gsl_odeiv.h 7.95 KB
Newer Older
xuebingbing's avatar
xuebingbing committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
/* ode-initval/gsl_odeiv.h
 * 
 * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* Author:  G. Jungman
 */
#ifndef __GSL_ODEIV_H__
#define __GSL_ODEIV_H__

#if !defined( GSL_FUN )
#  if !defined( GSL_DLL )
#    define GSL_FUN extern
#  elif defined( BUILD_GSL_DLL )
#    define GSL_FUN extern __declspec(dllexport)
#  else
#    define GSL_FUN extern __declspec(dllimport)
#  endif
#endif

#include <stdio.h>
#include <stdlib.h>
#include <gsl/gsl_types.h>

#undef __BEGIN_DECLS
#undef __END_DECLS
#ifdef __cplusplus
# define __BEGIN_DECLS extern "C" {
# define __END_DECLS }
#else
# define __BEGIN_DECLS /* empty */
# define __END_DECLS /* empty */
#endif

__BEGIN_DECLS


/* Description of a system of ODEs.
 *
 * y' = f(t,y) = dydt(t, y)
 *
 * The system is specified by giving the right-hand-side
 * of the equation and possibly a jacobian function.
 *
 * Some methods require the jacobian function, which calculates
 * the matrix dfdy and the vector dfdt. The matrix dfdy conforms
 * to the GSL standard, being a continuous range of floating point
 * values, in row-order.
 *
 * As with GSL function objects, user-supplied parameter
 * data is also present. 
 */

typedef struct  
{
  int (* function) (double t, const double y[], double dydt[], void * params);
  int (* jacobian) (double t, const double y[], double * dfdy, double dfdt[], void * params);
  size_t dimension;
  void * params;
}
gsl_odeiv_system;

#define GSL_ODEIV_FN_EVAL(S,t,y,f)  (*((S)->function))(t,y,f,(S)->params)
#define GSL_ODEIV_JA_EVAL(S,t,y,dfdy,dfdt)  (*((S)->jacobian))(t,y,dfdy,dfdt,(S)->params)


/* General stepper object.
 *
 * Opaque object for stepping an ODE system from t to t+h.
 * In general the object has some state which facilitates
 * iterating the stepping operation.
 */

typedef struct 
{
  const char * name;
  int can_use_dydt_in;
  int gives_exact_dydt_out;
  void * (*alloc) (size_t dim);
  int  (*apply)  (void * state, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * dydt);
  int  (*reset) (void * state, size_t dim);
  unsigned int  (*order) (void * state);
  void (*free)  (void * state);
}
gsl_odeiv_step_type;

typedef struct {
  const gsl_odeiv_step_type * type;
  size_t dimension;
  void * state;
}
gsl_odeiv_step;


/* Available stepper types.
 *
 * rk2    : embedded 2nd(3rd) Runge-Kutta
 * rk4    : 4th order (classical) Runge-Kutta
 * rkck   : embedded 4th(5th) Runge-Kutta, Cash-Karp
 * rk8pd  : embedded 8th(9th) Runge-Kutta, Prince-Dormand
 * rk2imp : implicit 2nd order Runge-Kutta at Gaussian points
 * rk4imp : implicit 4th order Runge-Kutta at Gaussian points
 * gear1  : M=1 implicit Gear method
 * gear2  : M=2 implicit Gear method
 */

GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk2;
GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk4;
GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rkf45;
GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rkck;
GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk8pd;
GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk2imp;
GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk2simp;
GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk4imp;
GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_bsimp;
GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_gear1;
GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_gear2;


/* Constructor for specialized stepper objects.
 */
GSL_FUN gsl_odeiv_step * gsl_odeiv_step_alloc(const gsl_odeiv_step_type * T, size_t dim);
GSL_FUN int  gsl_odeiv_step_reset(gsl_odeiv_step * s);
GSL_FUN void gsl_odeiv_step_free(gsl_odeiv_step * s);

/* General stepper object methods.
 */
GSL_FUN const char * gsl_odeiv_step_name(const gsl_odeiv_step * s);
GSL_FUN unsigned int gsl_odeiv_step_order(const gsl_odeiv_step * s);

GSL_FUN int  gsl_odeiv_step_apply(gsl_odeiv_step * s, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * dydt);

/* General step size control object.
 *
 * The hadjust() method controls the adjustment of
 * step size given the result of a step and the error.
 * Valid hadjust() methods must return one of the codes below.
 *
 * The general data can be used by specializations
 * to store state and control their heuristics.
 */

typedef struct 
{
  const char * name;
  void * (*alloc) (void);
  int  (*init) (void * state, double eps_abs, double eps_rel, double a_y, double a_dydt);
  int  (*hadjust) (void * state, size_t dim, unsigned int ord, const double y[], const double yerr[], const double yp[], double * h);
  void (*free) (void * state);
}
gsl_odeiv_control_type;

typedef struct 
{
  const gsl_odeiv_control_type * type;
  void * state;
}
gsl_odeiv_control;

/* Possible return values for an hadjust() evolution method.
 */
#define GSL_ODEIV_HADJ_INC   1  /* step was increased */
#define GSL_ODEIV_HADJ_NIL   0  /* step unchanged     */
#define GSL_ODEIV_HADJ_DEC (-1) /* step decreased     */

GSL_FUN gsl_odeiv_control * gsl_odeiv_control_alloc(const gsl_odeiv_control_type * T);
GSL_FUN int gsl_odeiv_control_init(gsl_odeiv_control * c, double eps_abs, double eps_rel, double a_y, double a_dydt);
GSL_FUN void gsl_odeiv_control_free(gsl_odeiv_control * c);
GSL_FUN int gsl_odeiv_control_hadjust (gsl_odeiv_control * c, gsl_odeiv_step * s, const double y[], const double yerr[], const double dydt[], double * h);
GSL_FUN const char * gsl_odeiv_control_name(const gsl_odeiv_control * c);

/* Available control object constructors.
 *
 * The standard control object is a four parameter heuristic
 * defined as follows:
 *    D0 = eps_abs + eps_rel * (a_y |y| + a_dydt h |y'|)
 *    D1 = |yerr|
 *    q  = consistency order of method (q=4 for 4(5) embedded RK)
 *    S  = safety factor (0.9 say)
 *
 *                      /  (D0/D1)^(1/(q+1))  D0 >= D1
 *    h_NEW = S h_OLD * |
 *                      \  (D0/D1)^(1/q)      D0 < D1
 *
 * This encompasses all the standard error scaling methods.
 *
 * The y method is the standard method with a_y=1, a_dydt=0.
 * The yp method is the standard method with a_y=0, a_dydt=1.
 */

GSL_FUN gsl_odeiv_control * gsl_odeiv_control_standard_new(double eps_abs, double eps_rel, double a_y, double a_dydt);
GSL_FUN gsl_odeiv_control * gsl_odeiv_control_y_new(double eps_abs, double eps_rel);
GSL_FUN gsl_odeiv_control * gsl_odeiv_control_yp_new(double eps_abs, double eps_rel);

/* This controller computes errors using different absolute errors for
 * each component
 *
 *    D0 = eps_abs * scale_abs[i] + eps_rel * (a_y |y| + a_dydt h |y'|)
 */
GSL_FUN gsl_odeiv_control * gsl_odeiv_control_scaled_new(double eps_abs, double eps_rel, double a_y, double a_dydt, const double scale_abs[], size_t dim);

/* General evolution object.
 */
typedef struct {
  size_t dimension;
  double * y0;
  double * yerr;
  double * dydt_in;
  double * dydt_out;
  double last_step;
  unsigned long int count;
  unsigned long int failed_steps;
}
gsl_odeiv_evolve;

/* Evolution object methods.
 */
GSL_FUN gsl_odeiv_evolve * gsl_odeiv_evolve_alloc(size_t dim);
GSL_FUN int gsl_odeiv_evolve_apply(gsl_odeiv_evolve * e, gsl_odeiv_control * con, gsl_odeiv_step * step, const gsl_odeiv_system * dydt, double * t, double t1, double * h, double y[]);
GSL_FUN int gsl_odeiv_evolve_reset(gsl_odeiv_evolve * e);
GSL_FUN void gsl_odeiv_evolve_free(gsl_odeiv_evolve * e);


__END_DECLS

#endif /* __GSL_ODEIV_H__ */