ei_fftw_impl.h 9.01 KB
Newer Older
xuebingbing's avatar
xuebingbing committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. 
//
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

namespace Eigen { 

namespace internal {

  // FFTW uses non-const arguments
  // so we must use ugly const_cast calls for all the args it uses
  //
  // This should be safe as long as 
  // 1. we use FFTW_ESTIMATE for all our planning
  //       see the FFTW docs section 4.3.2 "Planner Flags"
  // 2. fftw_complex is compatible with std::complex
  //    This assumes std::complex<T> layout is array of size 2 with real,imag
  template <typename T> 
  inline 
  T * fftw_cast(const T* p)
  { 
      return const_cast<T*>( p); 
  }

  inline 
  fftw_complex * fftw_cast( const std::complex<double> * p)
  {
      return const_cast<fftw_complex*>( reinterpret_cast<const fftw_complex*>(p) ); 
  }

  inline 
  fftwf_complex * fftw_cast( const std::complex<float> * p)
  { 
      return const_cast<fftwf_complex*>( reinterpret_cast<const fftwf_complex*>(p) ); 
  }

  inline 
  fftwl_complex * fftw_cast( const std::complex<long double> * p)
  { 
      return const_cast<fftwl_complex*>( reinterpret_cast<const fftwl_complex*>(p) ); 
  }

  template <typename T> 
  struct fftw_plan {};

  template <> 
  struct fftw_plan<float>
  {
      typedef float scalar_type;
      typedef fftwf_complex complex_type;
      fftwf_plan m_plan;
      fftw_plan() :m_plan(NULL) {}
      ~fftw_plan() {if (m_plan) fftwf_destroy_plan(m_plan);}

      inline
      void fwd(complex_type * dst,complex_type * src,int nfft) {
          if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
          fftwf_execute_dft( m_plan, src,dst);
      }
      inline
      void inv(complex_type * dst,complex_type * src,int nfft) {
          if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
          fftwf_execute_dft( m_plan, src,dst);
      }
      inline
      void fwd(complex_type * dst,scalar_type * src,int nfft) {
          if (m_plan==NULL) m_plan = fftwf_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
          fftwf_execute_dft_r2c( m_plan,src,dst);
      }
      inline
      void inv(scalar_type * dst,complex_type * src,int nfft) {
          if (m_plan==NULL)
              m_plan = fftwf_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
          fftwf_execute_dft_c2r( m_plan, src,dst);
      }

      inline 
      void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
          if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
          fftwf_execute_dft( m_plan, src,dst);
      }
      inline 
      void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
          if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
          fftwf_execute_dft( m_plan, src,dst);
      }

  };
  template <> 
  struct fftw_plan<double>
  {
      typedef double scalar_type;
      typedef fftw_complex complex_type;
      ::fftw_plan m_plan;
      fftw_plan() :m_plan(NULL) {}
      ~fftw_plan() {if (m_plan) fftw_destroy_plan(m_plan);}

      inline
      void fwd(complex_type * dst,complex_type * src,int nfft) {
          if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
          fftw_execute_dft( m_plan, src,dst);
      }
      inline
      void inv(complex_type * dst,complex_type * src,int nfft) {
          if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
          fftw_execute_dft( m_plan, src,dst);
      }
      inline
      void fwd(complex_type * dst,scalar_type * src,int nfft) {
          if (m_plan==NULL) m_plan = fftw_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
          fftw_execute_dft_r2c( m_plan,src,dst);
      }
      inline
      void inv(scalar_type * dst,complex_type * src,int nfft) {
          if (m_plan==NULL)
              m_plan = fftw_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
          fftw_execute_dft_c2r( m_plan, src,dst);
      }
      inline 
      void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
          if (m_plan==NULL) m_plan = fftw_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
          fftw_execute_dft( m_plan, src,dst);
      }
      inline 
      void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
          if (m_plan==NULL) m_plan = fftw_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
          fftw_execute_dft( m_plan, src,dst);
      }
  };
  template <> 
  struct fftw_plan<long double>
  {
      typedef long double scalar_type;
      typedef fftwl_complex complex_type;
      fftwl_plan m_plan;
      fftw_plan() :m_plan(NULL) {}
      ~fftw_plan() {if (m_plan) fftwl_destroy_plan(m_plan);}

      inline
      void fwd(complex_type * dst,complex_type * src,int nfft) {
          if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
          fftwl_execute_dft( m_plan, src,dst);
      }
      inline
      void inv(complex_type * dst,complex_type * src,int nfft) {
          if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
          fftwl_execute_dft( m_plan, src,dst);
      }
      inline
      void fwd(complex_type * dst,scalar_type * src,int nfft) {
          if (m_plan==NULL) m_plan = fftwl_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
          fftwl_execute_dft_r2c( m_plan,src,dst);
      }
      inline
      void inv(scalar_type * dst,complex_type * src,int nfft) {
          if (m_plan==NULL)
              m_plan = fftwl_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
          fftwl_execute_dft_c2r( m_plan, src,dst);
      }
      inline 
      void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
          if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
          fftwl_execute_dft( m_plan, src,dst);
      }
      inline 
      void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
          if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
          fftwl_execute_dft( m_plan, src,dst);
      }
  };

  template <typename _Scalar>
  struct fftw_impl
  {
      typedef _Scalar Scalar;
      typedef std::complex<Scalar> Complex;

      inline
      void clear() 
      {
        m_plans.clear();
      }

      // complex-to-complex forward FFT
      inline
      void fwd( Complex * dst,const Complex *src,int nfft)
      {
        get_plan(nfft,false,dst,src).fwd(fftw_cast(dst), fftw_cast(src),nfft );
      }

      // real-to-complex forward FFT
      inline
      void fwd( Complex * dst,const Scalar * src,int nfft) 
      {
          get_plan(nfft,false,dst,src).fwd(fftw_cast(dst), fftw_cast(src) ,nfft);
      }

      // 2-d complex-to-complex
      inline
      void fwd2(Complex * dst, const Complex * src, int n0,int n1)
      {
          get_plan(n0,n1,false,dst,src).fwd2(fftw_cast(dst), fftw_cast(src) ,n0,n1);
      }

      // inverse complex-to-complex
      inline
      void inv(Complex * dst,const Complex  *src,int nfft)
      {
        get_plan(nfft,true,dst,src).inv(fftw_cast(dst), fftw_cast(src),nfft );
      }

      // half-complex to scalar
      inline
      void inv( Scalar * dst,const Complex * src,int nfft) 
      {
        get_plan(nfft,true,dst,src).inv(fftw_cast(dst), fftw_cast(src),nfft );
      }

      // 2-d complex-to-complex
      inline
      void inv2(Complex * dst, const Complex * src, int n0,int n1)
      {
        get_plan(n0,n1,true,dst,src).inv2(fftw_cast(dst), fftw_cast(src) ,n0,n1);
      }


  protected:
      typedef fftw_plan<Scalar> PlanData;

      typedef std::map<int64_t,PlanData> PlanMap;

      PlanMap m_plans;

      inline
      PlanData & get_plan(int nfft,bool inverse,void * dst,const void * src)
      {
          bool inplace = (dst==src);
          bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
          int64_t key = ( (nfft<<3 ) | (inverse<<2) | (inplace<<1) | aligned ) << 1;
          return m_plans[key];
      }

      inline
      PlanData & get_plan(int n0,int n1,bool inverse,void * dst,const void * src)
      {
          bool inplace = (dst==src);
          bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
          int64_t key = ( ( (((int64_t)n0) << 30)|(n1<<3 ) | (inverse<<2) | (inplace<<1) | aligned ) << 1 ) + 1;
          return m_plans[key];
      }
  };

} // end namespace internal

} // end namespace Eigen

/* vim: set filetype=cpp et sw=2 ts=2 ai: */