RandomSetter.h 11.5 KB
Newer Older
xuebingbing's avatar
xuebingbing committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_RANDOMSETTER_H
#define EIGEN_RANDOMSETTER_H

namespace Eigen { 

/** Represents a std::map
  *
  * \see RandomSetter
  */
template<typename Scalar> struct StdMapTraits
{
  typedef int KeyType;
  typedef std::map<KeyType,Scalar> Type;
  enum {
    IsSorted = 1
  };

  static void setInvalidKey(Type&, const KeyType&) {}
};

#ifdef EIGEN_UNORDERED_MAP_SUPPORT
/** Represents a std::unordered_map
  *
  * To use it you need to both define EIGEN_UNORDERED_MAP_SUPPORT and include the unordered_map header file
  * yourself making sure that unordered_map is defined in the std namespace.
  *
  * For instance, with current version of gcc you can either enable C++0x standard (-std=c++0x) or do:
  * \code
  * #include <tr1/unordered_map>
  * #define EIGEN_UNORDERED_MAP_SUPPORT
  * namespace std {
  *   using std::tr1::unordered_map;
  * }
  * \endcode
  *
  * \see RandomSetter
  */
template<typename Scalar> struct StdUnorderedMapTraits
{
  typedef int KeyType;
  typedef std::unordered_map<KeyType,Scalar> Type;
  enum {
    IsSorted = 0
  };

  static void setInvalidKey(Type&, const KeyType&) {}
};
#endif // EIGEN_UNORDERED_MAP_SUPPORT

#ifdef _DENSE_HASH_MAP_H_
/** Represents a google::dense_hash_map
  *
  * \see RandomSetter
  */
template<typename Scalar> struct GoogleDenseHashMapTraits
{
  typedef int KeyType;
  typedef google::dense_hash_map<KeyType,Scalar> Type;
  enum {
    IsSorted = 0
  };

  static void setInvalidKey(Type& map, const KeyType& k)
  { map.set_empty_key(k); }
};
#endif

#ifdef _SPARSE_HASH_MAP_H_
/** Represents a google::sparse_hash_map
  *
  * \see RandomSetter
  */
template<typename Scalar> struct GoogleSparseHashMapTraits
{
  typedef int KeyType;
  typedef google::sparse_hash_map<KeyType,Scalar> Type;
  enum {
    IsSorted = 0
  };

  static void setInvalidKey(Type&, const KeyType&) {}
};
#endif

/** \class RandomSetter
  *
  * \brief The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access
  *
  * \param SparseMatrixType the type of the sparse matrix we are updating
  * \param MapTraits a traits class representing the map implementation used for the temporary sparse storage.
  *                  Its default value depends on the system.
  * \param OuterPacketBits defines the number of rows (or columns) manage by a single map object
  *                        as a power of two exponent.
  *
  * This class temporarily represents a sparse matrix object using a generic map implementation allowing for
  * efficient random access. The conversion from the compressed representation to a hash_map object is performed
  * in the RandomSetter constructor, while the sparse matrix is updated back at destruction time. This strategy
  * suggest the use of nested blocks as in this example:
  *
  * \code
  * SparseMatrix<double> m(rows,cols);
  * {
  *   RandomSetter<SparseMatrix<double> > w(m);
  *   // don't use m but w instead with read/write random access to the coefficients:
  *   for(;;)
  *     w(rand(),rand()) = rand;
  * }
  * // when w is deleted, the data are copied back to m
  * // and m is ready to use.
  * \endcode
  *
  * Since hash_map objects are not fully sorted, representing a full matrix as a single hash_map would
  * involve a big and costly sort to update the compressed matrix back. To overcome this issue, a RandomSetter
  * use multiple hash_map, each representing 2^OuterPacketBits columns or rows according to the storage order.
  * To reach optimal performance, this value should be adjusted according to the average number of nonzeros
  * per rows/columns.
  *
  * The possible values for the template parameter MapTraits are:
  *  - \b StdMapTraits: corresponds to std::map. (does not perform very well)
  *  - \b GnuHashMapTraits: corresponds to __gnu_cxx::hash_map (available only with GCC)
  *  - \b GoogleDenseHashMapTraits: corresponds to google::dense_hash_map (best efficiency, reasonable memory consumption)
  *  - \b GoogleSparseHashMapTraits: corresponds to google::sparse_hash_map (best memory consumption, relatively good performance)
  *
  * The default map implementation depends on the availability, and the preferred order is:
  * GoogleSparseHashMapTraits, GnuHashMapTraits, and finally StdMapTraits.
  *
  * For performance and memory consumption reasons it is highly recommended to use one of
  * the Google's hash_map implementation. To enable the support for them, you have two options:
  *  - \#include <google/dense_hash_map> yourself \b before Eigen/Sparse header
  *  - define EIGEN_GOOGLEHASH_SUPPORT
  * In the later case the inclusion of <google/dense_hash_map> is made for you.
  *
  * \see http://code.google.com/p/google-sparsehash/
  */
template<typename SparseMatrixType,
         template <typename T> class MapTraits =
#if defined _DENSE_HASH_MAP_H_
          GoogleDenseHashMapTraits
#elif defined _HASH_MAP
          GnuHashMapTraits
#else
          StdMapTraits
#endif
         ,int OuterPacketBits = 6>
class RandomSetter
{
    typedef typename SparseMatrixType::Scalar Scalar;
    typedef typename SparseMatrixType::Index Index;

    struct ScalarWrapper
    {
      ScalarWrapper() : value(0) {}
      Scalar value;
    };
    typedef typename MapTraits<ScalarWrapper>::KeyType KeyType;
    typedef typename MapTraits<ScalarWrapper>::Type HashMapType;
    static const int OuterPacketMask = (1 << OuterPacketBits) - 1;
    enum {
      SwapStorage = 1 - MapTraits<ScalarWrapper>::IsSorted,
      TargetRowMajor = (SparseMatrixType::Flags & RowMajorBit) ? 1 : 0,
      SetterRowMajor = SwapStorage ? 1-TargetRowMajor : TargetRowMajor
    };

  public:

    /** Constructs a random setter object from the sparse matrix \a target
      *
      * Note that the initial value of \a target are imported. If you want to re-set
      * a sparse matrix from scratch, then you must set it to zero first using the
      * setZero() function.
      */
    inline RandomSetter(SparseMatrixType& target)
      : mp_target(&target)
    {
      const Index outerSize = SwapStorage ? target.innerSize() : target.outerSize();
      const Index innerSize = SwapStorage ? target.outerSize() : target.innerSize();
      m_outerPackets = outerSize >> OuterPacketBits;
      if (outerSize&OuterPacketMask)
        m_outerPackets += 1;
      m_hashmaps = new HashMapType[m_outerPackets];
      // compute number of bits needed to store inner indices
      Index aux = innerSize - 1;
      m_keyBitsOffset = 0;
      while (aux)
      {
        ++m_keyBitsOffset;
        aux = aux >> 1;
      }
      KeyType ik = (1<<(OuterPacketBits+m_keyBitsOffset));
      for (Index k=0; k<m_outerPackets; ++k)
        MapTraits<ScalarWrapper>::setInvalidKey(m_hashmaps[k],ik);

      // insert current coeffs
      for (Index j=0; j<mp_target->outerSize(); ++j)
        for (typename SparseMatrixType::InnerIterator it(*mp_target,j); it; ++it)
          (*this)(TargetRowMajor?j:it.index(), TargetRowMajor?it.index():j) = it.value();
    }

    /** Destructor updating back the sparse matrix target */
    ~RandomSetter()
    {
      KeyType keyBitsMask = (1<<m_keyBitsOffset)-1;
      if (!SwapStorage) // also means the map is sorted
      {
        mp_target->setZero();
        mp_target->makeCompressed();
        mp_target->reserve(nonZeros());
        Index prevOuter = -1;
        for (Index k=0; k<m_outerPackets; ++k)
        {
          const Index outerOffset = (1<<OuterPacketBits) * k;
          typename HashMapType::iterator end = m_hashmaps[k].end();
          for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
          {
            const Index outer = (it->first >> m_keyBitsOffset) + outerOffset;
            const Index inner = it->first & keyBitsMask;
            if (prevOuter!=outer)
            {
              for (Index j=prevOuter+1;j<=outer;++j)
                mp_target->startVec(j);
              prevOuter = outer;
            }
            mp_target->insertBackByOuterInner(outer, inner) = it->second.value;
          }
        }
        mp_target->finalize();
      }
      else
      {
        VectorXi positions(mp_target->outerSize());
        positions.setZero();
        // pass 1
        for (Index k=0; k<m_outerPackets; ++k)
        {
          typename HashMapType::iterator end = m_hashmaps[k].end();
          for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
          {
            const Index outer = it->first & keyBitsMask;
            ++positions[outer];
          }
        }
        // prefix sum
        Index count = 0;
        for (Index j=0; j<mp_target->outerSize(); ++j)
        {
          Index tmp = positions[j];
          mp_target->outerIndexPtr()[j] = count;
          positions[j] = count;
          count += tmp;
        }
        mp_target->makeCompressed();
        mp_target->outerIndexPtr()[mp_target->outerSize()] = count;
        mp_target->resizeNonZeros(count);
        // pass 2
        for (Index k=0; k<m_outerPackets; ++k)
        {
          const Index outerOffset = (1<<OuterPacketBits) * k;
          typename HashMapType::iterator end = m_hashmaps[k].end();
          for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
          {
            const Index inner = (it->first >> m_keyBitsOffset) + outerOffset;
            const Index outer = it->first & keyBitsMask;
            // sorted insertion
            // Note that we have to deal with at most 2^OuterPacketBits unsorted coefficients,
            // moreover those 2^OuterPacketBits coeffs are likely to be sparse, an so only a
            // small fraction of them have to be sorted, whence the following simple procedure:
            Index posStart = mp_target->outerIndexPtr()[outer];
            Index i = (positions[outer]++) - 1;
            while ( (i >= posStart) && (mp_target->innerIndexPtr()[i] > inner) )
            {
              mp_target->valuePtr()[i+1] = mp_target->valuePtr()[i];
              mp_target->innerIndexPtr()[i+1] = mp_target->innerIndexPtr()[i];
              --i;
            }
            mp_target->innerIndexPtr()[i+1] = inner;
            mp_target->valuePtr()[i+1] = it->second.value;
          }
        }
      }
      delete[] m_hashmaps;
    }

    /** \returns a reference to the coefficient at given coordinates \a row, \a col */
    Scalar& operator() (Index row, Index col)
    {
      const Index outer = SetterRowMajor ? row : col;
      const Index inner = SetterRowMajor ? col : row;
      const Index outerMajor = outer >> OuterPacketBits; // index of the packet/map
      const Index outerMinor = outer & OuterPacketMask;  // index of the inner vector in the packet
      const KeyType key = (KeyType(outerMinor)<<m_keyBitsOffset) | inner;
      return m_hashmaps[outerMajor][key].value;
    }

    /** \returns the number of non zero coefficients
      *
      * \note According to the underlying map/hash_map implementation,
      * this function might be quite expensive.
      */
    Index nonZeros() const
    {
      Index nz = 0;
      for (Index k=0; k<m_outerPackets; ++k)
        nz += static_cast<Index>(m_hashmaps[k].size());
      return nz;
    }


  protected:

    HashMapType* m_hashmaps;
    SparseMatrixType* mp_target;
    Index m_outerPackets;
    unsigned char m_keyBitsOffset;
};

} // end namespace Eigen

#endif // EIGEN_RANDOMSETTER_H