endian_test.cc 7.53 KB
Newer Older
wangdawei's avatar
wangdawei committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/base/internal/endian.h"

#include <algorithm>
#include <cstdint>
#include <limits>
#include <random>
#include <vector>

#include "gtest/gtest.h"
#include "absl/base/config.h"

namespace absl {
namespace {

const uint64_t kInitialNumber{0x0123456789abcdef};
const uint64_t k64Value{kInitialNumber};
const uint32_t k32Value{0x01234567};
const uint16_t k16Value{0x0123};
const int kNumValuesToTest = 1000000;
const int kRandomSeed = 12345;

#if defined(ABSL_IS_BIG_ENDIAN)
const uint64_t kInitialInNetworkOrder{kInitialNumber};
const uint64_t k64ValueLE{0xefcdab8967452301};
const uint32_t k32ValueLE{0x67452301};
const uint16_t k16ValueLE{0x2301};

const uint64_t k64ValueBE{kInitialNumber};
const uint32_t k32ValueBE{k32Value};
const uint16_t k16ValueBE{k16Value};
#elif defined(ABSL_IS_LITTLE_ENDIAN)
const uint64_t kInitialInNetworkOrder{0xefcdab8967452301};
const uint64_t k64ValueLE{kInitialNumber};
const uint32_t k32ValueLE{k32Value};
const uint16_t k16ValueLE{k16Value};

const uint64_t k64ValueBE{0xefcdab8967452301};
const uint32_t k32ValueBE{0x67452301};
const uint16_t k16ValueBE{0x2301};
#endif

template<typename T>
std::vector<T> GenerateAllValuesForType() {
  std::vector<T> result;
  T next = std::numeric_limits<T>::min();
  while (true) {
    result.push_back(next);
    if (next == std::numeric_limits<T>::max()) {
      return result;
    }
    ++next;
  }
}

template<typename T>
std::vector<T> GenerateRandomIntegers(size_t numValuesToTest) {
  std::vector<T> result;
  std::mt19937_64 rng(kRandomSeed);
  for (size_t i = 0; i < numValuesToTest; ++i) {
    result.push_back(rng());
  }
  return result;
}

void ManualByteSwap(char* bytes, int length) {
  if (length == 1)
    return;

  EXPECT_EQ(0, length % 2);
  for (int i = 0; i < length / 2; ++i) {
    int j = (length - 1) - i;
    using std::swap;
    swap(bytes[i], bytes[j]);
  }
}

template<typename T>
inline T UnalignedLoad(const char* p) {
  static_assert(
      sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4 || sizeof(T) == 8,
      "Unexpected type size");

  switch (sizeof(T)) {
    case 1: return *reinterpret_cast<const T*>(p);
    case 2:
      return ABSL_INTERNAL_UNALIGNED_LOAD16(p);
    case 4:
      return ABSL_INTERNAL_UNALIGNED_LOAD32(p);
    case 8:
      return ABSL_INTERNAL_UNALIGNED_LOAD64(p);
    default:
      // Suppresses invalid "not all control paths return a value" on MSVC
      return {};
  }
}

template <typename T, typename ByteSwapper>
static void GBSwapHelper(const std::vector<T>& host_values_to_test,
                         const ByteSwapper& byte_swapper) {
  // Test byte_swapper against a manual byte swap.
  for (typename std::vector<T>::const_iterator it = host_values_to_test.begin();
       it != host_values_to_test.end(); ++it) {
    T host_value = *it;

    char actual_value[sizeof(host_value)];
    memcpy(actual_value, &host_value, sizeof(host_value));
    byte_swapper(actual_value);

    char expected_value[sizeof(host_value)];
    memcpy(expected_value, &host_value, sizeof(host_value));
    ManualByteSwap(expected_value, sizeof(host_value));

    ASSERT_EQ(0, memcmp(actual_value, expected_value, sizeof(host_value)))
        << "Swap output for 0x" << std::hex << host_value << " does not match. "
        << "Expected: 0x" << UnalignedLoad<T>(expected_value) << "; "
        << "actual: 0x" <<  UnalignedLoad<T>(actual_value);
  }
}

void Swap16(char* bytes) {
  ABSL_INTERNAL_UNALIGNED_STORE16(
      bytes, gbswap_16(ABSL_INTERNAL_UNALIGNED_LOAD16(bytes)));
}

void Swap32(char* bytes) {
  ABSL_INTERNAL_UNALIGNED_STORE32(
      bytes, gbswap_32(ABSL_INTERNAL_UNALIGNED_LOAD32(bytes)));
}

void Swap64(char* bytes) {
  ABSL_INTERNAL_UNALIGNED_STORE64(
      bytes, gbswap_64(ABSL_INTERNAL_UNALIGNED_LOAD64(bytes)));
}

TEST(EndianessTest, Uint16) {
  GBSwapHelper(GenerateAllValuesForType<uint16_t>(), &Swap16);
}

TEST(EndianessTest, Uint32) {
  GBSwapHelper(GenerateRandomIntegers<uint32_t>(kNumValuesToTest), &Swap32);
}

TEST(EndianessTest, Uint64) {
  GBSwapHelper(GenerateRandomIntegers<uint64_t>(kNumValuesToTest), &Swap64);
}

TEST(EndianessTest, ghtonll_gntohll) {
  // Test that absl::ghtonl compiles correctly
  uint32_t test = 0x01234567;
  EXPECT_EQ(absl::gntohl(absl::ghtonl(test)), test);

  uint64_t comp = absl::ghtonll(kInitialNumber);
  EXPECT_EQ(comp, kInitialInNetworkOrder);
  comp = absl::gntohll(kInitialInNetworkOrder);
  EXPECT_EQ(comp, kInitialNumber);

  // Test that htonll and ntohll are each others' inverse functions on a
  // somewhat assorted batch of numbers. 37 is chosen to not be anything
  // particularly nice base 2.
  uint64_t value = 1;
  for (int i = 0; i < 100; ++i) {
    comp = absl::ghtonll(absl::gntohll(value));
    EXPECT_EQ(value, comp);
    comp = absl::gntohll(absl::ghtonll(value));
    EXPECT_EQ(value, comp);
    value *= 37;
  }
}

TEST(EndianessTest, little_endian) {
  // Check little_endian uint16_t.
  uint64_t comp = little_endian::FromHost16(k16Value);
  EXPECT_EQ(comp, k16ValueLE);
  comp = little_endian::ToHost16(k16ValueLE);
  EXPECT_EQ(comp, k16Value);

  // Check little_endian uint32_t.
  comp = little_endian::FromHost32(k32Value);
  EXPECT_EQ(comp, k32ValueLE);
  comp = little_endian::ToHost32(k32ValueLE);
  EXPECT_EQ(comp, k32Value);

  // Check little_endian uint64_t.
  comp = little_endian::FromHost64(k64Value);
  EXPECT_EQ(comp, k64ValueLE);
  comp = little_endian::ToHost64(k64ValueLE);
  EXPECT_EQ(comp, k64Value);

  // Check little-endian Load and store functions.
  uint16_t u16Buf;
  uint32_t u32Buf;
  uint64_t u64Buf;

  little_endian::Store16(&u16Buf, k16Value);
  EXPECT_EQ(u16Buf, k16ValueLE);
  comp = little_endian::Load16(&u16Buf);
  EXPECT_EQ(comp, k16Value);

  little_endian::Store32(&u32Buf, k32Value);
  EXPECT_EQ(u32Buf, k32ValueLE);
  comp = little_endian::Load32(&u32Buf);
  EXPECT_EQ(comp, k32Value);

  little_endian::Store64(&u64Buf, k64Value);
  EXPECT_EQ(u64Buf, k64ValueLE);
  comp = little_endian::Load64(&u64Buf);
  EXPECT_EQ(comp, k64Value);
}

TEST(EndianessTest, big_endian) {
  // Check big-endian Load and store functions.
  uint16_t u16Buf;
  uint32_t u32Buf;
  uint64_t u64Buf;

  unsigned char buffer[10];
  big_endian::Store16(&u16Buf, k16Value);
  EXPECT_EQ(u16Buf, k16ValueBE);
  uint64_t comp = big_endian::Load16(&u16Buf);
  EXPECT_EQ(comp, k16Value);

  big_endian::Store32(&u32Buf, k32Value);
  EXPECT_EQ(u32Buf, k32ValueBE);
  comp = big_endian::Load32(&u32Buf);
  EXPECT_EQ(comp, k32Value);

  big_endian::Store64(&u64Buf, k64Value);
  EXPECT_EQ(u64Buf, k64ValueBE);
  comp = big_endian::Load64(&u64Buf);
  EXPECT_EQ(comp, k64Value);

  big_endian::Store16(buffer + 1, k16Value);
  EXPECT_EQ(u16Buf, k16ValueBE);
  comp = big_endian::Load16(buffer + 1);
  EXPECT_EQ(comp, k16Value);

  big_endian::Store32(buffer + 1, k32Value);
  EXPECT_EQ(u32Buf, k32ValueBE);
  comp = big_endian::Load32(buffer + 1);
  EXPECT_EQ(comp, k32Value);

  big_endian::Store64(buffer + 1, k64Value);
  EXPECT_EQ(u64Buf, k64ValueBE);
  comp = big_endian::Load64(buffer + 1);
  EXPECT_EQ(comp, k64Value);
}

}  // namespace
}  // namespace absl