numeric.py 70.3 KB
Newer Older
xuebingbing's avatar
xuebingbing committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
from __future__ import division, absolute_import, print_function

import functools
import itertools
import operator
import sys
import warnings
import numbers
import contextlib

import numpy as np
from numpy.compat import pickle, basestring
from . import multiarray
from .multiarray import (
    _fastCopyAndTranspose as fastCopyAndTranspose, ALLOW_THREADS,
    BUFSIZE, CLIP, MAXDIMS, MAY_SHARE_BOUNDS, MAY_SHARE_EXACT, RAISE,
    WRAP, arange, array, broadcast, can_cast, compare_chararrays,
    concatenate, copyto, dot, dtype, empty,
    empty_like, flatiter, frombuffer, fromfile, fromiter, fromstring,
    inner, int_asbuffer, lexsort, matmul, may_share_memory,
    min_scalar_type, ndarray, nditer, nested_iters, promote_types,
    putmask, result_type, set_numeric_ops, shares_memory, vdot, where,
    zeros, normalize_axis_index)
if sys.version_info[0] < 3:
    from .multiarray import newbuffer, getbuffer

from . import overrides
from . import umath
from . import shape_base
from .overrides import set_module
from .umath import (multiply, invert, sin, PINF, NAN)
from . import numerictypes
from .numerictypes import longlong, intc, int_, float_, complex_, bool_
from ._exceptions import TooHardError, AxisError
from ._asarray import asarray, asanyarray
from ._ufunc_config import errstate

bitwise_not = invert
ufunc = type(sin)
newaxis = None

if sys.version_info[0] >= 3:
    import builtins
else:
    import __builtin__ as builtins


array_function_dispatch = functools.partial(
    overrides.array_function_dispatch, module='numpy')


__all__ = [
    'newaxis', 'ndarray', 'flatiter', 'nditer', 'nested_iters', 'ufunc',
    'arange', 'array', 'zeros', 'count_nonzero', 'empty', 'broadcast', 'dtype',
    'fromstring', 'fromfile', 'frombuffer', 'int_asbuffer', 'where',
    'argwhere', 'copyto', 'concatenate', 'fastCopyAndTranspose', 'lexsort',
    'set_numeric_ops', 'can_cast', 'promote_types', 'min_scalar_type',
    'result_type', 'isfortran', 'empty_like', 'zeros_like', 'ones_like',
    'correlate', 'convolve', 'inner', 'dot', 'outer', 'vdot', 'roll',
    'rollaxis', 'moveaxis', 'cross', 'tensordot', 'little_endian',
    'fromiter', 'array_equal', 'array_equiv', 'indices', 'fromfunction',
    'isclose', 'isscalar', 'binary_repr', 'base_repr', 'ones',
    'identity', 'allclose', 'compare_chararrays', 'putmask',
    'flatnonzero', 'Inf', 'inf', 'infty', 'Infinity', 'nan', 'NaN',
    'False_', 'True_', 'bitwise_not', 'CLIP', 'RAISE', 'WRAP', 'MAXDIMS',
    'BUFSIZE', 'ALLOW_THREADS', 'ComplexWarning', 'full', 'full_like',
    'matmul', 'shares_memory', 'may_share_memory', 'MAY_SHARE_BOUNDS',
    'MAY_SHARE_EXACT', 'TooHardError', 'AxisError']

if sys.version_info[0] < 3:
    __all__.extend(['getbuffer', 'newbuffer'])


@set_module('numpy')
class ComplexWarning(RuntimeWarning):
    """
    The warning raised when casting a complex dtype to a real dtype.

    As implemented, casting a complex number to a real discards its imaginary
    part, but this behavior may not be what the user actually wants.

    """
    pass


def _zeros_like_dispatcher(a, dtype=None, order=None, subok=None, shape=None):
    return (a,)


@array_function_dispatch(_zeros_like_dispatcher)
def zeros_like(a, dtype=None, order='K', subok=True, shape=None):
    """
    Return an array of zeros with the same shape and type as a given array.

    Parameters
    ----------
    a : array_like
        The shape and data-type of `a` define these same attributes of
        the returned array.
    dtype : data-type, optional
        Overrides the data type of the result.

        .. versionadded:: 1.6.0
    order : {'C', 'F', 'A', or 'K'}, optional
        Overrides the memory layout of the result. 'C' means C-order,
        'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
        'C' otherwise. 'K' means match the layout of `a` as closely
        as possible.

        .. versionadded:: 1.6.0
    subok : bool, optional.
        If True, then the newly created array will use the sub-class
        type of 'a', otherwise it will be a base-class array. Defaults
        to True.
    shape : int or sequence of ints, optional.
        Overrides the shape of the result. If order='K' and the number of
        dimensions is unchanged, will try to keep order, otherwise,
        order='C' is implied.

        .. versionadded:: 1.17.0

    Returns
    -------
    out : ndarray
        Array of zeros with the same shape and type as `a`.

    See Also
    --------
    empty_like : Return an empty array with shape and type of input.
    ones_like : Return an array of ones with shape and type of input.
    full_like : Return a new array with shape of input filled with value.
    zeros : Return a new array setting values to zero.

    Examples
    --------
    >>> x = np.arange(6)
    >>> x = x.reshape((2, 3))
    >>> x
    array([[0, 1, 2],
           [3, 4, 5]])
    >>> np.zeros_like(x)
    array([[0, 0, 0],
           [0, 0, 0]])

    >>> y = np.arange(3, dtype=float)
    >>> y
    array([0., 1., 2.])
    >>> np.zeros_like(y)
    array([0.,  0.,  0.])

    """
    res = empty_like(a, dtype=dtype, order=order, subok=subok, shape=shape)
    # needed instead of a 0 to get same result as zeros for for string dtypes
    z = zeros(1, dtype=res.dtype)
    multiarray.copyto(res, z, casting='unsafe')
    return res


@set_module('numpy')
def ones(shape, dtype=None, order='C'):
    """
    Return a new array of given shape and type, filled with ones.

    Parameters
    ----------
    shape : int or sequence of ints
        Shape of the new array, e.g., ``(2, 3)`` or ``2``.
    dtype : data-type, optional
        The desired data-type for the array, e.g., `numpy.int8`.  Default is
        `numpy.float64`.
    order : {'C', 'F'}, optional, default: C
        Whether to store multi-dimensional data in row-major
        (C-style) or column-major (Fortran-style) order in
        memory.

    Returns
    -------
    out : ndarray
        Array of ones with the given shape, dtype, and order.

    See Also
    --------
    ones_like : Return an array of ones with shape and type of input.
    empty : Return a new uninitialized array.
    zeros : Return a new array setting values to zero.
    full : Return a new array of given shape filled with value.


    Examples
    --------
    >>> np.ones(5)
    array([1., 1., 1., 1., 1.])

    >>> np.ones((5,), dtype=int)
    array([1, 1, 1, 1, 1])

    >>> np.ones((2, 1))
    array([[1.],
           [1.]])

    >>> s = (2,2)
    >>> np.ones(s)
    array([[1.,  1.],
           [1.,  1.]])

    """
    a = empty(shape, dtype, order)
    multiarray.copyto(a, 1, casting='unsafe')
    return a


def _ones_like_dispatcher(a, dtype=None, order=None, subok=None, shape=None):
    return (a,)


@array_function_dispatch(_ones_like_dispatcher)
def ones_like(a, dtype=None, order='K', subok=True, shape=None):
    """
    Return an array of ones with the same shape and type as a given array.

    Parameters
    ----------
    a : array_like
        The shape and data-type of `a` define these same attributes of
        the returned array.
    dtype : data-type, optional
        Overrides the data type of the result.

        .. versionadded:: 1.6.0
    order : {'C', 'F', 'A', or 'K'}, optional
        Overrides the memory layout of the result. 'C' means C-order,
        'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
        'C' otherwise. 'K' means match the layout of `a` as closely
        as possible.

        .. versionadded:: 1.6.0
    subok : bool, optional.
        If True, then the newly created array will use the sub-class
        type of 'a', otherwise it will be a base-class array. Defaults
        to True.
    shape : int or sequence of ints, optional.
        Overrides the shape of the result. If order='K' and the number of
        dimensions is unchanged, will try to keep order, otherwise,
        order='C' is implied.

        .. versionadded:: 1.17.0

    Returns
    -------
    out : ndarray
        Array of ones with the same shape and type as `a`.

    See Also
    --------
    empty_like : Return an empty array with shape and type of input.
    zeros_like : Return an array of zeros with shape and type of input.
    full_like : Return a new array with shape of input filled with value.
    ones : Return a new array setting values to one.

    Examples
    --------
    >>> x = np.arange(6)
    >>> x = x.reshape((2, 3))
    >>> x
    array([[0, 1, 2],
           [3, 4, 5]])
    >>> np.ones_like(x)
    array([[1, 1, 1],
           [1, 1, 1]])

    >>> y = np.arange(3, dtype=float)
    >>> y
    array([0., 1., 2.])
    >>> np.ones_like(y)
    array([1.,  1.,  1.])

    """
    res = empty_like(a, dtype=dtype, order=order, subok=subok, shape=shape)
    multiarray.copyto(res, 1, casting='unsafe')
    return res


@set_module('numpy')
def full(shape, fill_value, dtype=None, order='C'):
    """
    Return a new array of given shape and type, filled with `fill_value`.

    Parameters
    ----------
    shape : int or sequence of ints
        Shape of the new array, e.g., ``(2, 3)`` or ``2``.
    fill_value : scalar
        Fill value.
    dtype : data-type, optional
        The desired data-type for the array  The default, None, means
         `np.array(fill_value).dtype`.
    order : {'C', 'F'}, optional
        Whether to store multidimensional data in C- or Fortran-contiguous
        (row- or column-wise) order in memory.

    Returns
    -------
    out : ndarray
        Array of `fill_value` with the given shape, dtype, and order.

    See Also
    --------
    full_like : Return a new array with shape of input filled with value.
    empty : Return a new uninitialized array.
    ones : Return a new array setting values to one.
    zeros : Return a new array setting values to zero.

    Examples
    --------
    >>> np.full((2, 2), np.inf)
    array([[inf, inf],
           [inf, inf]])
    >>> np.full((2, 2), 10)
    array([[10, 10],
           [10, 10]])

    """
    if dtype is None:
        dtype = array(fill_value).dtype
    a = empty(shape, dtype, order)
    multiarray.copyto(a, fill_value, casting='unsafe')
    return a


def _full_like_dispatcher(a, fill_value, dtype=None, order=None, subok=None, shape=None):
    return (a,)


@array_function_dispatch(_full_like_dispatcher)
def full_like(a, fill_value, dtype=None, order='K', subok=True, shape=None):
    """
    Return a full array with the same shape and type as a given array.

    Parameters
    ----------
    a : array_like
        The shape and data-type of `a` define these same attributes of
        the returned array.
    fill_value : scalar
        Fill value.
    dtype : data-type, optional
        Overrides the data type of the result.
    order : {'C', 'F', 'A', or 'K'}, optional
        Overrides the memory layout of the result. 'C' means C-order,
        'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
        'C' otherwise. 'K' means match the layout of `a` as closely
        as possible.
    subok : bool, optional.
        If True, then the newly created array will use the sub-class
        type of 'a', otherwise it will be a base-class array. Defaults
        to True.
    shape : int or sequence of ints, optional.
        Overrides the shape of the result. If order='K' and the number of
        dimensions is unchanged, will try to keep order, otherwise,
        order='C' is implied.

        .. versionadded:: 1.17.0

    Returns
    -------
    out : ndarray
        Array of `fill_value` with the same shape and type as `a`.

    See Also
    --------
    empty_like : Return an empty array with shape and type of input.
    ones_like : Return an array of ones with shape and type of input.
    zeros_like : Return an array of zeros with shape and type of input.
    full : Return a new array of given shape filled with value.

    Examples
    --------
    >>> x = np.arange(6, dtype=int)
    >>> np.full_like(x, 1)
    array([1, 1, 1, 1, 1, 1])
    >>> np.full_like(x, 0.1)
    array([0, 0, 0, 0, 0, 0])
    >>> np.full_like(x, 0.1, dtype=np.double)
    array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
    >>> np.full_like(x, np.nan, dtype=np.double)
    array([nan, nan, nan, nan, nan, nan])

    >>> y = np.arange(6, dtype=np.double)
    >>> np.full_like(y, 0.1)
    array([0.1,  0.1,  0.1,  0.1,  0.1,  0.1])

    """
    res = empty_like(a, dtype=dtype, order=order, subok=subok, shape=shape)
    multiarray.copyto(res, fill_value, casting='unsafe')
    return res


def _count_nonzero_dispatcher(a, axis=None):
    return (a,)


@array_function_dispatch(_count_nonzero_dispatcher)
def count_nonzero(a, axis=None):
    """
    Counts the number of non-zero values in the array ``a``.

    The word "non-zero" is in reference to the Python 2.x
    built-in method ``__nonzero__()`` (renamed ``__bool__()``
    in Python 3.x) of Python objects that tests an object's
    "truthfulness". For example, any number is considered
    truthful if it is nonzero, whereas any string is considered
    truthful if it is not the empty string. Thus, this function
    (recursively) counts how many elements in ``a`` (and in
    sub-arrays thereof) have their ``__nonzero__()`` or ``__bool__()``
    method evaluated to ``True``.

    Parameters
    ----------
    a : array_like
        The array for which to count non-zeros.
    axis : int or tuple, optional
        Axis or tuple of axes along which to count non-zeros.
        Default is None, meaning that non-zeros will be counted
        along a flattened version of ``a``.

        .. versionadded:: 1.12.0

    Returns
    -------
    count : int or array of int
        Number of non-zero values in the array along a given axis.
        Otherwise, the total number of non-zero values in the array
        is returned.

    See Also
    --------
    nonzero : Return the coordinates of all the non-zero values.

    Examples
    --------
    >>> np.count_nonzero(np.eye(4))
    4
    >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]])
    5
    >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=0)
    array([1, 1, 1, 1, 1])
    >>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=1)
    array([2, 3])

    """
    if axis is None:
        return multiarray.count_nonzero(a)

    a = asanyarray(a)

    # TODO: this works around .astype(bool) not working properly (gh-9847)
    if np.issubdtype(a.dtype, np.character):
        a_bool = a != a.dtype.type()
    else:
        a_bool = a.astype(np.bool_, copy=False)

    return a_bool.sum(axis=axis, dtype=np.intp)


@set_module('numpy')
def isfortran(a):
    """
    Check if the array is Fortran contiguous but *not* C contiguous.

    This function is obsolete and, because of changes due to relaxed stride
    checking, its return value for the same array may differ for versions
    of NumPy >= 1.10.0 and previous versions. If you only want to check if an
    array is Fortran contiguous use ``a.flags.f_contiguous`` instead.

    Parameters
    ----------
    a : ndarray
        Input array.

    Returns
    -------
    isfortran : bool
        Returns True if the array is Fortran contiguous but *not* C contiguous.


    Examples
    --------

    np.array allows to specify whether the array is written in C-contiguous
    order (last index varies the fastest), or FORTRAN-contiguous order in
    memory (first index varies the fastest).

    >>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C')
    >>> a
    array([[1, 2, 3],
           [4, 5, 6]])
    >>> np.isfortran(a)
    False

    >>> b = np.array([[1, 2, 3], [4, 5, 6]], order='F')
    >>> b
    array([[1, 2, 3],
           [4, 5, 6]])
    >>> np.isfortran(b)
    True


    The transpose of a C-ordered array is a FORTRAN-ordered array.

    >>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C')
    >>> a
    array([[1, 2, 3],
           [4, 5, 6]])
    >>> np.isfortran(a)
    False
    >>> b = a.T
    >>> b
    array([[1, 4],
           [2, 5],
           [3, 6]])
    >>> np.isfortran(b)
    True

    C-ordered arrays evaluate as False even if they are also FORTRAN-ordered.

    >>> np.isfortran(np.array([1, 2], order='F'))
    False

    """
    return a.flags.fnc


def _argwhere_dispatcher(a):
    return (a,)


@array_function_dispatch(_argwhere_dispatcher)
def argwhere(a):
    """
    Find the indices of array elements that are non-zero, grouped by element.

    Parameters
    ----------
    a : array_like
        Input data.

    Returns
    -------
    index_array : (N, a.ndim) ndarray
        Indices of elements that are non-zero. Indices are grouped by element.
        This array will have shape ``(N, a.ndim)`` where ``N`` is the number of
        non-zero items.

    See Also
    --------
    where, nonzero

    Notes
    -----
    ``np.argwhere(a)`` is almost the same as ``np.transpose(np.nonzero(a))``,
    but produces a result of the correct shape for a 0D array.

    The output of ``argwhere`` is not suitable for indexing arrays.
    For this purpose use ``nonzero(a)`` instead.

    Examples
    --------
    >>> x = np.arange(6).reshape(2,3)
    >>> x
    array([[0, 1, 2],
           [3, 4, 5]])
    >>> np.argwhere(x>1)
    array([[0, 2],
           [1, 0],
           [1, 1],
           [1, 2]])

    """
    # nonzero does not behave well on 0d, so promote to 1d
    if np.ndim(a) == 0:
        a = shape_base.atleast_1d(a)
        # then remove the added dimension
        return argwhere(a)[:,:0]
    return transpose(nonzero(a))


def _flatnonzero_dispatcher(a):
    return (a,)


@array_function_dispatch(_flatnonzero_dispatcher)
def flatnonzero(a):
    """
    Return indices that are non-zero in the flattened version of a.

    This is equivalent to np.nonzero(np.ravel(a))[0].

    Parameters
    ----------
    a : array_like
        Input data.

    Returns
    -------
    res : ndarray
        Output array, containing the indices of the elements of `a.ravel()`
        that are non-zero.

    See Also
    --------
    nonzero : Return the indices of the non-zero elements of the input array.
    ravel : Return a 1-D array containing the elements of the input array.

    Examples
    --------
    >>> x = np.arange(-2, 3)
    >>> x
    array([-2, -1,  0,  1,  2])
    >>> np.flatnonzero(x)
    array([0, 1, 3, 4])

    Use the indices of the non-zero elements as an index array to extract
    these elements:

    >>> x.ravel()[np.flatnonzero(x)]
    array([-2, -1,  1,  2])

    """
    return np.nonzero(np.ravel(a))[0]


_mode_from_name_dict = {'v': 0,
                        's': 1,
                        'f': 2}


def _mode_from_name(mode):
    if isinstance(mode, basestring):
        return _mode_from_name_dict[mode.lower()[0]]
    return mode


def _correlate_dispatcher(a, v, mode=None):
    return (a, v)


@array_function_dispatch(_correlate_dispatcher)
def correlate(a, v, mode='valid'):
    """
    Cross-correlation of two 1-dimensional sequences.

    This function computes the correlation as generally defined in signal
    processing texts::

        c_{av}[k] = sum_n a[n+k] * conj(v[n])

    with a and v sequences being zero-padded where necessary and conj being
    the conjugate.

    Parameters
    ----------
    a, v : array_like
        Input sequences.
    mode : {'valid', 'same', 'full'}, optional
        Refer to the `convolve` docstring.  Note that the default
        is 'valid', unlike `convolve`, which uses 'full'.
    old_behavior : bool
        `old_behavior` was removed in NumPy 1.10. If you need the old
        behavior, use `multiarray.correlate`.

    Returns
    -------
    out : ndarray
        Discrete cross-correlation of `a` and `v`.

    See Also
    --------
    convolve : Discrete, linear convolution of two one-dimensional sequences.
    multiarray.correlate : Old, no conjugate, version of correlate.

    Notes
    -----
    The definition of correlation above is not unique and sometimes correlation
    may be defined differently. Another common definition is::

        c'_{av}[k] = sum_n a[n] conj(v[n+k])

    which is related to ``c_{av}[k]`` by ``c'_{av}[k] = c_{av}[-k]``.

    Examples
    --------
    >>> np.correlate([1, 2, 3], [0, 1, 0.5])
    array([3.5])
    >>> np.correlate([1, 2, 3], [0, 1, 0.5], "same")
    array([2. ,  3.5,  3. ])
    >>> np.correlate([1, 2, 3], [0, 1, 0.5], "full")
    array([0.5,  2. ,  3.5,  3. ,  0. ])

    Using complex sequences:

    >>> np.correlate([1+1j, 2, 3-1j], [0, 1, 0.5j], 'full')
    array([ 0.5-0.5j,  1.0+0.j ,  1.5-1.5j,  3.0-1.j ,  0.0+0.j ])

    Note that you get the time reversed, complex conjugated result
    when the two input sequences change places, i.e.,
    ``c_{va}[k] = c^{*}_{av}[-k]``:

    >>> np.correlate([0, 1, 0.5j], [1+1j, 2, 3-1j], 'full')
    array([ 0.0+0.j ,  3.0+1.j ,  1.5+1.5j,  1.0+0.j ,  0.5+0.5j])

    """
    mode = _mode_from_name(mode)
    return multiarray.correlate2(a, v, mode)


def _convolve_dispatcher(a, v, mode=None):
    return (a, v)


@array_function_dispatch(_convolve_dispatcher)
def convolve(a, v, mode='full'):
    """
    Returns the discrete, linear convolution of two one-dimensional sequences.

    The convolution operator is often seen in signal processing, where it
    models the effect of a linear time-invariant system on a signal [1]_.  In
    probability theory, the sum of two independent random variables is
    distributed according to the convolution of their individual
    distributions.

    If `v` is longer than `a`, the arrays are swapped before computation.

    Parameters
    ----------
    a : (N,) array_like
        First one-dimensional input array.
    v : (M,) array_like
        Second one-dimensional input array.
    mode : {'full', 'valid', 'same'}, optional
        'full':
          By default, mode is 'full'.  This returns the convolution
          at each point of overlap, with an output shape of (N+M-1,). At
          the end-points of the convolution, the signals do not overlap
          completely, and boundary effects may be seen.

        'same':
          Mode 'same' returns output of length ``max(M, N)``.  Boundary
          effects are still visible.

        'valid':
          Mode 'valid' returns output of length
          ``max(M, N) - min(M, N) + 1``.  The convolution product is only given
          for points where the signals overlap completely.  Values outside
          the signal boundary have no effect.

    Returns
    -------
    out : ndarray
        Discrete, linear convolution of `a` and `v`.

    See Also
    --------
    scipy.signal.fftconvolve : Convolve two arrays using the Fast Fourier
                               Transform.
    scipy.linalg.toeplitz : Used to construct the convolution operator.
    polymul : Polynomial multiplication. Same output as convolve, but also
              accepts poly1d objects as input.

    Notes
    -----
    The discrete convolution operation is defined as

    .. math:: (a * v)[n] = \\sum_{m = -\\infty}^{\\infty} a[m] v[n - m]

    It can be shown that a convolution :math:`x(t) * y(t)` in time/space
    is equivalent to the multiplication :math:`X(f) Y(f)` in the Fourier
    domain, after appropriate padding (padding is necessary to prevent
    circular convolution).  Since multiplication is more efficient (faster)
    than convolution, the function `scipy.signal.fftconvolve` exploits the
    FFT to calculate the convolution of large data-sets.

    References
    ----------
    .. [1] Wikipedia, "Convolution",
        https://en.wikipedia.org/wiki/Convolution

    Examples
    --------
    Note how the convolution operator flips the second array
    before "sliding" the two across one another:

    >>> np.convolve([1, 2, 3], [0, 1, 0.5])
    array([0. , 1. , 2.5, 4. , 1.5])

    Only return the middle values of the convolution.
    Contains boundary effects, where zeros are taken
    into account:

    >>> np.convolve([1,2,3],[0,1,0.5], 'same')
    array([1. ,  2.5,  4. ])

    The two arrays are of the same length, so there
    is only one position where they completely overlap:

    >>> np.convolve([1,2,3],[0,1,0.5], 'valid')
    array([2.5])

    """
    a, v = array(a, copy=False, ndmin=1), array(v, copy=False, ndmin=1)
    if (len(v) > len(a)):
        a, v = v, a
    if len(a) == 0:
        raise ValueError('a cannot be empty')
    if len(v) == 0:
        raise ValueError('v cannot be empty')
    mode = _mode_from_name(mode)
    return multiarray.correlate(a, v[::-1], mode)


def _outer_dispatcher(a, b, out=None):
    return (a, b, out)


@array_function_dispatch(_outer_dispatcher)
def outer(a, b, out=None):
    """
    Compute the outer product of two vectors.

    Given two vectors, ``a = [a0, a1, ..., aM]`` and
    ``b = [b0, b1, ..., bN]``,
    the outer product [1]_ is::

      [[a0*b0  a0*b1 ... a0*bN ]
       [a1*b0    .
       [ ...          .
       [aM*b0            aM*bN ]]

    Parameters
    ----------
    a : (M,) array_like
        First input vector.  Input is flattened if
        not already 1-dimensional.
    b : (N,) array_like
        Second input vector.  Input is flattened if
        not already 1-dimensional.
    out : (M, N) ndarray, optional
        A location where the result is stored

        .. versionadded:: 1.9.0

    Returns
    -------
    out : (M, N) ndarray
        ``out[i, j] = a[i] * b[j]``

    See also
    --------
    inner
    einsum : ``einsum('i,j->ij', a.ravel(), b.ravel())`` is the equivalent.
    ufunc.outer : A generalization to N dimensions and other operations.
                  ``np.multiply.outer(a.ravel(), b.ravel())`` is the equivalent.

    References
    ----------
    .. [1] : G. H. Golub and C. F. Van Loan, *Matrix Computations*, 3rd
             ed., Baltimore, MD, Johns Hopkins University Press, 1996,
             pg. 8.

    Examples
    --------
    Make a (*very* coarse) grid for computing a Mandelbrot set:

    >>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
    >>> rl
    array([[-2., -1.,  0.,  1.,  2.],
           [-2., -1.,  0.,  1.,  2.],
           [-2., -1.,  0.,  1.,  2.],
           [-2., -1.,  0.,  1.,  2.],
           [-2., -1.,  0.,  1.,  2.]])
    >>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
    >>> im
    array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],
           [0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
           [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
           [0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
           [0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])
    >>> grid = rl + im
    >>> grid
    array([[-2.+2.j, -1.+2.j,  0.+2.j,  1.+2.j,  2.+2.j],
           [-2.+1.j, -1.+1.j,  0.+1.j,  1.+1.j,  2.+1.j],
           [-2.+0.j, -1.+0.j,  0.+0.j,  1.+0.j,  2.+0.j],
           [-2.-1.j, -1.-1.j,  0.-1.j,  1.-1.j,  2.-1.j],
           [-2.-2.j, -1.-2.j,  0.-2.j,  1.-2.j,  2.-2.j]])

    An example using a "vector" of letters:

    >>> x = np.array(['a', 'b', 'c'], dtype=object)
    >>> np.outer(x, [1, 2, 3])
    array([['a', 'aa', 'aaa'],
           ['b', 'bb', 'bbb'],
           ['c', 'cc', 'ccc']], dtype=object)

    """
    a = asarray(a)
    b = asarray(b)
    return multiply(a.ravel()[:, newaxis], b.ravel()[newaxis, :], out)


def _tensordot_dispatcher(a, b, axes=None):
    return (a, b)


@array_function_dispatch(_tensordot_dispatcher)
def tensordot(a, b, axes=2):
    """
    Compute tensor dot product along specified axes.

    Given two tensors, `a` and `b`, and an array_like object containing
    two array_like objects, ``(a_axes, b_axes)``, sum the products of
    `a`'s and `b`'s elements (components) over the axes specified by
    ``a_axes`` and ``b_axes``. The third argument can be a single non-negative
    integer_like scalar, ``N``; if it is such, then the last ``N`` dimensions
    of `a` and the first ``N`` dimensions of `b` are summed over.

    Parameters
    ----------
    a, b : array_like
        Tensors to "dot".

    axes : int or (2,) array_like
        * integer_like
          If an int N, sum over the last N axes of `a` and the first N axes
          of `b` in order. The sizes of the corresponding axes must match.
        * (2,) array_like
          Or, a list of axes to be summed over, first sequence applying to `a`,
          second to `b`. Both elements array_like must be of the same length.

    Returns
    -------
    output : ndarray
        The tensor dot product of the input.

    See Also
    --------
    dot, einsum

    Notes
    -----
    Three common use cases are:
        * ``axes = 0`` : tensor product :math:`a\\otimes b`
        * ``axes = 1`` : tensor dot product :math:`a\\cdot b`
        * ``axes = 2`` : (default) tensor double contraction :math:`a:b`

    When `axes` is integer_like, the sequence for evaluation will be: first
    the -Nth axis in `a` and 0th axis in `b`, and the -1th axis in `a` and
    Nth axis in `b` last.

    When there is more than one axis to sum over - and they are not the last
    (first) axes of `a` (`b`) - the argument `axes` should consist of
    two sequences of the same length, with the first axis to sum over given
    first in both sequences, the second axis second, and so forth.

    The shape of the result consists of the non-contracted axes of the
    first tensor, followed by the non-contracted axes of the second.

    Examples
    --------
    A "traditional" example:

    >>> a = np.arange(60.).reshape(3,4,5)
    >>> b = np.arange(24.).reshape(4,3,2)
    >>> c = np.tensordot(a,b, axes=([1,0],[0,1]))
    >>> c.shape
    (5, 2)
    >>> c
    array([[4400., 4730.],
           [4532., 4874.],
           [4664., 5018.],
           [4796., 5162.],
           [4928., 5306.]])
    >>> # A slower but equivalent way of computing the same...
    >>> d = np.zeros((5,2))
    >>> for i in range(5):
    ...   for j in range(2):
    ...     for k in range(3):
    ...       for n in range(4):
    ...         d[i,j] += a[k,n,i] * b[n,k,j]
    >>> c == d
    array([[ True,  True],
           [ True,  True],
           [ True,  True],
           [ True,  True],
           [ True,  True]])

    An extended example taking advantage of the overloading of + and \\*:

    >>> a = np.array(range(1, 9))
    >>> a.shape = (2, 2, 2)
    >>> A = np.array(('a', 'b', 'c', 'd'), dtype=object)
    >>> A.shape = (2, 2)
    >>> a; A
    array([[[1, 2],
            [3, 4]],
           [[5, 6],
            [7, 8]]])
    array([['a', 'b'],
           ['c', 'd']], dtype=object)

    >>> np.tensordot(a, A) # third argument default is 2 for double-contraction
    array(['abbcccdddd', 'aaaaabbbbbbcccccccdddddddd'], dtype=object)

    >>> np.tensordot(a, A, 1)
    array([[['acc', 'bdd'],
            ['aaacccc', 'bbbdddd']],
           [['aaaaacccccc', 'bbbbbdddddd'],
            ['aaaaaaacccccccc', 'bbbbbbbdddddddd']]], dtype=object)

    >>> np.tensordot(a, A, 0) # tensor product (result too long to incl.)
    array([[[[['a', 'b'],
              ['c', 'd']],
              ...

    >>> np.tensordot(a, A, (0, 1))
    array([[['abbbbb', 'cddddd'],
            ['aabbbbbb', 'ccdddddd']],
           [['aaabbbbbbb', 'cccddddddd'],
            ['aaaabbbbbbbb', 'ccccdddddddd']]], dtype=object)

    >>> np.tensordot(a, A, (2, 1))
    array([[['abb', 'cdd'],
            ['aaabbbb', 'cccdddd']],
           [['aaaaabbbbbb', 'cccccdddddd'],
            ['aaaaaaabbbbbbbb', 'cccccccdddddddd']]], dtype=object)

    >>> np.tensordot(a, A, ((0, 1), (0, 1)))
    array(['abbbcccccddddddd', 'aabbbbccccccdddddddd'], dtype=object)

    >>> np.tensordot(a, A, ((2, 1), (1, 0)))
    array(['acccbbdddd', 'aaaaacccccccbbbbbbdddddddd'], dtype=object)

    """
    try:
        iter(axes)
    except Exception:
        axes_a = list(range(-axes, 0))
        axes_b = list(range(0, axes))
    else:
        axes_a, axes_b = axes
    try:
        na = len(axes_a)
        axes_a = list(axes_a)
    except TypeError:
        axes_a = [axes_a]
        na = 1
    try:
        nb = len(axes_b)
        axes_b = list(axes_b)
    except TypeError:
        axes_b = [axes_b]
        nb = 1

    a, b = asarray(a), asarray(b)
    as_ = a.shape
    nda = a.ndim
    bs = b.shape
    ndb = b.ndim
    equal = True
    if na != nb:
        equal = False
    else:
        for k in range(na):
            if as_[axes_a[k]] != bs[axes_b[k]]:
                equal = False
                break
            if axes_a[k] < 0:
                axes_a[k] += nda
            if axes_b[k] < 0:
                axes_b[k] += ndb
    if not equal:
        raise ValueError("shape-mismatch for sum")

    # Move the axes to sum over to the end of "a"
    # and to the front of "b"
    notin = [k for k in range(nda) if k not in axes_a]
    newaxes_a = notin + axes_a
    N2 = 1
    for axis in axes_a:
        N2 *= as_[axis]
    newshape_a = (int(multiply.reduce([as_[ax] for ax in notin])), N2)
    olda = [as_[axis] for axis in notin]

    notin = [k for k in range(ndb) if k not in axes_b]
    newaxes_b = axes_b + notin
    N2 = 1
    for axis in axes_b:
        N2 *= bs[axis]
    newshape_b = (N2, int(multiply.reduce([bs[ax] for ax in notin])))
    oldb = [bs[axis] for axis in notin]

    at = a.transpose(newaxes_a).reshape(newshape_a)
    bt = b.transpose(newaxes_b).reshape(newshape_b)
    res = dot(at, bt)
    return res.reshape(olda + oldb)


def _roll_dispatcher(a, shift, axis=None):
    return (a,)


@array_function_dispatch(_roll_dispatcher)
def roll(a, shift, axis=None):
    """
    Roll array elements along a given axis.

    Elements that roll beyond the last position are re-introduced at
    the first.

    Parameters
    ----------
    a : array_like
        Input array.
    shift : int or tuple of ints
        The number of places by which elements are shifted.  If a tuple,
        then `axis` must be a tuple of the same size, and each of the
        given axes is shifted by the corresponding number.  If an int
        while `axis` is a tuple of ints, then the same value is used for
        all given axes.
    axis : int or tuple of ints, optional
        Axis or axes along which elements are shifted.  By default, the
        array is flattened before shifting, after which the original
        shape is restored.

    Returns
    -------
    res : ndarray
        Output array, with the same shape as `a`.

    See Also
    --------
    rollaxis : Roll the specified axis backwards, until it lies in a
               given position.

    Notes
    -----
    .. versionadded:: 1.12.0

    Supports rolling over multiple dimensions simultaneously.

    Examples
    --------
    >>> x = np.arange(10)
    >>> np.roll(x, 2)
    array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])
    >>> np.roll(x, -2)
    array([2, 3, 4, 5, 6, 7, 8, 9, 0, 1])

    >>> x2 = np.reshape(x, (2,5))
    >>> x2
    array([[0, 1, 2, 3, 4],
           [5, 6, 7, 8, 9]])
    >>> np.roll(x2, 1)
    array([[9, 0, 1, 2, 3],
           [4, 5, 6, 7, 8]])
    >>> np.roll(x2, -1)
    array([[1, 2, 3, 4, 5],
           [6, 7, 8, 9, 0]])
    >>> np.roll(x2, 1, axis=0)
    array([[5, 6, 7, 8, 9],
           [0, 1, 2, 3, 4]])
    >>> np.roll(x2, -1, axis=0)
    array([[5, 6, 7, 8, 9],
           [0, 1, 2, 3, 4]])
    >>> np.roll(x2, 1, axis=1)
    array([[4, 0, 1, 2, 3],
           [9, 5, 6, 7, 8]])
    >>> np.roll(x2, -1, axis=1)
    array([[1, 2, 3, 4, 0],
           [6, 7, 8, 9, 5]])

    """
    a = asanyarray(a)
    if axis is None:
        return roll(a.ravel(), shift, 0).reshape(a.shape)

    else:
        axis = normalize_axis_tuple(axis, a.ndim, allow_duplicate=True)
        broadcasted = broadcast(shift, axis)
        if broadcasted.ndim > 1:
            raise ValueError(
                "'shift' and 'axis' should be scalars or 1D sequences")
        shifts = {ax: 0 for ax in range(a.ndim)}
        for sh, ax in broadcasted:
            shifts[ax] += sh

        rolls = [((slice(None), slice(None)),)] * a.ndim
        for ax, offset in shifts.items():
            offset %= a.shape[ax] or 1  # If `a` is empty, nothing matters.
            if offset:
                # (original, result), (original, result)
                rolls[ax] = ((slice(None, -offset), slice(offset, None)),
                             (slice(-offset, None), slice(None, offset)))

        result = empty_like(a)
        for indices in itertools.product(*rolls):
            arr_index, res_index = zip(*indices)
            result[res_index] = a[arr_index]

        return result


def _rollaxis_dispatcher(a, axis, start=None):
    return (a,)


@array_function_dispatch(_rollaxis_dispatcher)
def rollaxis(a, axis, start=0):
    """
    Roll the specified axis backwards, until it lies in a given position.

    This function continues to be supported for backward compatibility, but you
    should prefer `moveaxis`. The `moveaxis` function was added in NumPy
    1.11.

    Parameters
    ----------
    a : ndarray
        Input array.
    axis : int
        The axis to roll backwards.  The positions of the other axes do not
        change relative to one another.
    start : int, optional
        The axis is rolled until it lies before this position.  The default,
        0, results in a "complete" roll.

    Returns
    -------
    res : ndarray
        For NumPy >= 1.10.0 a view of `a` is always returned. For earlier
        NumPy versions a view of `a` is returned only if the order of the
        axes is changed, otherwise the input array is returned.

    See Also
    --------
    moveaxis : Move array axes to new positions.
    roll : Roll the elements of an array by a number of positions along a
        given axis.

    Examples
    --------
    >>> a = np.ones((3,4,5,6))
    >>> np.rollaxis(a, 3, 1).shape
    (3, 6, 4, 5)
    >>> np.rollaxis(a, 2).shape
    (5, 3, 4, 6)
    >>> np.rollaxis(a, 1, 4).shape
    (3, 5, 6, 4)

    """
    n = a.ndim
    axis = normalize_axis_index(axis, n)
    if start < 0:
        start += n
    msg = "'%s' arg requires %d <= %s < %d, but %d was passed in"
    if not (0 <= start < n + 1):
        raise AxisError(msg % ('start', -n, 'start', n + 1, start))
    if axis < start:
        # it's been removed
        start -= 1
    if axis == start:
        return a[...]
    axes = list(range(0, n))
    axes.remove(axis)
    axes.insert(start, axis)
    return a.transpose(axes)


def normalize_axis_tuple(axis, ndim, argname=None, allow_duplicate=False):
    """
    Normalizes an axis argument into a tuple of non-negative integer axes.

    This handles shorthands such as ``1`` and converts them to ``(1,)``,
    as well as performing the handling of negative indices covered by
    `normalize_axis_index`.

    By default, this forbids axes from being specified multiple times.

    Used internally by multi-axis-checking logic.

    .. versionadded:: 1.13.0

    Parameters
    ----------
    axis : int, iterable of int
        The un-normalized index or indices of the axis.
    ndim : int
        The number of dimensions of the array that `axis` should be normalized
        against.
    argname : str, optional
        A prefix to put before the error message, typically the name of the
        argument.
    allow_duplicate : bool, optional
        If False, the default, disallow an axis from being specified twice.

    Returns
    -------
    normalized_axes : tuple of int
        The normalized axis index, such that `0 <= normalized_axis < ndim`

    Raises
    ------
    AxisError
        If any axis provided is out of range
    ValueError
        If an axis is repeated

    See also
    --------
    normalize_axis_index : normalizing a single scalar axis
    """
    # Optimization to speed-up the most common cases.
    if type(axis) not in (tuple, list):
        try:
            axis = [operator.index(axis)]
        except TypeError:
            pass
    # Going via an iterator directly is slower than via list comprehension.
    axis = tuple([normalize_axis_index(ax, ndim, argname) for ax in axis])
    if not allow_duplicate and len(set(axis)) != len(axis):
        if argname:
            raise ValueError('repeated axis in `{}` argument'.format(argname))
        else:
            raise ValueError('repeated axis')
    return axis


def _moveaxis_dispatcher(a, source, destination):
    return (a,)


@array_function_dispatch(_moveaxis_dispatcher)
def moveaxis(a, source, destination):
    """
    Move axes of an array to new positions.

    Other axes remain in their original order.

    .. versionadded:: 1.11.0

    Parameters
    ----------
    a : np.ndarray
        The array whose axes should be reordered.
    source : int or sequence of int
        Original positions of the axes to move. These must be unique.
    destination : int or sequence of int
        Destination positions for each of the original axes. These must also be
        unique.

    Returns
    -------
    result : np.ndarray
        Array with moved axes. This array is a view of the input array.

    See Also
    --------
    transpose: Permute the dimensions of an array.
    swapaxes: Interchange two axes of an array.

    Examples
    --------

    >>> x = np.zeros((3, 4, 5))
    >>> np.moveaxis(x, 0, -1).shape
    (4, 5, 3)
    >>> np.moveaxis(x, -1, 0).shape
    (5, 3, 4)

    These all achieve the same result:

    >>> np.transpose(x).shape
    (5, 4, 3)
    >>> np.swapaxes(x, 0, -1).shape
    (5, 4, 3)
    >>> np.moveaxis(x, [0, 1], [-1, -2]).shape
    (5, 4, 3)
    >>> np.moveaxis(x, [0, 1, 2], [-1, -2, -3]).shape
    (5, 4, 3)

    """
    try:
        # allow duck-array types if they define transpose
        transpose = a.transpose
    except AttributeError:
        a = asarray(a)
        transpose = a.transpose

    source = normalize_axis_tuple(source, a.ndim, 'source')
    destination = normalize_axis_tuple(destination, a.ndim, 'destination')
    if len(source) != len(destination):
        raise ValueError('`source` and `destination` arguments must have '
                         'the same number of elements')

    order = [n for n in range(a.ndim) if n not in source]

    for dest, src in sorted(zip(destination, source)):
        order.insert(dest, src)

    result = transpose(order)
    return result


# fix hack in scipy which imports this function
def _move_axis_to_0(a, axis):
    return moveaxis(a, axis, 0)


def _cross_dispatcher(a, b, axisa=None, axisb=None, axisc=None, axis=None):
    return (a, b)


@array_function_dispatch(_cross_dispatcher)
def cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None):
    """
    Return the cross product of two (arrays of) vectors.

    The cross product of `a` and `b` in :math:`R^3` is a vector perpendicular
    to both `a` and `b`.  If `a` and `b` are arrays of vectors, the vectors
    are defined by the last axis of `a` and `b` by default, and these axes
    can have dimensions 2 or 3.  Where the dimension of either `a` or `b` is
    2, the third component of the input vector is assumed to be zero and the
    cross product calculated accordingly.  In cases where both input vectors
    have dimension 2, the z-component of the cross product is returned.

    Parameters
    ----------
    a : array_like
        Components of the first vector(s).
    b : array_like
        Components of the second vector(s).
    axisa : int, optional
        Axis of `a` that defines the vector(s).  By default, the last axis.
    axisb : int, optional
        Axis of `b` that defines the vector(s).  By default, the last axis.
    axisc : int, optional
        Axis of `c` containing the cross product vector(s).  Ignored if
        both input vectors have dimension 2, as the return is scalar.
        By default, the last axis.
    axis : int, optional
        If defined, the axis of `a`, `b` and `c` that defines the vector(s)
        and cross product(s).  Overrides `axisa`, `axisb` and `axisc`.

    Returns
    -------
    c : ndarray
        Vector cross product(s).

    Raises
    ------
    ValueError
        When the dimension of the vector(s) in `a` and/or `b` does not
        equal 2 or 3.

    See Also
    --------
    inner : Inner product
    outer : Outer product.
    ix_ : Construct index arrays.

    Notes
    -----
    .. versionadded:: 1.9.0

    Supports full broadcasting of the inputs.

    Examples
    --------
    Vector cross-product.

    >>> x = [1, 2, 3]
    >>> y = [4, 5, 6]
    >>> np.cross(x, y)
    array([-3,  6, -3])

    One vector with dimension 2.

    >>> x = [1, 2]
    >>> y = [4, 5, 6]
    >>> np.cross(x, y)
    array([12, -6, -3])

    Equivalently:

    >>> x = [1, 2, 0]
    >>> y = [4, 5, 6]
    >>> np.cross(x, y)
    array([12, -6, -3])

    Both vectors with dimension 2.

    >>> x = [1,2]
    >>> y = [4,5]
    >>> np.cross(x, y)
    array(-3)

    Multiple vector cross-products. Note that the direction of the cross
    product vector is defined by the `right-hand rule`.

    >>> x = np.array([[1,2,3], [4,5,6]])
    >>> y = np.array([[4,5,6], [1,2,3]])
    >>> np.cross(x, y)
    array([[-3,  6, -3],
           [ 3, -6,  3]])

    The orientation of `c` can be changed using the `axisc` keyword.

    >>> np.cross(x, y, axisc=0)
    array([[-3,  3],
           [ 6, -6],
           [-3,  3]])

    Change the vector definition of `x` and `y` using `axisa` and `axisb`.

    >>> x = np.array([[1,2,3], [4,5,6], [7, 8, 9]])
    >>> y = np.array([[7, 8, 9], [4,5,6], [1,2,3]])
    >>> np.cross(x, y)
    array([[ -6,  12,  -6],
           [  0,   0,   0],
           [  6, -12,   6]])
    >>> np.cross(x, y, axisa=0, axisb=0)
    array([[-24,  48, -24],
           [-30,  60, -30],
           [-36,  72, -36]])

    """
    if axis is not None:
        axisa, axisb, axisc = (axis,) * 3
    a = asarray(a)
    b = asarray(b)
    # Check axisa and axisb are within bounds
    axisa = normalize_axis_index(axisa, a.ndim, msg_prefix='axisa')
    axisb = normalize_axis_index(axisb, b.ndim, msg_prefix='axisb')

    # Move working axis to the end of the shape
    a = moveaxis(a, axisa, -1)
    b = moveaxis(b, axisb, -1)
    msg = ("incompatible dimensions for cross product\n"
           "(dimension must be 2 or 3)")
    if a.shape[-1] not in (2, 3) or b.shape[-1] not in (2, 3):
        raise ValueError(msg)

    # Create the output array
    shape = broadcast(a[..., 0], b[..., 0]).shape
    if a.shape[-1] == 3 or b.shape[-1] == 3:
        shape += (3,)
        # Check axisc is within bounds
        axisc = normalize_axis_index(axisc, len(shape), msg_prefix='axisc')
    dtype = promote_types(a.dtype, b.dtype)
    cp = empty(shape, dtype)

    # create local aliases for readability
    a0 = a[..., 0]
    a1 = a[..., 1]
    if a.shape[-1] == 3:
        a2 = a[..., 2]
    b0 = b[..., 0]
    b1 = b[..., 1]
    if b.shape[-1] == 3:
        b2 = b[..., 2]
    if cp.ndim != 0 and cp.shape[-1] == 3:
        cp0 = cp[..., 0]
        cp1 = cp[..., 1]
        cp2 = cp[..., 2]

    if a.shape[-1] == 2:
        if b.shape[-1] == 2:
            # a0 * b1 - a1 * b0
            multiply(a0, b1, out=cp)
            cp -= a1 * b0
            return cp
        else:
            assert b.shape[-1] == 3
            # cp0 = a1 * b2 - 0  (a2 = 0)
            # cp1 = 0 - a0 * b2  (a2 = 0)
            # cp2 = a0 * b1 - a1 * b0
            multiply(a1, b2, out=cp0)
            multiply(a0, b2, out=cp1)
            negative(cp1, out=cp1)
            multiply(a0, b1, out=cp2)
            cp2 -= a1 * b0
    else:
        assert a.shape[-1] == 3
        if b.shape[-1] == 3:
            # cp0 = a1 * b2 - a2 * b1
            # cp1 = a2 * b0 - a0 * b2
            # cp2 = a0 * b1 - a1 * b0
            multiply(a1, b2, out=cp0)
            tmp = array(a2 * b1)
            cp0 -= tmp
            multiply(a2, b0, out=cp1)
            multiply(a0, b2, out=tmp)
            cp1 -= tmp
            multiply(a0, b1, out=cp2)
            multiply(a1, b0, out=tmp)
            cp2 -= tmp
        else:
            assert b.shape[-1] == 2
            # cp0 = 0 - a2 * b1  (b2 = 0)
            # cp1 = a2 * b0 - 0  (b2 = 0)
            # cp2 = a0 * b1 - a1 * b0
            multiply(a2, b1, out=cp0)
            negative(cp0, out=cp0)
            multiply(a2, b0, out=cp1)
            multiply(a0, b1, out=cp2)
            cp2 -= a1 * b0

    return moveaxis(cp, -1, axisc)


little_endian = (sys.byteorder == 'little')


@set_module('numpy')
def indices(dimensions, dtype=int, sparse=False):
    """
    Return an array representing the indices of a grid.

    Compute an array where the subarrays contain index values 0, 1, ...
    varying only along the corresponding axis.

    Parameters
    ----------
    dimensions : sequence of ints
        The shape of the grid.
    dtype : dtype, optional
        Data type of the result.
    sparse : boolean, optional
        Return a sparse representation of the grid instead of a dense
        representation. Default is False.

        .. versionadded:: 1.17

    Returns
    -------
    grid : one ndarray or tuple of ndarrays
        If sparse is False:
            Returns one array of grid indices,
            ``grid.shape = (len(dimensions),) + tuple(dimensions)``.
        If sparse is True:
            Returns a tuple of arrays, with
            ``grid[i].shape = (1, ..., 1, dimensions[i], 1, ..., 1)`` with
            dimensions[i] in the ith place

    See Also
    --------
    mgrid, ogrid, meshgrid

    Notes
    -----
    The output shape in the dense case is obtained by prepending the number
    of dimensions in front of the tuple of dimensions, i.e. if `dimensions`
    is a tuple ``(r0, ..., rN-1)`` of length ``N``, the output shape is
    ``(N, r0, ..., rN-1)``.

    The subarrays ``grid[k]`` contains the N-D array of indices along the
    ``k-th`` axis. Explicitly::

        grid[k, i0, i1, ..., iN-1] = ik

    Examples
    --------
    >>> grid = np.indices((2, 3))
    >>> grid.shape
    (2, 2, 3)
    >>> grid[0]        # row indices
    array([[0, 0, 0],
           [1, 1, 1]])
    >>> grid[1]        # column indices
    array([[0, 1, 2],
           [0, 1, 2]])

    The indices can be used as an index into an array.

    >>> x = np.arange(20).reshape(5, 4)
    >>> row, col = np.indices((2, 3))
    >>> x[row, col]
    array([[0, 1, 2],
           [4, 5, 6]])

    Note that it would be more straightforward in the above example to
    extract the required elements directly with ``x[:2, :3]``.

    If sparse is set to true, the grid will be returned in a sparse
    representation.

    >>> i, j = np.indices((2, 3), sparse=True)
    >>> i.shape
    (2, 1)
    >>> j.shape
    (1, 3)
    >>> i        # row indices
    array([[0],
           [1]])
    >>> j        # column indices
    array([[0, 1, 2]])

    """
    dimensions = tuple(dimensions)
    N = len(dimensions)
    shape = (1,)*N
    if sparse:
        res = tuple()
    else:
        res = empty((N,)+dimensions, dtype=dtype)
    for i, dim in enumerate(dimensions):
        idx = arange(dim, dtype=dtype).reshape(
            shape[:i] + (dim,) + shape[i+1:]
        )
        if sparse:
            res = res + (idx,)
        else:
            res[i] = idx
    return res


@set_module('numpy')
def fromfunction(function, shape, **kwargs):
    """
    Construct an array by executing a function over each coordinate.

    The resulting array therefore has a value ``fn(x, y, z)`` at
    coordinate ``(x, y, z)``.

    Parameters
    ----------
    function : callable
        The function is called with N parameters, where N is the rank of
        `shape`.  Each parameter represents the coordinates of the array
        varying along a specific axis.  For example, if `shape`
        were ``(2, 2)``, then the parameters would be
        ``array([[0, 0], [1, 1]])`` and ``array([[0, 1], [0, 1]])``
    shape : (N,) tuple of ints
        Shape of the output array, which also determines the shape of
        the coordinate arrays passed to `function`.
    dtype : data-type, optional
        Data-type of the coordinate arrays passed to `function`.
        By default, `dtype` is float.

    Returns
    -------
    fromfunction : any
        The result of the call to `function` is passed back directly.
        Therefore the shape of `fromfunction` is completely determined by
        `function`.  If `function` returns a scalar value, the shape of
        `fromfunction` would not match the `shape` parameter.

    See Also
    --------
    indices, meshgrid

    Notes
    -----
    Keywords other than `dtype` are passed to `function`.

    Examples
    --------
    >>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
    array([[ True, False, False],
           [False,  True, False],
           [False, False,  True]])

    >>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
    array([[0, 1, 2],
           [1, 2, 3],
           [2, 3, 4]])

    """
    dtype = kwargs.pop('dtype', float)
    args = indices(shape, dtype=dtype)
    return function(*args, **kwargs)


def _frombuffer(buf, dtype, shape, order):
    return frombuffer(buf, dtype=dtype).reshape(shape, order=order)


@set_module('numpy')
def isscalar(element):
    """
    Returns True if the type of `element` is a scalar type.

    Parameters
    ----------
    element : any
        Input argument, can be of any type and shape.

    Returns
    -------
    val : bool
        True if `element` is a scalar type, False if it is not.

    See Also
    --------
    ndim : Get the number of dimensions of an array

    Notes
    -----
    If you need a stricter way to identify a *numerical* scalar, use
    ``isinstance(x, numbers.Number)``, as that returns ``False`` for most
    non-numerical elements such as strings.

    In most cases ``np.ndim(x) == 0`` should be used instead of this function,
    as that will also return true for 0d arrays. This is how numpy overloads
    functions in the style of the ``dx`` arguments to `gradient` and the ``bins``
    argument to `histogram`. Some key differences:

    +--------------------------------------+---------------+-------------------+
    | x                                    |``isscalar(x)``|``np.ndim(x) == 0``|
    +======================================+===============+===================+
    | PEP 3141 numeric objects (including  | ``True``      | ``True``          |
    | builtins)                            |               |                   |
    +--------------------------------------+---------------+-------------------+
    | builtin string and buffer objects    | ``True``      | ``True``          |
    +--------------------------------------+---------------+-------------------+
    | other builtin objects, like          | ``False``     | ``True``          |
    | `pathlib.Path`, `Exception`,         |               |                   |
    | the result of `re.compile`           |               |                   |
    +--------------------------------------+---------------+-------------------+
    | third-party objects like             | ``False``     | ``True``          |
    | `matplotlib.figure.Figure`           |               |                   |
    +--------------------------------------+---------------+-------------------+
    | zero-dimensional numpy arrays        | ``False``     | ``True``          |
    +--------------------------------------+---------------+-------------------+
    | other numpy arrays                   | ``False``     | ``False``         |
    +--------------------------------------+---------------+-------------------+
    | `list`, `tuple`, and other sequence  | ``False``     | ``False``         |
    | objects                              |               |                   |
    +--------------------------------------+---------------+-------------------+

    Examples
    --------
    >>> np.isscalar(3.1)
    True
    >>> np.isscalar(np.array(3.1))
    False
    >>> np.isscalar([3.1])
    False
    >>> np.isscalar(False)
    True
    >>> np.isscalar('numpy')
    True

    NumPy supports PEP 3141 numbers:

    >>> from fractions import Fraction
    >>> np.isscalar(Fraction(5, 17))
    True
    >>> from numbers import Number
    >>> np.isscalar(Number())
    True

    """
    return (isinstance(element, generic)
            or type(element) in ScalarType
            or isinstance(element, numbers.Number))


@set_module('numpy')
def binary_repr(num, width=None):
    """
    Return the binary representation of the input number as a string.

    For negative numbers, if width is not given, a minus sign is added to the
    front. If width is given, the two's complement of the number is
    returned, with respect to that width.

    In a two's-complement system negative numbers are represented by the two's
    complement of the absolute value. This is the most common method of
    representing signed integers on computers [1]_. A N-bit two's-complement
    system can represent every integer in the range
    :math:`-2^{N-1}` to :math:`+2^{N-1}-1`.

    Parameters
    ----------
    num : int
        Only an integer decimal number can be used.
    width : int, optional
        The length of the returned string if `num` is positive, or the length
        of the two's complement if `num` is negative, provided that `width` is
        at least a sufficient number of bits for `num` to be represented in the
        designated form.

        If the `width` value is insufficient, it will be ignored, and `num` will
        be returned in binary (`num` > 0) or two's complement (`num` < 0) form
        with its width equal to the minimum number of bits needed to represent
        the number in the designated form. This behavior is deprecated and will
        later raise an error.

        .. deprecated:: 1.12.0

    Returns
    -------
    bin : str
        Binary representation of `num` or two's complement of `num`.

    See Also
    --------
    base_repr: Return a string representation of a number in the given base
               system.
    bin: Python's built-in binary representation generator of an integer.

    Notes
    -----
    `binary_repr` is equivalent to using `base_repr` with base 2, but about 25x
    faster.

    References
    ----------
    .. [1] Wikipedia, "Two's complement",
        https://en.wikipedia.org/wiki/Two's_complement

    Examples
    --------
    >>> np.binary_repr(3)
    '11'
    >>> np.binary_repr(-3)
    '-11'
    >>> np.binary_repr(3, width=4)
    '0011'

    The two's complement is returned when the input number is negative and
    width is specified:

    >>> np.binary_repr(-3, width=3)
    '101'
    >>> np.binary_repr(-3, width=5)
    '11101'

    """
    def warn_if_insufficient(width, binwidth):
        if width is not None and width < binwidth:
            warnings.warn(
                "Insufficient bit width provided. This behavior "
                "will raise an error in the future.", DeprecationWarning,
                stacklevel=3)

    # Ensure that num is a Python integer to avoid overflow or unwanted
    # casts to floating point.
    num = operator.index(num)

    if num == 0:
        return '0' * (width or 1)

    elif num > 0:
        binary = bin(num)[2:]
        binwidth = len(binary)
        outwidth = (binwidth if width is None
                    else max(binwidth, width))
        warn_if_insufficient(width, binwidth)
        return binary.zfill(outwidth)

    else:
        if width is None:
            return '-' + bin(-num)[2:]

        else:
            poswidth = len(bin(-num)[2:])

            # See gh-8679: remove extra digit
            # for numbers at boundaries.
            if 2**(poswidth - 1) == -num:
                poswidth -= 1

            twocomp = 2**(poswidth + 1) + num
            binary = bin(twocomp)[2:]
            binwidth = len(binary)

            outwidth = max(binwidth, width)
            warn_if_insufficient(width, binwidth)
            return '1' * (outwidth - binwidth) + binary


@set_module('numpy')
def base_repr(number, base=2, padding=0):
    """
    Return a string representation of a number in the given base system.

    Parameters
    ----------
    number : int
        The value to convert. Positive and negative values are handled.
    base : int, optional
        Convert `number` to the `base` number system. The valid range is 2-36,
        the default value is 2.
    padding : int, optional
        Number of zeros padded on the left. Default is 0 (no padding).

    Returns
    -------
    out : str
        String representation of `number` in `base` system.

    See Also
    --------
    binary_repr : Faster version of `base_repr` for base 2.

    Examples
    --------
    >>> np.base_repr(5)
    '101'
    >>> np.base_repr(6, 5)
    '11'
    >>> np.base_repr(7, base=5, padding=3)
    '00012'

    >>> np.base_repr(10, base=16)
    'A'
    >>> np.base_repr(32, base=16)
    '20'

    """
    digits = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'
    if base > len(digits):
        raise ValueError("Bases greater than 36 not handled in base_repr.")
    elif base < 2:
        raise ValueError("Bases less than 2 not handled in base_repr.")

    num = abs(number)
    res = []
    while num:
        res.append(digits[num % base])
        num //= base
    if padding:
        res.append('0' * padding)
    if number < 0:
        res.append('-')
    return ''.join(reversed(res or '0'))


# These are all essentially abbreviations
# These might wind up in a special abbreviations module


def _maketup(descr, val):
    dt = dtype(descr)
    # Place val in all scalar tuples:
    fields = dt.fields
    if fields is None:
        return val
    else:
        res = [_maketup(fields[name][0], val) for name in dt.names]
        return tuple(res)


@set_module('numpy')
def identity(n, dtype=None):
    """
    Return the identity array.

    The identity array is a square array with ones on
    the main diagonal.

    Parameters
    ----------
    n : int
        Number of rows (and columns) in `n` x `n` output.
    dtype : data-type, optional
        Data-type of the output.  Defaults to ``float``.

    Returns
    -------
    out : ndarray
        `n` x `n` array with its main diagonal set to one,
        and all other elements 0.

    Examples
    --------
    >>> np.identity(3)
    array([[1.,  0.,  0.],
           [0.,  1.,  0.],
           [0.,  0.,  1.]])

    """
    from numpy import eye
    return eye(n, dtype=dtype)


def _allclose_dispatcher(a, b, rtol=None, atol=None, equal_nan=None):
    return (a, b)


@array_function_dispatch(_allclose_dispatcher)
def allclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False):
    """
    Returns True if two arrays are element-wise equal within a tolerance.

    The tolerance values are positive, typically very small numbers.  The
    relative difference (`rtol` * abs(`b`)) and the absolute difference
    `atol` are added together to compare against the absolute difference
    between `a` and `b`.

    NaNs are treated as equal if they are in the same place and if
    ``equal_nan=True``.  Infs are treated as equal if they are in the same
    place and of the same sign in both arrays.

    Parameters
    ----------
    a, b : array_like
        Input arrays to compare.
    rtol : float
        The relative tolerance parameter (see Notes).
    atol : float
        The absolute tolerance parameter (see Notes).
    equal_nan : bool
        Whether to compare NaN's as equal.  If True, NaN's in `a` will be
        considered equal to NaN's in `b` in the output array.

        .. versionadded:: 1.10.0

    Returns
    -------
    allclose : bool
        Returns True if the two arrays are equal within the given
        tolerance; False otherwise.

    See Also
    --------
    isclose, all, any, equal

    Notes
    -----
    If the following equation is element-wise True, then allclose returns
    True.

     absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))

    The above equation is not symmetric in `a` and `b`, so that
    ``allclose(a, b)`` might be different from ``allclose(b, a)`` in
    some rare cases.

    The comparison of `a` and `b` uses standard broadcasting, which
    means that `a` and `b` need not have the same shape in order for
    ``allclose(a, b)`` to evaluate to True.  The same is true for
    `equal` but not `array_equal`.

    Examples
    --------
    >>> np.allclose([1e10,1e-7], [1.00001e10,1e-8])
    False
    >>> np.allclose([1e10,1e-8], [1.00001e10,1e-9])
    True
    >>> np.allclose([1e10,1e-8], [1.0001e10,1e-9])
    False
    >>> np.allclose([1.0, np.nan], [1.0, np.nan])
    False
    >>> np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
    True

    """
    res = all(isclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan))
    return bool(res)


def _isclose_dispatcher(a, b, rtol=None, atol=None, equal_nan=None):
    return (a, b)


@array_function_dispatch(_isclose_dispatcher)
def isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False):
    """
    Returns a boolean array where two arrays are element-wise equal within a
    tolerance.

    The tolerance values are positive, typically very small numbers.  The
    relative difference (`rtol` * abs(`b`)) and the absolute difference
    `atol` are added together to compare against the absolute difference
    between `a` and `b`.

    .. warning:: The default `atol` is not appropriate for comparing numbers
                 that are much smaller than one (see Notes).

    Parameters
    ----------
    a, b : array_like
        Input arrays to compare.
    rtol : float
        The relative tolerance parameter (see Notes).
    atol : float
        The absolute tolerance parameter (see Notes).
    equal_nan : bool
        Whether to compare NaN's as equal.  If True, NaN's in `a` will be
        considered equal to NaN's in `b` in the output array.

    Returns
    -------
    y : array_like
        Returns a boolean array of where `a` and `b` are equal within the
        given tolerance. If both `a` and `b` are scalars, returns a single
        boolean value.

    See Also
    --------
    allclose

    Notes
    -----
    .. versionadded:: 1.7.0

    For finite values, isclose uses the following equation to test whether
    two floating point values are equivalent.

     absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))

    Unlike the built-in `math.isclose`, the above equation is not symmetric
    in `a` and `b` -- it assumes `b` is the reference value -- so that
    `isclose(a, b)` might be different from `isclose(b, a)`. Furthermore,
    the default value of atol is not zero, and is used to determine what
    small values should be considered close to zero. The default value is
    appropriate for expected values of order unity: if the expected values
    are significantly smaller than one, it can result in false positives.
    `atol` should be carefully selected for the use case at hand. A zero value
    for `atol` will result in `False` if either `a` or `b` is zero.

    Examples
    --------
    >>> np.isclose([1e10,1e-7], [1.00001e10,1e-8])
    array([ True, False])
    >>> np.isclose([1e10,1e-8], [1.00001e10,1e-9])
    array([ True, True])
    >>> np.isclose([1e10,1e-8], [1.0001e10,1e-9])
    array([False,  True])
    >>> np.isclose([1.0, np.nan], [1.0, np.nan])
    array([ True, False])
    >>> np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
    array([ True, True])
    >>> np.isclose([1e-8, 1e-7], [0.0, 0.0])
    array([ True, False])
    >>> np.isclose([1e-100, 1e-7], [0.0, 0.0], atol=0.0)
    array([False, False])
    >>> np.isclose([1e-10, 1e-10], [1e-20, 0.0])
    array([ True,  True])
    >>> np.isclose([1e-10, 1e-10], [1e-20, 0.999999e-10], atol=0.0)
    array([False,  True])
    """
    def within_tol(x, y, atol, rtol):
        with errstate(invalid='ignore'):
            return less_equal(abs(x-y), atol + rtol * abs(y))

    x = asanyarray(a)
    y = asanyarray(b)

    # Make sure y is an inexact type to avoid bad behavior on abs(MIN_INT).
    # This will cause casting of x later. Also, make sure to allow subclasses
    # (e.g., for numpy.ma).
    dt = multiarray.result_type(y, 1.)
    y = array(y, dtype=dt, copy=False, subok=True)

    xfin = isfinite(x)
    yfin = isfinite(y)
    if all(xfin) and all(yfin):
        return within_tol(x, y, atol, rtol)
    else:
        finite = xfin & yfin
        cond = zeros_like(finite, subok=True)
        # Because we're using boolean indexing, x & y must be the same shape.
        # Ideally, we'd just do x, y = broadcast_arrays(x, y). It's in
        # lib.stride_tricks, though, so we can't import it here.
        x = x * ones_like(cond)
        y = y * ones_like(cond)
        # Avoid subtraction with infinite/nan values...
        cond[finite] = within_tol(x[finite], y[finite], atol, rtol)
        # Check for equality of infinite values...
        cond[~finite] = (x[~finite] == y[~finite])
        if equal_nan:
            # Make NaN == NaN
            both_nan = isnan(x) & isnan(y)

            # Needed to treat masked arrays correctly. = True would not work.
            cond[both_nan] = both_nan[both_nan]

        return cond[()]  # Flatten 0d arrays to scalars


def _array_equal_dispatcher(a1, a2):
    return (a1, a2)


@array_function_dispatch(_array_equal_dispatcher)
def array_equal(a1, a2):
    """
    True if two arrays have the same shape and elements, False otherwise.

    Parameters
    ----------
    a1, a2 : array_like
        Input arrays.

    Returns
    -------
    b : bool
        Returns True if the arrays are equal.

    See Also
    --------
    allclose: Returns True if two arrays are element-wise equal within a
              tolerance.
    array_equiv: Returns True if input arrays are shape consistent and all
                 elements equal.

    Examples
    --------
    >>> np.array_equal([1, 2], [1, 2])
    True
    >>> np.array_equal(np.array([1, 2]), np.array([1, 2]))
    True
    >>> np.array_equal([1, 2], [1, 2, 3])
    False
    >>> np.array_equal([1, 2], [1, 4])
    False

    """
    try:
        a1, a2 = asarray(a1), asarray(a2)
    except Exception:
        return False
    if a1.shape != a2.shape:
        return False
    return bool(asarray(a1 == a2).all())


def _array_equiv_dispatcher(a1, a2):
    return (a1, a2)


@array_function_dispatch(_array_equiv_dispatcher)
def array_equiv(a1, a2):
    """
    Returns True if input arrays are shape consistent and all elements equal.

    Shape consistent means they are either the same shape, or one input array
    can be broadcasted to create the same shape as the other one.

    Parameters
    ----------
    a1, a2 : array_like
        Input arrays.

    Returns
    -------
    out : bool
        True if equivalent, False otherwise.

    Examples
    --------
    >>> np.array_equiv([1, 2], [1, 2])
    True
    >>> np.array_equiv([1, 2], [1, 3])
    False

    Showing the shape equivalence:

    >>> np.array_equiv([1, 2], [[1, 2], [1, 2]])
    True
    >>> np.array_equiv([1, 2], [[1, 2, 1, 2], [1, 2, 1, 2]])
    False

    >>> np.array_equiv([1, 2], [[1, 2], [1, 3]])
    False

    """
    try:
        a1, a2 = asarray(a1), asarray(a2)
    except Exception:
        return False
    try:
        multiarray.broadcast(a1, a2)
    except Exception:
        return False

    return bool(asarray(a1 == a2).all())


Inf = inf = infty = Infinity = PINF
nan = NaN = NAN
False_ = bool_(False)
True_ = bool_(True)


def extend_all(module):
    existing = set(__all__)
    mall = getattr(module, '__all__')
    for a in mall:
        if a not in existing:
            __all__.append(a)


from .umath import *
from .numerictypes import *
from . import fromnumeric
from .fromnumeric import *
from . import arrayprint
from .arrayprint import *
from . import _asarray
from ._asarray import *
from . import _ufunc_config
from ._ufunc_config import *
extend_all(fromnumeric)
extend_all(umath)
extend_all(numerictypes)
extend_all(arrayprint)
extend_all(_asarray)
extend_all(_ufunc_config)