b_correctly_extended, 
                     typename graph_traits<Graph>::edge_descriptor& 
                       ed_last_extended_arc )
{
  size_t i_size_ed_vec_path = ed_vec_path.size();
  std::vector<typename graph_traits<Graph>::edge_descriptor> buf_path;
  if( i_size_ed_vec_path == 0 )
    b_feasible = true;
  else
  {
    if( i_size_ed_vec_path == 1 
        || target( ed_vec_path[0], g ) == source( ed_vec_path[1], g ) )
      buf_path = ed_vec_path;
    else
      for( size_t i = i_size_ed_vec_path ; i > 0; --i )
        buf_path.push_back( ed_vec_path[i - 1] );
    for( size_t i = 0; i < i_size_ed_vec_path - 1; ++i )
    {
      if( target( buf_path[i], g ) != source( buf_path[i + 1], g ) )
      {
        b_is_a_path_at_all = false;
        b_feasible = false;
        b_correctly_extended = false;
        return;
      }
    }
  }
  b_is_a_path_at_all = true;
  b_feasible = true;
  b_correctly_extended = false;
  Resource_Container current_resource_levels = initial_resource_levels;
  actual_final_resource_levels = current_resource_levels;
  for( size_t i = 0; i < i_size_ed_vec_path; ++i )
  {
    ed_last_extended_arc = buf_path[i];
    b_feasible = ref( g, 
                      actual_final_resource_levels, 
                      current_resource_levels, 
                      buf_path[i] );
    current_resource_levels = actual_final_resource_levels;
    if( !b_feasible )
      return;
  }
  if( b_result_must_be_equal_to_desired_final_resource_levels )
    b_correctly_extended = 
     actual_final_resource_levels == desired_final_resource_levels ? 
       true : false;
  else
  {
    if( actual_final_resource_levels < desired_final_resource_levels 
        || actual_final_resource_levels == desired_final_resource_levels )
      b_correctly_extended = true;
  }
} // check_path

} // namespace

#endif // BOOST_GRAPH_R_C_SHORTEST_PATHS_HPP