bezier.py 15 KB
Newer Older
xuebingbing's avatar
xuebingbing committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
"""
A module providing some utility functions regarding bezier path manipulation.
"""

import numpy as np

import matplotlib.cbook as cbook
from matplotlib.path import Path


class NonIntersectingPathException(ValueError):
    pass

# some functions


def get_intersection(cx1, cy1, cos_t1, sin_t1,
                     cx2, cy2, cos_t2, sin_t2):
    """
    Return the intersection between the line through (*cx1*, *cy1*) at angle
    *t1* and the line through (*cx2, cy2) at angle *t2*.
    """

    # line1 => sin_t1 * (x - cx1) - cos_t1 * (y - cy1) = 0.
    # line1 => sin_t1 * x + cos_t1 * y = sin_t1*cx1 - cos_t1*cy1

    line1_rhs = sin_t1 * cx1 - cos_t1 * cy1
    line2_rhs = sin_t2 * cx2 - cos_t2 * cy2

    # rhs matrix
    a, b = sin_t1, -cos_t1
    c, d = sin_t2, -cos_t2

    ad_bc = a * d - b * c
    if np.abs(ad_bc) < 1.0e-12:
        raise ValueError("Given lines do not intersect. Please verify that "
                         "the angles are not equal or differ by 180 degrees.")

    # rhs_inverse
    a_, b_ = d, -b
    c_, d_ = -c, a
    a_, b_, c_, d_ = [k / ad_bc for k in [a_, b_, c_, d_]]

    x = a_ * line1_rhs + b_ * line2_rhs
    y = c_ * line1_rhs + d_ * line2_rhs

    return x, y


def get_normal_points(cx, cy, cos_t, sin_t, length):
    """
    For a line passing through (*cx*, *cy*) and having a angle *t*, return
    locations of the two points located along its perpendicular line at the
    distance of *length*.
    """

    if length == 0.:
        return cx, cy, cx, cy

    cos_t1, sin_t1 = sin_t, -cos_t
    cos_t2, sin_t2 = -sin_t, cos_t

    x1, y1 = length * cos_t1 + cx, length * sin_t1 + cy
    x2, y2 = length * cos_t2 + cx, length * sin_t2 + cy

    return x1, y1, x2, y2


# BEZIER routines

# subdividing bezier curve
# http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-sub.html


def _de_casteljau1(beta, t):
    next_beta = beta[:-1] * (1 - t) + beta[1:] * t
    return next_beta


def split_de_casteljau(beta, t):
    """
    Split a bezier segment defined by its control points *beta* into two
    separate segments divided at *t* and return their control points.
    """
    beta = np.asarray(beta)
    beta_list = [beta]
    while True:
        beta = _de_casteljau1(beta, t)
        beta_list.append(beta)
        if len(beta) == 1:
            break
    left_beta = [beta[0] for beta in beta_list]
    right_beta = [beta[-1] for beta in reversed(beta_list)]

    return left_beta, right_beta


@cbook._rename_parameter("3.1", "tolerence", "tolerance")
def find_bezier_t_intersecting_with_closedpath(
        bezier_point_at_t, inside_closedpath, t0=0., t1=1., tolerance=0.01):
    """ Find a parameter t0 and t1 of the given bezier path which
    bounds the intersecting points with a provided closed
    path(*inside_closedpath*). Search starts from *t0* and *t1* and it
    uses a simple bisecting algorithm therefore one of the end point
    must be inside the path while the other doesn't. The search stop
    when |t0-t1| gets smaller than the given tolerance.
    value for

    - bezier_point_at_t : a function which returns x, y coordinates at *t*

    - inside_closedpath : return True if the point is inside the path

    """
    # inside_closedpath : function

    start = bezier_point_at_t(t0)
    end = bezier_point_at_t(t1)

    start_inside = inside_closedpath(start)
    end_inside = inside_closedpath(end)

    if start_inside == end_inside and start != end:
        raise NonIntersectingPathException(
            "Both points are on the same side of the closed path")

    while True:

        # return if the distance is smaller than the tolerance
        if np.hypot(start[0] - end[0], start[1] - end[1]) < tolerance:
            return t0, t1

        # calculate the middle point
        middle_t = 0.5 * (t0 + t1)
        middle = bezier_point_at_t(middle_t)
        middle_inside = inside_closedpath(middle)

        if start_inside ^ middle_inside:
            t1 = middle_t
            end = middle
            end_inside = middle_inside
        else:
            t0 = middle_t
            start = middle
            start_inside = middle_inside


class BezierSegment(object):
    """
    A simple class of a 2-dimensional bezier segment
    """

    # Higher order bezier lines can be supported by simplying adding
    # corresponding values.
    _binom_coeff = {1: np.array([1., 1.]),
                    2: np.array([1., 2., 1.]),
                    3: np.array([1., 3., 3., 1.])}

    def __init__(self, control_points):
        """
        *control_points* : location of contol points. It needs have a
         shape of n * 2, where n is the order of the bezier line. 1<=
         n <= 3 is supported.
        """
        _o = len(control_points)
        self._orders = np.arange(_o)

        _coeff = BezierSegment._binom_coeff[_o - 1]
        xx, yy = np.asarray(control_points).T
        self._px = xx * _coeff
        self._py = yy * _coeff

    def point_at_t(self, t):
        "evaluate a point at t"
        tt = ((1 - t) ** self._orders)[::-1] * t ** self._orders
        _x = np.dot(tt, self._px)
        _y = np.dot(tt, self._py)
        return _x, _y


@cbook._rename_parameter("3.1", "tolerence", "tolerance")
def split_bezier_intersecting_with_closedpath(
        bezier, inside_closedpath, tolerance=0.01):

    """
    bezier : control points of the bezier segment
    inside_closedpath : a function which returns true if the point is inside
                        the path
    """

    bz = BezierSegment(bezier)
    bezier_point_at_t = bz.point_at_t

    t0, t1 = find_bezier_t_intersecting_with_closedpath(
        bezier_point_at_t, inside_closedpath, tolerance=tolerance)

    _left, _right = split_de_casteljau(bezier, (t0 + t1) / 2.)
    return _left, _right


@cbook.deprecated("3.1")
@cbook._rename_parameter("3.1", "tolerence", "tolerance")
def find_r_to_boundary_of_closedpath(
        inside_closedpath, xy, cos_t, sin_t, rmin=0., rmax=1., tolerance=0.01):
    """
    Find a radius r (centered at *xy*) between *rmin* and *rmax* at
    which it intersect with the path.

    inside_closedpath : function
    cx, cy : center
    cos_t, sin_t : cosine and sine for the angle
    rmin, rmax :
    """

    cx, cy = xy

    def _f(r):
        return cos_t * r + cx, sin_t * r + cy

    find_bezier_t_intersecting_with_closedpath(
        _f, inside_closedpath, t0=rmin, t1=rmax, tolerance=tolerance)

# matplotlib specific


@cbook._rename_parameter("3.1", "tolerence", "tolerance")
def split_path_inout(path, inside, tolerance=0.01, reorder_inout=False):
    """ divide a path into two segment at the point where inside(x, y)
    becomes False.
    """

    path_iter = path.iter_segments()

    ctl_points, command = next(path_iter)
    begin_inside = inside(ctl_points[-2:])  # true if begin point is inside

    ctl_points_old = ctl_points

    concat = np.concatenate

    iold = 0
    i = 1

    for ctl_points, command in path_iter:
        iold = i
        i += len(ctl_points) // 2
        if inside(ctl_points[-2:]) != begin_inside:
            bezier_path = concat([ctl_points_old[-2:], ctl_points])
            break
        ctl_points_old = ctl_points
    else:
        raise ValueError("The path does not intersect with the patch")

    bp = bezier_path.reshape((-1, 2))
    left, right = split_bezier_intersecting_with_closedpath(
        bp, inside, tolerance)
    if len(left) == 2:
        codes_left = [Path.LINETO]
        codes_right = [Path.MOVETO, Path.LINETO]
    elif len(left) == 3:
        codes_left = [Path.CURVE3, Path.CURVE3]
        codes_right = [Path.MOVETO, Path.CURVE3, Path.CURVE3]
    elif len(left) == 4:
        codes_left = [Path.CURVE4, Path.CURVE4, Path.CURVE4]
        codes_right = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4]
    else:
        raise AssertionError("This should never be reached")

    verts_left = left[1:]
    verts_right = right[:]

    if path.codes is None:
        path_in = Path(concat([path.vertices[:i], verts_left]))
        path_out = Path(concat([verts_right, path.vertices[i:]]))

    else:
        path_in = Path(concat([path.vertices[:iold], verts_left]),
                       concat([path.codes[:iold], codes_left]))

        path_out = Path(concat([verts_right, path.vertices[i:]]),
                        concat([codes_right, path.codes[i:]]))

    if reorder_inout and not begin_inside:
        path_in, path_out = path_out, path_in

    return path_in, path_out


def inside_circle(cx, cy, r):
    r2 = r ** 2

    def _f(xy):
        x, y = xy
        return (x - cx) ** 2 + (y - cy) ** 2 < r2
    return _f


# quadratic bezier lines

def get_cos_sin(x0, y0, x1, y1):
    dx, dy = x1 - x0, y1 - y0
    d = (dx * dx + dy * dy) ** .5
    # Account for divide by zero
    if d == 0:
        return 0.0, 0.0
    return dx / d, dy / d


@cbook._rename_parameter("3.1", "tolerence", "tolerance")
def check_if_parallel(dx1, dy1, dx2, dy2, tolerance=1.e-5):
    """ returns
       * 1 if two lines are parallel in same direction
       * -1 if two lines are parallel in opposite direction
       * 0 otherwise
    """
    theta1 = np.arctan2(dx1, dy1)
    theta2 = np.arctan2(dx2, dy2)
    dtheta = np.abs(theta1 - theta2)
    if dtheta < tolerance:
        return 1
    elif np.abs(dtheta - np.pi) < tolerance:
        return -1
    else:
        return False


def get_parallels(bezier2, width):
    """
    Given the quadratic bezier control points *bezier2*, returns
    control points of quadratic bezier lines roughly parallel to given
    one separated by *width*.
    """

    # The parallel bezier lines are constructed by following ways.
    #  c1 and c2 are control points representing the begin and end of the
    #  bezier line.
    #  cm is the middle point

    c1x, c1y = bezier2[0]
    cmx, cmy = bezier2[1]
    c2x, c2y = bezier2[2]

    parallel_test = check_if_parallel(c1x - cmx, c1y - cmy,
                                      cmx - c2x, cmy - c2y)

    if parallel_test == -1:
        cbook._warn_external(
            "Lines do not intersect. A straight line is used instead.")
        cos_t1, sin_t1 = get_cos_sin(c1x, c1y, c2x, c2y)
        cos_t2, sin_t2 = cos_t1, sin_t1
    else:
        # t1 and t2 is the angle between c1 and cm, cm, c2.  They are
        # also a angle of the tangential line of the path at c1 and c2
        cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy)
        cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c2x, c2y)

    # find c1_left, c1_right which are located along the lines
    # through c1 and perpendicular to the tangential lines of the
    # bezier path at a distance of width. Same thing for c2_left and
    # c2_right with respect to c2.
    c1x_left, c1y_left, c1x_right, c1y_right = (
        get_normal_points(c1x, c1y, cos_t1, sin_t1, width)
    )
    c2x_left, c2y_left, c2x_right, c2y_right = (
        get_normal_points(c2x, c2y, cos_t2, sin_t2, width)
    )

    # find cm_left which is the intersecting point of a line through
    # c1_left with angle t1 and a line through c2_left with angle
    # t2. Same with cm_right.
    if parallel_test != 0:
        # a special case for a straight line, i.e., angle between two
        # lines are smaller than some (arbitrary) value.
        cmx_left, cmy_left = (
            0.5 * (c1x_left + c2x_left), 0.5 * (c1y_left + c2y_left)
        )
        cmx_right, cmy_right = (
            0.5 * (c1x_right + c2x_right), 0.5 * (c1y_right + c2y_right)
        )
    else:
        cmx_left, cmy_left = get_intersection(c1x_left, c1y_left, cos_t1,
                                              sin_t1, c2x_left, c2y_left,
                                              cos_t2, sin_t2)

        cmx_right, cmy_right = get_intersection(c1x_right, c1y_right, cos_t1,
                                                sin_t1, c2x_right, c2y_right,
                                                cos_t2, sin_t2)

    # the parallel bezier lines are created with control points of
    # [c1_left, cm_left, c2_left] and [c1_right, cm_right, c2_right]
    path_left = [(c1x_left, c1y_left),
                 (cmx_left, cmy_left),
                 (c2x_left, c2y_left)]
    path_right = [(c1x_right, c1y_right),
                  (cmx_right, cmy_right),
                  (c2x_right, c2y_right)]

    return path_left, path_right


def find_control_points(c1x, c1y, mmx, mmy, c2x, c2y):
    """
    Find control points of the Bezier curve passing through (*c1x*, *c1y*),
    (*mmx*, *mmy*), and (*c2x*, *c2y*), at parametric values 0, 0.5, and 1.
    """
    cmx = .5 * (4 * mmx - (c1x + c2x))
    cmy = .5 * (4 * mmy - (c1y + c2y))
    return [(c1x, c1y), (cmx, cmy), (c2x, c2y)]


def make_wedged_bezier2(bezier2, width, w1=1., wm=0.5, w2=0.):
    """
    Being similar to get_parallels, returns control points of two quadratic
    bezier lines having a width roughly parallel to given one separated by
    *width*.
    """

    # c1, cm, c2
    c1x, c1y = bezier2[0]
    cmx, cmy = bezier2[1]
    c3x, c3y = bezier2[2]

    # t1 and t2 is the angle between c1 and cm, cm, c3.
    # They are also a angle of the tangential line of the path at c1 and c3
    cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy)
    cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c3x, c3y)

    # find c1_left, c1_right which are located along the lines
    # through c1 and perpendicular to the tangential lines of the
    # bezier path at a distance of width. Same thing for c3_left and
    # c3_right with respect to c3.
    c1x_left, c1y_left, c1x_right, c1y_right = (
        get_normal_points(c1x, c1y, cos_t1, sin_t1, width * w1)
    )
    c3x_left, c3y_left, c3x_right, c3y_right = (
        get_normal_points(c3x, c3y, cos_t2, sin_t2, width * w2)
    )

    # find c12, c23 and c123 which are middle points of c1-cm, cm-c3 and
    # c12-c23
    c12x, c12y = (c1x + cmx) * .5, (c1y + cmy) * .5
    c23x, c23y = (cmx + c3x) * .5, (cmy + c3y) * .5
    c123x, c123y = (c12x + c23x) * .5, (c12y + c23y) * .5

    # tangential angle of c123 (angle between c12 and c23)
    cos_t123, sin_t123 = get_cos_sin(c12x, c12y, c23x, c23y)

    c123x_left, c123y_left, c123x_right, c123y_right = (
        get_normal_points(c123x, c123y, cos_t123, sin_t123, width * wm)
    )

    path_left = find_control_points(c1x_left, c1y_left,
                                    c123x_left, c123y_left,
                                    c3x_left, c3y_left)
    path_right = find_control_points(c1x_right, c1y_right,
                                     c123x_right, c123y_right,
                                     c3x_right, c3y_right)

    return path_left, path_right


def make_path_regular(p):
    """
    If the :attr:`codes` attribute of `Path` *p* is None, return a copy of *p*
    with the :attr:`codes` set to (MOVETO, LINETO, LINETO, ..., LINETO);
    otherwise return *p* itself.
    """
    c = p.codes
    if c is None:
        c = np.full(len(p.vertices), Path.LINETO, dtype=Path.code_type)
        c[0] = Path.MOVETO
        return Path(p.vertices, c)
    else:
        return p


def concatenate_paths(paths):
    """Concatenate a list of paths into a single path."""
    vertices = np.concatenate([p.vertices for p in paths])
    codes = np.concatenate([make_path_regular(p).codes for p in paths])
    return Path(vertices, codes)