floating_axes.py 22.3 KB
Newer Older
xuebingbing's avatar
xuebingbing committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
"""
An experimental support for curvilinear grid.
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import six
from six.moves import zip

# TODO :

# *. see if tick_iterator method can be simplified by reusing the parent method.

from itertools import chain
from .grid_finder import GridFinder

from  .axislines import AxisArtistHelper, GridHelperBase
from  .axis_artist import AxisArtist
from matplotlib.transforms import Affine2D, IdentityTransform
import numpy as np


from . import grid_helper_curvelinear

class FloatingAxisArtistHelper(grid_helper_curvelinear.FloatingAxisArtistHelper):
    pass

class FixedAxisArtistHelper(grid_helper_curvelinear.FloatingAxisArtistHelper):


    def __init__(self, grid_helper, side, nth_coord_ticks=None):
        """
        nth_coord = along which coordinate value varies.
         nth_coord = 0 ->  x axis, nth_coord = 1 -> y axis
        """

        value, nth_coord = grid_helper.get_data_boundary(side) # return v= 0 , nth=1, extremes of the other coordinate.
        super(FixedAxisArtistHelper, self).__init__(grid_helper,
                                                    nth_coord,
                                                    value,
                                                    axis_direction=side,
                                                    )
        #self.grid_helper = grid_helper
        if nth_coord_ticks is None:
            nth_coord_ticks = nth_coord
        self.nth_coord_ticks = nth_coord_ticks

        self.value = value
        self.grid_helper = grid_helper
        self._side = side


    def update_lim(self, axes):
        self.grid_helper.update_lim(axes)

        self.grid_info = self.grid_helper.grid_info



    def get_axislabel_pos_angle(self, axes):

        extremes = self.grid_info["extremes"]

        if self.nth_coord == 0:
            xx0 = self.value
            yy0 = (extremes[2]+extremes[3])/2.
            dxx, dyy = 0., abs(extremes[2]-extremes[3])/1000.
        elif self.nth_coord == 1:
            xx0 = (extremes[0]+extremes[1])/2.
            yy0 = self.value
            dxx, dyy = abs(extremes[0]-extremes[1])/1000., 0.

        grid_finder = self.grid_helper.grid_finder
        xx1, yy1 = grid_finder.transform_xy([xx0], [yy0])

        trans_passingthrough_point = axes.transData + axes.transAxes.inverted()
        p = trans_passingthrough_point.transform_point([xx1[0], yy1[0]])


        if (0. <= p[0] <= 1.) and (0. <= p[1] <= 1.):
            xx1c, yy1c = axes.transData.transform_point([xx1[0], yy1[0]])
            xx2, yy2 = grid_finder.transform_xy([xx0+dxx], [yy0+dyy])
            xx2c, yy2c = axes.transData.transform_point([xx2[0], yy2[0]])

            return (xx1c, yy1c), np.arctan2(yy2c-yy1c, xx2c-xx1c)/np.pi*180.
        else:
            return None, None



    def get_tick_transform(self, axes):
        return IdentityTransform() #axes.transData

    def get_tick_iterators(self, axes):
        """tick_loc, tick_angle, tick_label, (optionally) tick_label"""


        grid_finder = self.grid_helper.grid_finder

        lat_levs, lat_n, lat_factor = self.grid_info["lat_info"]
        lon_levs, lon_n, lon_factor = self.grid_info["lon_info"]

        lon_levs, lat_levs = np.asarray(lon_levs), np.asarray(lat_levs)
        if lat_factor is not None:
            yy0 = lat_levs / lat_factor
            dy = 0.001 / lat_factor
        else:
            yy0 = lat_levs
            dy = 0.001

        if lon_factor is not None:
            xx0 = lon_levs / lon_factor
            dx = 0.001 / lon_factor
        else:
            xx0 = lon_levs
            dx = 0.001

        _extremes = self.grid_helper._extremes
        xmin, xmax = sorted(_extremes[:2])
        ymin, ymax = sorted(_extremes[2:])
        if self.nth_coord == 0:
            mask = (ymin <= yy0) & (yy0 <= ymax)
            yy0 = yy0[mask]
        elif self.nth_coord == 1:
            mask = (xmin <= xx0) & (xx0 <= xmax)
            xx0 = xx0[mask]

        def transform_xy(x, y):
            x1, y1 = grid_finder.transform_xy(x, y)
            x2y2 = axes.transData.transform(np.array([x1, y1]).transpose())
            x2, y2 = x2y2.transpose()
            return x2, y2

        # find angles
        if self.nth_coord == 0:
            xx0 = np.empty_like(yy0)
            xx0.fill(self.value)

            #yy0_ = yy0.copy()

            xx1, yy1 = transform_xy(xx0, yy0)

            xx00 = xx0.copy()
            xx00[xx0+dx>xmax] -= dx
            xx1a, yy1a = transform_xy(xx00, yy0)
            xx1b, yy1b = transform_xy(xx00+dx, yy0)

            yy00 = yy0.copy()
            yy00[yy0+dy>ymax] -= dy
            xx2a, yy2a = transform_xy(xx0, yy00)
            xx2b, yy2b = transform_xy(xx0, yy00+dy)

            labels = self.grid_info["lat_labels"]
            labels = [l for l, m in zip(labels, mask) if m]

        elif self.nth_coord == 1:
            yy0 = np.empty_like(xx0)
            yy0.fill(self.value)

            #xx0_ = xx0.copy()
            xx1, yy1 = transform_xy(xx0, yy0)


            yy00 = yy0.copy()
            yy00[yy0+dy>ymax] -= dy
            xx1a, yy1a = transform_xy(xx0, yy00)
            xx1b, yy1b = transform_xy(xx0, yy00+dy)

            xx00 = xx0.copy()
            xx00[xx0+dx>xmax] -= dx
            xx2a, yy2a = transform_xy(xx00, yy0)
            xx2b, yy2b = transform_xy(xx00+dx, yy0)

            labels = self.grid_info["lon_labels"]
            labels = [l for l, m in zip(labels, mask) if m]


        def f1():
            dd = np.arctan2(yy1b-yy1a, xx1b-xx1a) # angle normal
            dd2 = np.arctan2(yy2b-yy2a, xx2b-xx2a) # angle tangent
            mm = ((yy1b-yy1a)==0.) & ((xx1b-xx1a)==0.) # mask where dd1 is not defined
            dd[mm] = dd2[mm]+3.14159/2.

            #dd += 3.14159
            #dd = np.arctan2(xx2-xx1, angle_tangent-yy1)
            trans_tick = self.get_tick_transform(axes)
            tr2ax = trans_tick + axes.transAxes.inverted()
            for x, y, d, d2, lab in zip(xx1, yy1, dd, dd2, labels):
                c2 = tr2ax.transform_point((x, y))
                delta=0.00001
                if (0. -delta<= c2[0] <= 1.+delta) and \
                       (0. -delta<= c2[1] <= 1.+delta):
                    d1 = d/3.14159*180.
                    d2 = d2/3.14159*180.
                    #_mod = (d2-d1+180)%360
                    #if _mod < 180:
                    #    d1 += 180
                    ##_div, _mod = divmod(d2-d1, 360)
                    yield [x, y], d1, d2, lab
                    #, d2/3.14159*180.+da)

        return f1(), iter([])

    def get_line_transform(self, axes):
        return axes.transData

    def get_line(self, axes):

        self.update_lim(axes)
        from matplotlib.path import Path
        k, v = dict(left=("lon_lines0", 0),
                    right=("lon_lines0", 1),
                    bottom=("lat_lines0", 0),
                    top=("lat_lines0", 1))[self._side]

        xx, yy = self.grid_info[k][v]
        return Path(list(zip(xx, yy)))



from .grid_finder import ExtremeFinderSimple

class ExtremeFinderFixed(ExtremeFinderSimple):
    def __init__(self, extremes):
        self._extremes = extremes

    def __call__(self, transform_xy, x1, y1, x2, y2):
        """
        get extreme values.

        x1, y1, x2, y2 in image coordinates (0-based)
        nx, ny : number of division in each axis
        """
        #lon_min, lon_max, lat_min, lat_max = self._extremes
        return self._extremes



class GridHelperCurveLinear(grid_helper_curvelinear.GridHelperCurveLinear):

    def __init__(self, aux_trans, extremes,
                 grid_locator1=None,
                 grid_locator2=None,
                 tick_formatter1=None,
                 tick_formatter2=None):
        """
        aux_trans : a transform from the source (curved) coordinate to
        target (rectilinear) coordinate. An instance of MPL's Transform
        (inverse transform should be defined) or a tuple of two callable
        objects which defines the transform and its inverse. The callables
        need take two arguments of array of source coordinates and
        should return two target coordinates:
          e.g., x2, y2 = trans(x1, y1)
        """

        self._old_values = None

        self._extremes = extremes
        extreme_finder = ExtremeFinderFixed(extremes)

        super(GridHelperCurveLinear, self).__init__(aux_trans,
                                                    extreme_finder,
                                                    grid_locator1=grid_locator1,
                                                    grid_locator2=grid_locator2,
                                                    tick_formatter1=tick_formatter1,
                                                    tick_formatter2=tick_formatter2)


    # def update_grid_finder(self, aux_trans=None, **kw):

    #     if aux_trans is not None:
    #         self.grid_finder.update_transform(aux_trans)

    #     self.grid_finder.update(**kw)
    #     self.invalidate()


    # def _update(self, x1, x2, y1, y2):
    #     "bbox in 0-based image coordinates"
    #     # update wcsgrid

    #     if self.valid() and self._old_values == (x1, x2, y1, y2):
    #         return

    #     self._update_grid(x1, y1, x2, y2)

    #     self._old_values = (x1, x2, y1, y2)

    #     self._force_update = False


    def get_data_boundary(self, side):
        """
        return v= 0 , nth=1
        """
        lon1, lon2, lat1, lat2 = self._extremes
        return dict(left=(lon1, 0),
                    right=(lon2, 0),
                    bottom=(lat1, 1),
                    top=(lat2, 1))[side]


    def new_fixed_axis(self, loc,
                       nth_coord=None,
                       axis_direction=None,
                       offset=None,
                       axes=None):

        if axes is None:
            axes = self.axes

        if axis_direction is None:
            axis_direction = loc

        _helper = FixedAxisArtistHelper(self, loc,
                                        nth_coord_ticks=nth_coord)


        axisline = AxisArtist(axes, _helper, axis_direction=axis_direction)
        axisline.line.set_clip_on(True)
        axisline.line.set_clip_box(axisline.axes.bbox)


        return axisline


    # new_floating_axis will inherit the grid_helper's extremes.

    # def new_floating_axis(self, nth_coord,
    #                       value,
    #                       axes=None,
    #                       axis_direction="bottom"
    #                       ):

    #     axis = super(GridHelperCurveLinear,
    #                  self).new_floating_axis(nth_coord,
    #                                          value, axes=axes,
    #                                          axis_direction=axis_direction)

    #     # set extreme values of the axis helper
    #     if nth_coord == 1:
    #         axis.get_helper().set_extremes(*self._extremes[:2])
    #     elif nth_coord == 0:
    #         axis.get_helper().set_extremes(*self._extremes[2:])

    #     return axis


    def _update_grid(self, x1, y1, x2, y2):

        #self.grid_info = self.grid_finder.get_grid_info(x1, y1, x2, y2)

        if self.grid_info is None:
            self.grid_info = dict()

        grid_info = self.grid_info

        grid_finder = self.grid_finder
        extremes = grid_finder.extreme_finder(grid_finder.inv_transform_xy,
                                              x1, y1, x2, y2)

        lon_min, lon_max = sorted(extremes[:2])
        lat_min, lat_max = sorted(extremes[2:])
        lon_levs, lon_n, lon_factor = \
                  grid_finder.grid_locator1(lon_min, lon_max)
        lat_levs, lat_n, lat_factor = \
                  grid_finder.grid_locator2(lat_min, lat_max)
        grid_info["extremes"] = lon_min, lon_max, lat_min, lat_max #extremes

        grid_info["lon_info"] = lon_levs, lon_n, lon_factor
        grid_info["lat_info"] = lat_levs, lat_n, lat_factor

        grid_info["lon_labels"] = grid_finder.tick_formatter1("bottom",
                                                              lon_factor,
                                                              lon_levs)

        grid_info["lat_labels"] = grid_finder.tick_formatter2("bottom",
                                                              lat_factor,
                                                              lat_levs)

        if lon_factor is None:
            lon_values = np.asarray(lon_levs[:lon_n])
        else:
            lon_values = np.asarray(lon_levs[:lon_n]/lon_factor)
        if lat_factor is None:
            lat_values = np.asarray(lat_levs[:lat_n])
        else:
            lat_values = np.asarray(lat_levs[:lat_n]/lat_factor)

        lon_values0 = lon_values[(lon_min<lon_values) & (lon_values<lon_max)]
        lat_values0 = lat_values[(lat_min<lat_values) & (lat_values<lat_max)]
        lon_lines, lat_lines = grid_finder._get_raw_grid_lines(lon_values0,
                                                               lat_values0,
                                                               lon_min, lon_max,
                                                               lat_min, lat_max)


        grid_info["lon_lines"] = lon_lines
        grid_info["lat_lines"] = lat_lines


        lon_lines, lat_lines = grid_finder._get_raw_grid_lines(extremes[:2],
                                                               extremes[2:],
                                                               *extremes)
        #lon_min, lon_max,
        #                                                       lat_min, lat_max)


        grid_info["lon_lines0"] = lon_lines
        grid_info["lat_lines0"] = lat_lines



    def get_gridlines(self, which="major", axis="both"):
        grid_lines = []
        if axis in ["both", "x"]:
            for gl in self.grid_info["lon_lines"]:
                grid_lines.extend([gl])
        if axis in ["both", "y"]:
            for gl in self.grid_info["lat_lines"]:
                grid_lines.extend([gl])

        return grid_lines


    def get_boundary(self):
        """
        return Nx2 array of x,y coordinate of the boundary
        """
        x0, x1, y0, y1 = self._extremes
        tr = self._aux_trans
        xx = np.linspace(x0, x1, 100)
        yy0, yy1 = np.empty_like(xx), np.empty_like(xx)
        yy0.fill(y0)
        yy1.fill(y1)

        yy = np.linspace(y0, y1, 100)
        xx0, xx1 = np.empty_like(yy), np.empty_like(yy)
        xx0.fill(x0)
        xx1.fill(x1)

        xxx = np.concatenate([xx[:-1], xx1[:-1], xx[-1:0:-1], xx0])
        yyy = np.concatenate([yy0[:-1], yy[:-1], yy1[:-1], yy[::-1]])
        t = tr.transform(np.array([xxx, yyy]).transpose())

        return t












class FloatingAxesBase(object):


    def __init__(self, *kl, **kwargs):
        grid_helper = kwargs.get("grid_helper", None)
        if grid_helper is None:
            raise ValueError("FloatingAxes requires grid_helper argument")
        if not hasattr(grid_helper, "get_boundary"):
            raise ValueError("grid_helper must implement get_boundary method")

        self._axes_class_floating.__init__(self, *kl, **kwargs)

        self.set_aspect(1.)
        self.adjust_axes_lim()


    def _gen_axes_patch(self):
        """
        Returns the patch used to draw the background of the axes.  It
        is also used as the clipping path for any data elements on the
        axes.

        In the standard axes, this is a rectangle, but in other
        projections it may not be.

        .. note::
            Intended to be overridden by new projection types.
        """
        import matplotlib.patches as mpatches
        grid_helper = self.get_grid_helper()
        t = grid_helper.get_boundary()
        return mpatches.Polygon(t)

    def cla(self):
        self._axes_class_floating.cla(self)
        #HostAxes.cla(self)
        self.patch.set_transform(self.transData)


        patch = self._axes_class_floating._gen_axes_patch(self)
        patch.set_figure(self.figure)
        patch.set_visible(False)
        patch.set_transform(self.transAxes)

        self.patch.set_clip_path(patch)
        self.gridlines.set_clip_path(patch)

        self._original_patch = patch


    def adjust_axes_lim(self):

        #t = self.get_boundary()
        grid_helper = self.get_grid_helper()
        t = grid_helper.get_boundary()
        x, y = t[:,0], t[:,1]

        xmin, xmax = min(x), max(x)
        ymin, ymax = min(y), max(y)

        dx = (xmax-xmin)/100.
        dy = (ymax-ymin)/100.

        self.set_xlim(xmin-dx, xmax+dx)
        self.set_ylim(ymin-dy, ymax+dy)



_floatingaxes_classes = {}

def floatingaxes_class_factory(axes_class):

    new_class = _floatingaxes_classes.get(axes_class)
    if new_class is None:
        new_class = type(str("Floating %s" % (axes_class.__name__)),
                         (FloatingAxesBase, axes_class),
                         {'_axes_class_floating': axes_class})
        _floatingaxes_classes[axes_class] = new_class

    return new_class

from .axislines import Axes
from mpl_toolkits.axes_grid1.parasite_axes import host_axes_class_factory

FloatingAxes = floatingaxes_class_factory(host_axes_class_factory(Axes))


import matplotlib.axes as maxes
FloatingSubplot = maxes.subplot_class_factory(FloatingAxes)

# def test(fig):
#     from mpl_toolkits.axes_grid.axislines import Subplot
#     ax = Subplot(fig, 111)

#     fig.add_subplot(ax)

#     plt.draw()


def curvelinear_test3(fig):
    """
    polar projection, but in a rectangular box.
    """
    global ax1, axis
    import numpy as np
    from . import angle_helper
    from matplotlib.projections import PolarAxes

    # PolarAxes.PolarTransform takes radian. However, we want our coordinate
    # system in degree
    tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform()

    # polar projection, which involves cycle, and also has limits in
    # its coordinates, needs a special method to find the extremes
    # (min, max of the coordinate within the view).


    grid_locator1 = angle_helper.LocatorDMS(15)
    # Find a grid values appropriate for the coordinate (degree,
    # minute, second).

    tick_formatter1 = angle_helper.FormatterDMS()
    # And also uses an appropriate formatter.  Note that,the
    # acceptable Locator and Formatter class is a bit different than
    # that of mpl's, and you cannot directly use mpl's Locator and
    # Formatter here (but may be possible in the future).

    from .grid_finder import FixedLocator
    grid_locator2 = FixedLocator([2, 4, 6, 8, 10])


    grid_helper = GridHelperCurveLinear(tr,
                                        extremes=(0, 360, 10, 3),
                                        grid_locator1=grid_locator1,
                                        grid_locator2=grid_locator2,
                                        tick_formatter1=tick_formatter1,
                                        tick_formatter2=None,
                                        )

    ax1 = FloatingSubplot(fig, 111, grid_helper=grid_helper)


    #ax1.axis["top"].set_visible(False)
    #ax1.axis["bottom"].major_ticklabels.set_axis_direction("top")

    fig.add_subplot(ax1)


    #ax1.grid(True)


    r_scale = 10.
    tr2 = Affine2D().scale(1., 1./r_scale) + tr
    grid_locator2 = FixedLocator([30, 60, 90])
    grid_helper2 = GridHelperCurveLinear(tr2,
                                        extremes=(0, 360,
                                                  10.*r_scale, 3.*r_scale),
                                        grid_locator2=grid_locator2,
                                        )

    ax1.axis["right"] = axis = grid_helper2.new_fixed_axis("right", axes=ax1)

    ax1.axis["left"].label.set_text("Test 1")
    ax1.axis["right"].label.set_text("Test 2")


    for an in [ "left", "right"]:
        ax1.axis[an].set_visible(False)


    #grid_helper2 = ax1.get_grid_helper()
    ax1.axis["z"] = axis = grid_helper.new_floating_axis(1, 7,
                                                         axes=ax1,
                                                         axis_direction="bottom")
    axis.toggle(all=True, label=True)
    #axis.label.set_axis_direction("top")
    axis.label.set_text("z = ?")
    axis.label.set_visible(True)
    axis.line.set_color("0.5")
    #axis.label.set_visible(True)


    ax2 = ax1.get_aux_axes(tr)

    xx, yy = [67, 90, 75, 30], [2, 5, 8, 4]
    ax2.scatter(xx, yy)
    l, = ax2.plot(xx, yy, "k-")
    l.set_clip_path(ax1.patch)


def curvelinear_test4(fig):
    """
    polar projection, but in a rectangular box.
    """
    global ax1, axis
    import numpy as np
    from . import angle_helper
    from matplotlib.projections import PolarAxes

    tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform()

    grid_locator1 = angle_helper.LocatorDMS(5)
    tick_formatter1 = angle_helper.FormatterDMS()

    from .grid_finder import FixedLocator
    grid_locator2 = FixedLocator([2, 4, 6, 8, 10])

    grid_helper = GridHelperCurveLinear(tr,
                                        extremes=(120, 30, 10, 0),
                                        grid_locator1=grid_locator1,
                                        grid_locator2=grid_locator2,
                                        tick_formatter1=tick_formatter1,
                                        tick_formatter2=None,
                                        )

    ax1 = FloatingSubplot(fig, 111, grid_helper=grid_helper)


    #ax1.axis["top"].set_visible(False)
    #ax1.axis["bottom"].major_ticklabels.set_axis_direction("top")

    fig.add_subplot(ax1)


    #ax1.grid(True)


    ax1.axis["left"].label.set_text("Test 1")
    ax1.axis["right"].label.set_text("Test 2")


    for an in [ "top"]:
        ax1.axis[an].set_visible(False)


    #grid_helper2 = ax1.get_grid_helper()
    ax1.axis["z"] = axis = grid_helper.new_floating_axis(1, 70,
                                                         axes=ax1,
                                                         axis_direction="bottom")
    axis.toggle(all=True, label=True)
    axis.label.set_axis_direction("top")
    axis.label.set_text("z = ?")
    axis.label.set_visible(True)
    axis.line.set_color("0.5")
    #axis.label.set_visible(True)


    ax2 = ax1.get_aux_axes(tr)

    xx, yy = [67, 90, 75, 30], [2, 5, 8, 4]
    ax2.scatter(xx, yy)
    l, = ax2.plot(xx, yy, "k-")
    l.set_clip_path(ax1.patch)

if __name__ == "__main__":
    import matplotlib.pyplot as plt
    fig = plt.figure(1, figsize=(5, 5))
    fig.clf()

    #test(fig)
    #curvelinear_test1(fig)
    curvelinear_test4(fig)

    #plt.draw()
    plt.show()