test_bicluster.py 8.75 KB
Newer Older
xuebingbing's avatar
xuebingbing committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
"""Testing for Spectral Biclustering methods"""

import numpy as np
import pytest
from scipy.sparse import csr_matrix, issparse

from sklearn.model_selection import ParameterGrid

from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import SkipTest

from sklearn.base import BaseEstimator, BiclusterMixin

from sklearn.cluster import SpectralCoclustering
from sklearn.cluster import SpectralBiclustering
from sklearn.cluster._bicluster import _scale_normalize
from sklearn.cluster._bicluster import _bistochastic_normalize
from sklearn.cluster._bicluster import _log_normalize

from sklearn.metrics import (consensus_score, v_measure_score)

from sklearn.datasets import make_biclusters, make_checkerboard


class MockBiclustering(BiclusterMixin, BaseEstimator):
    # Mock object for testing get_submatrix.
    def __init__(self):
        pass

    def get_indices(self, i):
        # Overridden to reproduce old get_submatrix test.
        return (np.where([True, True, False, False, True])[0],
                np.where([False, False, True, True])[0])


def test_get_submatrix():
    data = np.arange(20).reshape(5, 4)
    model = MockBiclustering()

    for X in (data, csr_matrix(data), data.tolist()):
        submatrix = model.get_submatrix(0, X)
        if issparse(submatrix):
            submatrix = submatrix.toarray()
        assert_array_equal(submatrix, [[2, 3],
                                       [6, 7],
                                       [18, 19]])
        submatrix[:] = -1
        if issparse(X):
            X = X.toarray()
        assert np.all(X != -1)


def _test_shape_indices(model):
    # Test get_shape and get_indices on fitted model.
    for i in range(model.n_clusters):
        m, n = model.get_shape(i)
        i_ind, j_ind = model.get_indices(i)
        assert len(i_ind) == m
        assert len(j_ind) == n


def test_spectral_coclustering():
    # Test Dhillon's Spectral CoClustering on a simple problem.
    param_grid = {'svd_method': ['randomized', 'arpack'],
                  'n_svd_vecs': [None, 20],
                  'mini_batch': [False, True],
                  'init': ['k-means++'],
                  'n_init': [10],
                  'n_jobs': [1]}
    random_state = 0
    S, rows, cols = make_biclusters((30, 30), 3, noise=0.5,
                                    random_state=random_state)
    S -= S.min()  # needs to be nonnegative before making it sparse
    S = np.where(S < 1, 0, S)  # threshold some values
    for mat in (S, csr_matrix(S)):
        for kwargs in ParameterGrid(param_grid):
            model = SpectralCoclustering(n_clusters=3,
                                         random_state=random_state,
                                         **kwargs)
            model.fit(mat)

            assert model.rows_.shape == (3, 30)
            assert_array_equal(model.rows_.sum(axis=0), np.ones(30))
            assert_array_equal(model.columns_.sum(axis=0), np.ones(30))
            assert consensus_score(model.biclusters_,
                                   (rows, cols)) == 1

            _test_shape_indices(model)


def test_spectral_biclustering():
    # Test Kluger methods on a checkerboard dataset.
    S, rows, cols = make_checkerboard((30, 30), 3, noise=0.5,
                                      random_state=0)

    non_default_params = {'method': ['scale', 'log'],
                          'svd_method': ['arpack'],
                          'n_svd_vecs': [20],
                          'mini_batch': [True]}

    for mat in (S, csr_matrix(S)):
        for param_name, param_values in non_default_params.items():
            for param_value in param_values:

                model = SpectralBiclustering(
                    n_clusters=3,
                    n_init=3,
                    init='k-means++',
                    random_state=0,
                )
                model.set_params(**dict([(param_name, param_value)]))

                if issparse(mat) and model.get_params().get('method') == 'log':
                    # cannot take log of sparse matrix
                    with pytest.raises(ValueError):
                        model.fit(mat)
                    continue
                else:
                    model.fit(mat)

                assert model.rows_.shape == (9, 30)
                assert model.columns_.shape == (9, 30)
                assert_array_equal(model.rows_.sum(axis=0),
                                   np.repeat(3, 30))
                assert_array_equal(model.columns_.sum(axis=0),
                                   np.repeat(3, 30))
                assert consensus_score(model.biclusters_,
                                       (rows, cols)) == 1

                _test_shape_indices(model)


def _do_scale_test(scaled):
    """Check that rows sum to one constant, and columns to another."""
    row_sum = scaled.sum(axis=1)
    col_sum = scaled.sum(axis=0)
    if issparse(scaled):
        row_sum = np.asarray(row_sum).squeeze()
        col_sum = np.asarray(col_sum).squeeze()
    assert_array_almost_equal(row_sum, np.tile(row_sum.mean(), 100),
                              decimal=1)
    assert_array_almost_equal(col_sum, np.tile(col_sum.mean(), 100),
                              decimal=1)


def _do_bistochastic_test(scaled):
    """Check that rows and columns sum to the same constant."""
    _do_scale_test(scaled)
    assert_almost_equal(scaled.sum(axis=0).mean(),
                        scaled.sum(axis=1).mean(),
                        decimal=1)


def test_scale_normalize():
    generator = np.random.RandomState(0)
    X = generator.rand(100, 100)
    for mat in (X, csr_matrix(X)):
        scaled, _, _ = _scale_normalize(mat)
        _do_scale_test(scaled)
        if issparse(mat):
            assert issparse(scaled)


def test_bistochastic_normalize():
    generator = np.random.RandomState(0)
    X = generator.rand(100, 100)
    for mat in (X, csr_matrix(X)):
        scaled = _bistochastic_normalize(mat)
        _do_bistochastic_test(scaled)
        if issparse(mat):
            assert issparse(scaled)


def test_log_normalize():
    # adding any constant to a log-scaled matrix should make it
    # bistochastic
    generator = np.random.RandomState(0)
    mat = generator.rand(100, 100)
    scaled = _log_normalize(mat) + 1
    _do_bistochastic_test(scaled)


def test_fit_best_piecewise():
    model = SpectralBiclustering(random_state=0)
    vectors = np.array([[0, 0, 0, 1, 1, 1],
                        [2, 2, 2, 3, 3, 3],
                        [0, 1, 2, 3, 4, 5]])
    best = model._fit_best_piecewise(vectors, n_best=2, n_clusters=2)
    assert_array_equal(best, vectors[:2])


def test_project_and_cluster():
    model = SpectralBiclustering(random_state=0)
    data = np.array([[1, 1, 1],
                     [1, 1, 1],
                     [3, 6, 3],
                     [3, 6, 3]])
    vectors = np.array([[1, 0],
                        [0, 1],
                        [0, 0]])
    for mat in (data, csr_matrix(data)):
        labels = model._project_and_cluster(data, vectors,
                                            n_clusters=2)
        assert_almost_equal(v_measure_score(labels, [0, 0, 1, 1]), 1.0)


def test_perfect_checkerboard():
    # XXX test always skipped
    raise SkipTest("This test is failing on the buildbot, but cannot"
                   " reproduce. Temporarily disabling it until it can be"
                   " reproduced and  fixed.")
    model = SpectralBiclustering(3, svd_method="arpack", random_state=0)

    S, rows, cols = make_checkerboard((30, 30), 3, noise=0,
                                      random_state=0)
    model.fit(S)
    assert consensus_score(model.biclusters_,
                           (rows, cols)) == 1

    S, rows, cols = make_checkerboard((40, 30), 3, noise=0,
                                      random_state=0)
    model.fit(S)
    assert consensus_score(model.biclusters_,
                           (rows, cols)) == 1

    S, rows, cols = make_checkerboard((30, 40), 3, noise=0,
                                      random_state=0)
    model.fit(S)
    assert consensus_score(model.biclusters_,
                           (rows, cols)) == 1


@pytest.mark.parametrize(
    "args",
    [{'n_clusters': (3, 3, 3)},
     {'n_clusters': 'abc'},
     {'n_clusters': (3, 'abc')},
     {'method': 'unknown'},
     {'n_components': 0},
     {'n_best': 0},
     {'svd_method': 'unknown'},
     {'n_components': 3, 'n_best': 4}]
)
def test_errors(args):
    data = np.arange(25).reshape((5, 5))

    model = SpectralBiclustering(**args)
    with pytest.raises(ValueError):
        model.fit(data)


def test_wrong_shape():
    model = SpectralBiclustering()
    data = np.arange(27).reshape((3, 3, 3))
    with pytest.raises(ValueError):
        model.fit(data)