mutex.cc 108 KB
Newer Older
wangdawei's avatar
wangdawei committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/synchronization/mutex.h"

#ifdef _WIN32
#include <windows.h>
#ifdef ERROR
#undef ERROR
#endif
#else
#include <fcntl.h>
#include <pthread.h>
#include <sched.h>
#include <sys/time.h>
#endif

#include <assert.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#include <algorithm>
#include <atomic>
#include <cinttypes>
#include <thread>  // NOLINT(build/c++11)

#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/dynamic_annotations.h"
#include "absl/base/internal/atomic_hook.h"
#include "absl/base/internal/cycleclock.h"
#include "absl/base/internal/hide_ptr.h"
#include "absl/base/internal/low_level_alloc.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/spinlock.h"
#include "absl/base/internal/sysinfo.h"
#include "absl/base/internal/thread_identity.h"
#include "absl/base/port.h"
#include "absl/debugging/stacktrace.h"
#include "absl/debugging/symbolize.h"
#include "absl/synchronization/internal/graphcycles.h"
#include "absl/synchronization/internal/per_thread_sem.h"
#include "absl/time/time.h"

using absl::base_internal::CurrentThreadIdentityIfPresent;
using absl::base_internal::PerThreadSynch;
using absl::base_internal::ThreadIdentity;
using absl::synchronization_internal::GetOrCreateCurrentThreadIdentity;
using absl::synchronization_internal::GraphCycles;
using absl::synchronization_internal::GraphId;
using absl::synchronization_internal::InvalidGraphId;
using absl::synchronization_internal::KernelTimeout;
using absl::synchronization_internal::PerThreadSem;

extern "C" {
ABSL_ATTRIBUTE_WEAK void AbslInternalMutexYield() { std::this_thread::yield(); }
}  // extern "C"

namespace absl {

namespace {

#if defined(THREAD_SANITIZER)
constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kIgnore;
#else
constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kAbort;
#endif

ABSL_CONST_INIT std::atomic<OnDeadlockCycle> synch_deadlock_detection(
    kDeadlockDetectionDefault);
ABSL_CONST_INIT std::atomic<bool> synch_check_invariants(false);

// ------------------------------------------ spinlock support

// Make sure read-only globals used in the Mutex code are contained on the
// same cacheline and cacheline aligned to eliminate any false sharing with
// other globals from this and other modules.
static struct MutexGlobals {
  MutexGlobals() {
    // Find machine-specific data needed for Delay() and
    // TryAcquireWithSpinning(). This runs in the global constructor
    // sequence, and before that zeros are safe values.
    num_cpus = absl::base_internal::NumCPUs();
    spinloop_iterations = num_cpus > 1 ? 1500 : 0;
  }
  int num_cpus;
  int spinloop_iterations;
  // Pad this struct to a full cacheline to prevent false sharing.
  char padding[ABSL_CACHELINE_SIZE - 2 * sizeof(int)];
} ABSL_CACHELINE_ALIGNED mutex_globals;
static_assert(
    sizeof(MutexGlobals) == ABSL_CACHELINE_SIZE,
    "MutexGlobals must occupy an entire cacheline to prevent false sharing");

ABSL_CONST_INIT absl::base_internal::AtomicHook<void (*)(int64_t wait_cycles)>
    submit_profile_data;
ABSL_CONST_INIT absl::base_internal::AtomicHook<
    void (*)(const char *msg, const void *obj, int64_t wait_cycles)> mutex_tracer;
ABSL_CONST_INIT absl::base_internal::AtomicHook<
    void (*)(const char *msg, const void *cv)> cond_var_tracer;
ABSL_CONST_INIT absl::base_internal::AtomicHook<
    bool (*)(const void *pc, char *out, int out_size)>
    symbolizer(absl::Symbolize);

}  // namespace

void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp)) {
  submit_profile_data.Store(fn);
}

void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
                                    int64_t wait_cycles)) {
  mutex_tracer.Store(fn);
}

void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv)) {
  cond_var_tracer.Store(fn);
}

void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size)) {
  symbolizer.Store(fn);
}

// spinlock delay on iteration c.  Returns new c.
namespace {
  enum DelayMode { AGGRESSIVE, GENTLE };
};
static int Delay(int32_t c, DelayMode mode) {
  // If this a uniprocessor, only yield/sleep.  Otherwise, if the mode is
  // aggressive then spin many times before yielding.  If the mode is
  // gentle then spin only a few times before yielding.  Aggressive spinning is
  // used to ensure that an Unlock() call, which  must get the spin lock for
  // any thread to make progress gets it without undue delay.
  int32_t limit = (mutex_globals.num_cpus > 1) ?
      ((mode == AGGRESSIVE) ? 5000 : 250) : 0;
  if (c < limit) {
    c++;               // spin
  } else {
    ABSL_TSAN_MUTEX_PRE_DIVERT(0, 0);
    if (c == limit) {  // yield once
      AbslInternalMutexYield();
      c++;
    } else {           // then wait
      absl::SleepFor(absl::Microseconds(10));
      c = 0;
    }
    ABSL_TSAN_MUTEX_POST_DIVERT(0, 0);
  }
  return (c);
}

// --------------------------Generic atomic ops
// Ensure that "(*pv & bits) == bits" by doing an atomic update of "*pv" to
// "*pv | bits" if necessary.  Wait until (*pv & wait_until_clear)==0
// before making any change.
// This is used to set flags in mutex and condition variable words.
static void AtomicSetBits(std::atomic<intptr_t>* pv, intptr_t bits,
                          intptr_t wait_until_clear) {
  intptr_t v;
  do {
    v = pv->load(std::memory_order_relaxed);
  } while ((v & bits) != bits &&
           ((v & wait_until_clear) != 0 ||
            !pv->compare_exchange_weak(v, v | bits,
                                       std::memory_order_release,
                                       std::memory_order_relaxed)));
}

// Ensure that "(*pv & bits) == 0" by doing an atomic update of "*pv" to
// "*pv & ~bits" if necessary.  Wait until (*pv & wait_until_clear)==0
// before making any change.
// This is used to unset flags in mutex and condition variable words.
static void AtomicClearBits(std::atomic<intptr_t>* pv, intptr_t bits,
                            intptr_t wait_until_clear) {
  intptr_t v;
  do {
    v = pv->load(std::memory_order_relaxed);
  } while ((v & bits) != 0 &&
           ((v & wait_until_clear) != 0 ||
            !pv->compare_exchange_weak(v, v & ~bits,
                                       std::memory_order_release,
                                       std::memory_order_relaxed)));
}

//------------------------------------------------------------------

// Data for doing deadlock detection.
static absl::base_internal::SpinLock deadlock_graph_mu(
    absl::base_internal::kLinkerInitialized);

// graph used to detect deadlocks.
static GraphCycles *deadlock_graph GUARDED_BY(deadlock_graph_mu)
    PT_GUARDED_BY(deadlock_graph_mu);

//------------------------------------------------------------------
// An event mechanism for debugging mutex use.
// It also allows mutexes to be given names for those who can't handle
// addresses, and instead like to give their data structures names like
// "Henry", "Fido", or "Rupert IV, King of Yondavia".

namespace {  // to prevent name pollution
enum {       // Mutex and CondVar events passed as "ev" to PostSynchEvent
             // Mutex events
  SYNCH_EV_TRYLOCK_SUCCESS,
  SYNCH_EV_TRYLOCK_FAILED,
  SYNCH_EV_READERTRYLOCK_SUCCESS,
  SYNCH_EV_READERTRYLOCK_FAILED,
  SYNCH_EV_LOCK,
  SYNCH_EV_LOCK_RETURNING,
  SYNCH_EV_READERLOCK,
  SYNCH_EV_READERLOCK_RETURNING,
  SYNCH_EV_UNLOCK,
  SYNCH_EV_READERUNLOCK,

  // CondVar events
  SYNCH_EV_WAIT,
  SYNCH_EV_WAIT_RETURNING,
  SYNCH_EV_SIGNAL,
  SYNCH_EV_SIGNALALL,
};

enum {                 // Event flags
  SYNCH_F_R = 0x01,    // reader event
  SYNCH_F_LCK = 0x02,  // PostSynchEvent called with mutex held
  SYNCH_F_ACQ = 0x04,  // event is an acquire

  SYNCH_F_LCK_W = SYNCH_F_LCK,
  SYNCH_F_LCK_R = SYNCH_F_LCK | SYNCH_F_R,
  SYNCH_F_ACQ_W = SYNCH_F_ACQ,
  SYNCH_F_ACQ_R = SYNCH_F_ACQ | SYNCH_F_R,
};
}  // anonymous namespace

// Properties of the events.
static const struct {
  int flags;
  const char *msg;
} event_properties[] = {
  { SYNCH_F_LCK_W|SYNCH_F_ACQ_W, "TryLock succeeded " },
  { 0,                           "TryLock failed " },
  { SYNCH_F_LCK_R|SYNCH_F_ACQ_R, "ReaderTryLock succeeded " },
  { 0,                           "ReaderTryLock failed " },
  {               SYNCH_F_ACQ_W, "Lock blocking " },
  { SYNCH_F_LCK_W,               "Lock returning " },
  {               SYNCH_F_ACQ_R, "ReaderLock blocking " },
  { SYNCH_F_LCK_R,               "ReaderLock returning " },
  { SYNCH_F_LCK_W,               "Unlock " },
  { SYNCH_F_LCK_R,               "ReaderUnlock " },
  { 0,                           "Wait on " },
  { 0,                           "Wait unblocked " },
  { 0,                           "Signal on " },
  { 0,                           "SignalAll on " },
};
static absl::base_internal::SpinLock synch_event_mu(
    absl::base_internal::kLinkerInitialized);
// protects synch_event

// Hash table size; should be prime > 2.
// Can't be too small, as it's used for deadlock detection information.
static const uint32_t kNSynchEvent = 1031;

static struct SynchEvent {     // this is a trivial hash table for the events
  // struct is freed when refcount reaches 0
  int refcount GUARDED_BY(synch_event_mu);

  // buckets have linear, 0-terminated  chains
  SynchEvent *next GUARDED_BY(synch_event_mu);

  // Constant after initialization
  uintptr_t masked_addr;  // object at this address is called "name"

  // No explicit synchronization used.  Instead we assume that the
  // client who enables/disables invariants/logging on a Mutex does so
  // while the Mutex is not being concurrently accessed by others.
  void (*invariant)(void *arg);  // called on each event
  void *arg;            // first arg to (*invariant)()
  bool log;             // logging turned on

  // Constant after initialization
  char name[1];         // actually longer---null-terminated std::string
} *synch_event[kNSynchEvent] GUARDED_BY(synch_event_mu);

// Ensure that the object at "addr" has a SynchEvent struct associated with it,
// set "bits" in the word there (waiting until lockbit is clear before doing
// so), and return a refcounted reference that will remain valid until
// UnrefSynchEvent() is called.  If a new SynchEvent is allocated,
// the string name is copied into it.
// When used with a mutex, the caller should also ensure that kMuEvent
// is set in the mutex word, and similarly for condition variables and kCVEvent.
static SynchEvent *EnsureSynchEvent(std::atomic<intptr_t> *addr,
                                    const char *name, intptr_t bits,
                                    intptr_t lockbit) {
  uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
  SynchEvent *e;
  // first look for existing SynchEvent struct..
  synch_event_mu.Lock();
  for (e = synch_event[h];
       e != nullptr && e->masked_addr != base_internal::HidePtr(addr);
       e = e->next) {
  }
  if (e == nullptr) {  // no SynchEvent struct found; make one.
    if (name == nullptr) {
      name = "";
    }
    size_t l = strlen(name);
    e = reinterpret_cast<SynchEvent *>(
        base_internal::LowLevelAlloc::Alloc(sizeof(*e) + l));
    e->refcount = 2;    // one for return value, one for linked list
    e->masked_addr = base_internal::HidePtr(addr);
    e->invariant = nullptr;
    e->arg = nullptr;
    e->log = false;
    strcpy(e->name, name);  // NOLINT(runtime/printf)
    e->next = synch_event[h];
    AtomicSetBits(addr, bits, lockbit);
    synch_event[h] = e;
  } else {
    e->refcount++;      // for return value
  }
  synch_event_mu.Unlock();
  return e;
}

// Deallocate the SynchEvent *e, whose refcount has fallen to zero.
static void DeleteSynchEvent(SynchEvent *e) {
  base_internal::LowLevelAlloc::Free(e);
}

// Decrement the reference count of *e, or do nothing if e==null.
static void UnrefSynchEvent(SynchEvent *e) {
  if (e != nullptr) {
    synch_event_mu.Lock();
    bool del = (--(e->refcount) == 0);
    synch_event_mu.Unlock();
    if (del) {
      DeleteSynchEvent(e);
    }
  }
}

// Forget the mapping from the object (Mutex or CondVar) at address addr
// to SynchEvent object, and clear "bits" in its word (waiting until lockbit
// is clear before doing so).
static void ForgetSynchEvent(std::atomic<intptr_t> *addr, intptr_t bits,
                             intptr_t lockbit) {
  uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
  SynchEvent **pe;
  SynchEvent *e;
  synch_event_mu.Lock();
  for (pe = &synch_event[h];
       (e = *pe) != nullptr && e->masked_addr != base_internal::HidePtr(addr);
       pe = &e->next) {
  }
  bool del = false;
  if (e != nullptr) {
    *pe = e->next;
    del = (--(e->refcount) == 0);
  }
  AtomicClearBits(addr, bits, lockbit);
  synch_event_mu.Unlock();
  if (del) {
    DeleteSynchEvent(e);
  }
}

// Return a refcounted reference to the SynchEvent of the object at address
// "addr", if any.  The pointer returned is valid until the UnrefSynchEvent() is
// called.
static SynchEvent *GetSynchEvent(const void *addr) {
  uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
  SynchEvent *e;
  synch_event_mu.Lock();
  for (e = synch_event[h];
       e != nullptr && e->masked_addr != base_internal::HidePtr(addr);
       e = e->next) {
  }
  if (e != nullptr) {
    e->refcount++;
  }
  synch_event_mu.Unlock();
  return e;
}

// Called when an event "ev" occurs on a Mutex of CondVar "obj"
// if event recording is on
static void PostSynchEvent(void *obj, int ev) {
  SynchEvent *e = GetSynchEvent(obj);
  // logging is on if event recording is on and either there's no event struct,
  // or it explicitly says to log
  if (e == nullptr || e->log) {
    void *pcs[40];
    int n = absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 1);
    // A buffer with enough space for the ASCII for all the PCs, even on a
    // 64-bit machine.
    char buffer[ABSL_ARRAYSIZE(pcs) * 24];
    int pos = snprintf(buffer, sizeof (buffer), " @");
    for (int i = 0; i != n; i++) {
      pos += snprintf(&buffer[pos], sizeof (buffer) - pos, " %p", pcs[i]);
    }
    ABSL_RAW_LOG(INFO, "%s%p %s %s", event_properties[ev].msg, obj,
                 (e == nullptr ? "" : e->name), buffer);
  }
  if ((event_properties[ev].flags & SYNCH_F_LCK) != 0 && e != nullptr &&
      e->invariant != nullptr) {
    (*e->invariant)(e->arg);
  }
  UnrefSynchEvent(e);
}

//------------------------------------------------------------------

// The SynchWaitParams struct encapsulates the way in which a thread is waiting:
// whether it has a timeout, the condition, exclusive/shared, and whether a
// condition variable wait has an associated Mutex (as opposed to another
// type of lock).  It also points to the PerThreadSynch struct of its thread.
// cv_word tells Enqueue() to enqueue on a CondVar using CondVarEnqueue().
//
// This structure is held on the stack rather than directly in
// PerThreadSynch because a thread can be waiting on multiple Mutexes if,
// while waiting on one Mutex, the implementation calls a client callback
// (such as a Condition function) that acquires another Mutex. We don't
// strictly need to allow this, but programmers become confused if we do not
// allow them to use functions such a LOG() within Condition functions.  The
// PerThreadSynch struct points at the most recent SynchWaitParams struct when
// the thread is on a Mutex's waiter queue.
struct SynchWaitParams {
  SynchWaitParams(Mutex::MuHow how_arg, const Condition *cond_arg,
                  KernelTimeout timeout_arg, Mutex *cvmu_arg,
                  PerThreadSynch *thread_arg,
                  std::atomic<intptr_t> *cv_word_arg)
      : how(how_arg),
        cond(cond_arg),
        timeout(timeout_arg),
        cvmu(cvmu_arg),
        thread(thread_arg),
        cv_word(cv_word_arg),
        contention_start_cycles(base_internal::CycleClock::Now()) {}

  const Mutex::MuHow how;  // How this thread needs to wait.
  const Condition *cond;  // The condition that this thread is waiting for.
                          // In Mutex, this field is set to zero if a timeout
                          // expires.
  KernelTimeout timeout;  // timeout expiry---absolute time
                          // In Mutex, this field is set to zero if a timeout
                          // expires.
  Mutex *const cvmu;      // used for transfer from cond var to mutex
  PerThreadSynch *const thread;  // thread that is waiting

  // If not null, thread should be enqueued on the CondVar whose state
  // word is cv_word instead of queueing normally on the Mutex.
  std::atomic<intptr_t> *cv_word;

  int64_t contention_start_cycles;  // Time (in cycles) when this thread started
                                  // to contend for the mutex.
};

struct SynchLocksHeld {
  int n;              // number of valid entries in locks[]
  bool overflow;      // true iff we overflowed the array at some point
  struct {
    Mutex *mu;        // lock acquired
    int32_t count;      // times acquired
    GraphId id;       // deadlock_graph id of acquired lock
  } locks[40];
  // If a thread overfills the array during deadlock detection, we
  // continue, discarding information as needed.  If no overflow has
  // taken place, we can provide more error checking, such as
  // detecting when a thread releases a lock it does not hold.
};

// A sentinel value in lists that is not 0.
// A 0 value is used to mean "not on a list".
static PerThreadSynch *const kPerThreadSynchNull =
  reinterpret_cast<PerThreadSynch *>(1);

static SynchLocksHeld *LocksHeldAlloc() {
  SynchLocksHeld *ret = reinterpret_cast<SynchLocksHeld *>(
      base_internal::LowLevelAlloc::Alloc(sizeof(SynchLocksHeld)));
  ret->n = 0;
  ret->overflow = false;
  return ret;
}

// Return the PerThreadSynch-struct for this thread.
static PerThreadSynch *Synch_GetPerThread() {
  ThreadIdentity *identity = GetOrCreateCurrentThreadIdentity();
  return &identity->per_thread_synch;
}

static PerThreadSynch *Synch_GetPerThreadAnnotated(Mutex *mu) {
  if (mu) {
    ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
  }
  PerThreadSynch *w = Synch_GetPerThread();
  if (mu) {
    ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
  }
  return w;
}

static SynchLocksHeld *Synch_GetAllLocks() {
  PerThreadSynch *s = Synch_GetPerThread();
  if (s->all_locks == nullptr) {
    s->all_locks = LocksHeldAlloc();  // Freed by ReclaimThreadIdentity.
  }
  return s->all_locks;
}

// Post on "w"'s associated PerThreadSem.
inline void Mutex::IncrementSynchSem(Mutex *mu, PerThreadSynch *w) {
  if (mu) {
    ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
  }
  PerThreadSem::Post(w->thread_identity());
  if (mu) {
    ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
  }
}

// Wait on "w"'s associated PerThreadSem; returns false if timeout expired.
bool Mutex::DecrementSynchSem(Mutex *mu, PerThreadSynch *w, KernelTimeout t) {
  if (mu) {
    ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
  }
  assert(w == Synch_GetPerThread());
  static_cast<void>(w);
  bool res = PerThreadSem::Wait(t);
  if (mu) {
    ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
  }
  return res;
}

// We're in a fatal signal handler that hopes to use Mutex and to get
// lucky by not deadlocking.  We try to improve its chances of success
// by effectively disabling some of the consistency checks.  This will
// prevent certain ABSL_RAW_CHECK() statements from being triggered when
// re-rentry is detected.  The ABSL_RAW_CHECK() statements are those in the
// Mutex code checking that the "waitp" field has not been reused.
void Mutex::InternalAttemptToUseMutexInFatalSignalHandler() {
  // Fix the per-thread state only if it exists.
  ThreadIdentity *identity = CurrentThreadIdentityIfPresent();
  if (identity != nullptr) {
    identity->per_thread_synch.suppress_fatal_errors = true;
  }
  // Don't do deadlock detection when we are already failing.
  synch_deadlock_detection.store(OnDeadlockCycle::kIgnore,
                                 std::memory_order_release);
}

// --------------------------time support

// Return the current time plus the timeout.  Use the same clock as
// PerThreadSem::Wait() for consistency.  Unfortunately, we don't have
// such a choice when a deadline is given directly.
static absl::Time DeadlineFromTimeout(absl::Duration timeout) {
#ifndef _WIN32
  struct timeval tv;
  gettimeofday(&tv, nullptr);
  return absl::TimeFromTimeval(tv) + timeout;
#else
  return absl::Now() + timeout;
#endif
}

// --------------------------Mutexes

// In the layout below, the msb of the bottom byte is currently unused.  Also,
// the following constraints were considered in choosing the layout:
//  o Both the debug allocator's "uninitialized" and "freed" patterns (0xab and
//    0xcd) are illegal: reader and writer lock both held.
//  o kMuWriter and kMuEvent should exceed kMuDesig and kMuWait, to enable the
//    bit-twiddling trick in Mutex::Unlock().
//  o kMuWriter / kMuReader == kMuWrWait / kMuWait,
//    to enable the bit-twiddling trick in CheckForMutexCorruption().
static const intptr_t kMuReader      = 0x0001L;  // a reader holds the lock
static const intptr_t kMuDesig       = 0x0002L;  // there's a designated waker
static const intptr_t kMuWait        = 0x0004L;  // threads are waiting
static const intptr_t kMuWriter      = 0x0008L;  // a writer holds the lock
static const intptr_t kMuEvent       = 0x0010L;  // record this mutex's events
// INVARIANT1:  there's a thread that was blocked on the mutex, is
// no longer, yet has not yet acquired the mutex.  If there's a
// designated waker, all threads can avoid taking the slow path in
// unlock because the designated waker will subsequently acquire
// the lock and wake someone.  To maintain INVARIANT1 the bit is
// set when a thread is unblocked(INV1a), and threads that were
// unblocked reset the bit when they either acquire or re-block
// (INV1b).
static const intptr_t kMuWrWait      = 0x0020L;  // runnable writer is waiting
                                                 // for a reader
static const intptr_t kMuSpin        = 0x0040L;  // spinlock protects wait list
static const intptr_t kMuLow         = 0x00ffL;  // mask all mutex bits
static const intptr_t kMuHigh        = ~kMuLow;  // mask pointer/reader count

// Hack to make constant values available to gdb pretty printer
enum {
  kGdbMuSpin = kMuSpin,
  kGdbMuEvent = kMuEvent,
  kGdbMuWait = kMuWait,
  kGdbMuWriter = kMuWriter,
  kGdbMuDesig = kMuDesig,
  kGdbMuWrWait = kMuWrWait,
  kGdbMuReader = kMuReader,
  kGdbMuLow = kMuLow,
};

// kMuWrWait implies kMuWait.
// kMuReader and kMuWriter are mutually exclusive.
// If kMuReader is zero, there are no readers.
// Otherwise, if kMuWait is zero, the high order bits contain a count of the
// number of readers.  Otherwise, the reader count is held in
// PerThreadSynch::readers of the most recently queued waiter, again in the
// bits above kMuLow.
static const intptr_t kMuOne = 0x0100;  // a count of one reader

// flags passed to Enqueue and LockSlow{,WithTimeout,Loop}
static const int kMuHasBlocked = 0x01;  // already blocked (MUST == 1)
static const int kMuIsCond = 0x02;      // conditional waiter (CV or Condition)

static_assert(PerThreadSynch::kAlignment > kMuLow,
              "PerThreadSynch::kAlignment must be greater than kMuLow");

// This struct contains various bitmasks to be used in
// acquiring and releasing a mutex in a particular mode.
struct MuHowS {
  // if all the bits in fast_need_zero are zero, the lock can be acquired by
  // adding fast_add and oring fast_or.  The bit kMuDesig should be reset iff
  // this is the designated waker.
  intptr_t fast_need_zero;
  intptr_t fast_or;
  intptr_t fast_add;

  intptr_t slow_need_zero;  // fast_need_zero with events (e.g. logging)

  intptr_t slow_inc_need_zero;  // if all the bits in slow_inc_need_zero are
                                // zero a reader can acquire a read share by
                                // setting the reader bit and incrementing
                                // the reader count (in last waiter since
                                // we're now slow-path).  kMuWrWait be may
                                // be ignored if we already waited once.
};

static const MuHowS kSharedS = {
    // shared or read lock
    kMuWriter | kMuWait | kMuEvent,   // fast_need_zero
    kMuReader,                        // fast_or
    kMuOne,                           // fast_add
    kMuWriter | kMuWait,              // slow_need_zero
    kMuSpin | kMuWriter | kMuWrWait,  // slow_inc_need_zero
};
static const MuHowS kExclusiveS = {
    // exclusive or write lock
    kMuWriter | kMuReader | kMuEvent,  // fast_need_zero
    kMuWriter,                         // fast_or
    0,                                 // fast_add
    kMuWriter | kMuReader,             // slow_need_zero
    ~static_cast<intptr_t>(0),         // slow_inc_need_zero
};
static const Mutex::MuHow kShared = &kSharedS;        // shared lock
static const Mutex::MuHow kExclusive = &kExclusiveS;  // exclusive lock

#ifdef NDEBUG
static constexpr bool kDebugMode = false;
#else
static constexpr bool kDebugMode = true;
#endif

#ifdef THREAD_SANITIZER
static unsigned TsanFlags(Mutex::MuHow how) {
  return how == kShared ? __tsan_mutex_read_lock : 0;
}
#endif

static bool DebugOnlyIsExiting() {
  return false;
}

Mutex::~Mutex() {
  intptr_t v = mu_.load(std::memory_order_relaxed);
  if ((v & kMuEvent) != 0 && !DebugOnlyIsExiting()) {
    ForgetSynchEvent(&this->mu_, kMuEvent, kMuSpin);
  }
  if (kDebugMode) {
    this->ForgetDeadlockInfo();
  }
  ABSL_TSAN_MUTEX_DESTROY(this, __tsan_mutex_not_static);
}

void Mutex::EnableDebugLog(const char *name) {
  SynchEvent *e = EnsureSynchEvent(&this->mu_, name, kMuEvent, kMuSpin);
  e->log = true;
  UnrefSynchEvent(e);
}

void EnableMutexInvariantDebugging(bool enabled) {
  synch_check_invariants.store(enabled, std::memory_order_release);
}

void Mutex::EnableInvariantDebugging(void (*invariant)(void *),
                                     void *arg) {
  if (synch_check_invariants.load(std::memory_order_acquire) &&
      invariant != nullptr) {
    SynchEvent *e = EnsureSynchEvent(&this->mu_, nullptr, kMuEvent, kMuSpin);
    e->invariant = invariant;
    e->arg = arg;
    UnrefSynchEvent(e);
  }
}

void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode) {
  synch_deadlock_detection.store(mode, std::memory_order_release);
}

// Return true iff threads x and y are waiting on the same condition for the
// same type of lock.  Requires that x and y be waiting on the same Mutex
// queue.
static bool MuSameCondition(PerThreadSynch *x, PerThreadSynch *y) {
  return x->waitp->how == y->waitp->how &&
         Condition::GuaranteedEqual(x->waitp->cond, y->waitp->cond);
}

// Given the contents of a mutex word containing a PerThreadSynch pointer,
// return the pointer.
static inline PerThreadSynch *GetPerThreadSynch(intptr_t v) {
  return reinterpret_cast<PerThreadSynch *>(v & kMuHigh);
}

// The next several routines maintain the per-thread next and skip fields
// used in the Mutex waiter queue.
// The queue is a circular singly-linked list, of which the "head" is the
// last element, and head->next if the first element.
// The skip field has the invariant:
//   For thread x, x->skip is one of:
//     - invalid (iff x is not in a Mutex wait queue),
//     - null, or
//     - a pointer to a distinct thread waiting later in the same Mutex queue
//       such that all threads in [x, x->skip] have the same condition and
//       lock type (MuSameCondition() is true for all pairs in [x, x->skip]).
// In addition, if x->skip is  valid, (x->may_skip || x->skip == null)
//
// By the spec of MuSameCondition(), it is not necessary when removing the
// first runnable thread y from the front a Mutex queue to adjust the skip
// field of another thread x because if x->skip==y, x->skip must (have) become
// invalid before y is removed.  The function TryRemove can remove a specified
// thread from an arbitrary position in the queue whether runnable or not, so
// it fixes up skip fields that would otherwise be left dangling.
// The statement
//     if (x->may_skip && MuSameCondition(x, x->next)) { x->skip = x->next; }
// maintains the invariant provided x is not the last waiter in a Mutex queue
// The statement
//          if (x->skip != null) { x->skip = x->skip->skip; }
// maintains the invariant.

// Returns the last thread y in a mutex waiter queue such that all threads in
// [x, y] inclusive share the same condition.  Sets skip fields of some threads
// in that range to optimize future evaluation of Skip() on x values in
// the range.  Requires thread x is in a mutex waiter queue.
// The locking is unusual.  Skip() is called under these conditions:
//   - spinlock is held in call from Enqueue(), with maybe_unlocking == false
//   - Mutex is held in call from UnlockSlow() by last unlocker, with
//     maybe_unlocking == true
//   - both Mutex and spinlock are held in call from DequeueAllWakeable() (from
//     UnlockSlow()) and TryRemove()
// These cases are mutually exclusive, so Skip() never runs concurrently
// with itself on the same Mutex.   The skip chain is used in these other places
// that cannot occur concurrently:
//   - FixSkip() (from TryRemove()) - spinlock and Mutex are held)
//   - Dequeue() (with spinlock and Mutex held)
//   - UnlockSlow() (with spinlock and Mutex held)
// A more complex case is Enqueue()
//   - Enqueue() (with spinlock held and maybe_unlocking == false)
//               This is the first case in which Skip is called, above.
//   - Enqueue() (without spinlock held; but queue is empty and being freshly
//                formed)
//   - Enqueue() (with spinlock held and maybe_unlocking == true)
// The first case has mutual exclusion, and the second isolation through
// working on an otherwise unreachable data structure.
// In the last case, Enqueue() is required to change no skip/next pointers
// except those in the added node and the former "head" node.  This implies
// that the new node is added after head, and so must be the new head or the
// new front of the queue.
static PerThreadSynch *Skip(PerThreadSynch *x) {
  PerThreadSynch *x0 = nullptr;
  PerThreadSynch *x1 = x;
  PerThreadSynch *x2 = x->skip;
  if (x2 != nullptr) {
    // Each iteration attempts to advance sequence (x0,x1,x2) to next sequence
    // such that   x1 == x0->skip && x2 == x1->skip
    while ((x0 = x1, x1 = x2, x2 = x2->skip) != nullptr) {
      x0->skip = x2;      // short-circuit skip from x0 to x2
    }
    x->skip = x1;         // short-circuit skip from x to result
  }
  return x1;
}

// "ancestor" appears before "to_be_removed" in the same Mutex waiter queue.
// The latter is going to be removed out of order, because of a timeout.
// Check whether "ancestor" has a skip field pointing to "to_be_removed",
// and fix it if it does.
static void FixSkip(PerThreadSynch *ancestor, PerThreadSynch *to_be_removed) {
  if (ancestor->skip == to_be_removed) {  // ancestor->skip left dangling
    if (to_be_removed->skip != nullptr) {
      ancestor->skip = to_be_removed->skip;  // can skip past to_be_removed
    } else if (ancestor->next != to_be_removed) {  // they are not adjacent
      ancestor->skip = ancestor->next;             // can skip one past ancestor
    } else {
      ancestor->skip = nullptr;  // can't skip at all
    }
  }
}

static void CondVarEnqueue(SynchWaitParams *waitp);

// Enqueue thread "waitp->thread" on a waiter queue.
// Called with mutex spinlock held if head != nullptr
// If head==nullptr and waitp->cv_word==nullptr, then Enqueue() is
// idempotent; it alters no state associated with the existing (empty)
// queue.
//
// If waitp->cv_word == nullptr, queue the thread at either the front or
// the end (according to its priority) of the circular mutex waiter queue whose
// head is "head", and return the new head.  mu is the previous mutex state,
// which contains the reader count (perhaps adjusted for the operation in
// progress) if the list was empty and a read lock held, and the holder hint if
// the list was empty and a write lock held.  (flags & kMuIsCond) indicates
// whether this thread was transferred from a CondVar or is waiting for a
// non-trivial condition.  In this case, Enqueue() never returns nullptr
//
// If waitp->cv_word != nullptr, CondVarEnqueue() is called, and "head" is
// returned. This mechanism is used by CondVar to queue a thread on the
// condition variable queue instead of the mutex queue in implementing Wait().
// In this case, Enqueue() can return nullptr (if head==nullptr).
static PerThreadSynch *Enqueue(PerThreadSynch *head,
                               SynchWaitParams *waitp, intptr_t mu, int flags) {
  // If we have been given a cv_word, call CondVarEnqueue() and return
  // the previous head of the Mutex waiter queue.
  if (waitp->cv_word != nullptr) {
    CondVarEnqueue(waitp);
    return head;
  }

  PerThreadSynch *s = waitp->thread;
  ABSL_RAW_CHECK(
      s->waitp == nullptr ||    // normal case
          s->waitp == waitp ||  // Fer()---transfer from condition variable
          s->suppress_fatal_errors,
      "detected illegal recursion into Mutex code");
  s->waitp = waitp;
  s->skip = nullptr;             // maintain skip invariant (see above)
  s->may_skip = true;            // always true on entering queue
  s->wake = false;               // not being woken
  s->cond_waiter = ((flags & kMuIsCond) != 0);
  if (head == nullptr) {         // s is the only waiter
    s->next = s;                 // it's the only entry in the cycle
    s->readers = mu;             // reader count is from mu word
    s->maybe_unlocking = false;  // no one is searching an empty list
    head = s;                    // s is new head
  } else {
    PerThreadSynch *enqueue_after = nullptr;  // we'll put s after this element
#ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM
    int64_t now_cycles = base_internal::CycleClock::Now();
    if (s->next_priority_read_cycles < now_cycles) {
      // Every so often, update our idea of the thread's priority.
      // pthread_getschedparam() is 5% of the block/wakeup time;
      // base_internal::CycleClock::Now() is 0.5%.
      int policy;
      struct sched_param param;
      pthread_getschedparam(pthread_self(), &policy, &param);
      s->priority = param.sched_priority;
      s->next_priority_read_cycles =
          now_cycles +
          static_cast<int64_t>(base_internal::CycleClock::Frequency());
    }
    if (s->priority > head->priority) {  // s's priority is above head's
      // try to put s in priority-fifo order, or failing that at the front.
      if (!head->maybe_unlocking) {
        // No unlocker can be scanning the queue, so we can insert between
        // skip-chains, and within a skip-chain if it has the same condition as
        // s.  We insert in priority-fifo order, examining the end of every
        // skip-chain, plus every element with the same condition as s.
        PerThreadSynch *advance_to = head;    // next value of enqueue_after
        PerThreadSynch *cur;                  // successor of enqueue_after
        do {
          enqueue_after = advance_to;
          cur = enqueue_after->next;  // this advance ensures progress
          advance_to = Skip(cur);   // normally, advance to end of skip chain
                                    // (side-effect: optimizes skip chain)
          if (advance_to != cur && s->priority > advance_to->priority &&
              MuSameCondition(s, cur)) {
            // but this skip chain is not a singleton, s has higher priority
            // than its tail and has the same condition as the chain,
            // so we can insert within the skip-chain
            advance_to = cur;         // advance by just one
          }
        } while (s->priority <= advance_to->priority);
              // termination guaranteed because s->priority > head->priority
              // and head is the end of a skip chain
      } else if (waitp->how == kExclusive &&
                 Condition::GuaranteedEqual(waitp->cond, nullptr)) {
        // An unlocker could be scanning the queue, but we know it will recheck
        // the queue front for writers that have no condition, which is what s
        // is, so an insert at front is safe.
        enqueue_after = head;       // add after head, at front
      }
    }
#endif
    if (enqueue_after != nullptr) {
      s->next = enqueue_after->next;
      enqueue_after->next = s;

      // enqueue_after can be: head, Skip(...), or cur.
      // The first two imply enqueue_after->skip == nullptr, and
      // the last is used only if MuSameCondition(s, cur).
      // We require this because clearing enqueue_after->skip
      // is impossible; enqueue_after's predecessors might also
      // incorrectly skip over s if we were to allow other
      // insertion points.
      ABSL_RAW_CHECK(
          enqueue_after->skip == nullptr || MuSameCondition(enqueue_after, s),
          "Mutex Enqueue failure");

      if (enqueue_after != head && enqueue_after->may_skip &&
          MuSameCondition(enqueue_after, enqueue_after->next)) {
        // enqueue_after can skip to its new successor, s
        enqueue_after->skip = enqueue_after->next;
      }
      if (MuSameCondition(s, s->next)) {  // s->may_skip is known to be true
        s->skip = s->next;                // s may skip to its successor
      }
    } else {   // enqueue not done any other way, so
               // we're inserting s at the back
      // s will become new head; copy data from head into it
      s->next = head->next;        // add s after head
      head->next = s;
      s->readers = head->readers;  // reader count is from previous head
      s->maybe_unlocking = head->maybe_unlocking;  // same for unlock hint
      if (head->may_skip && MuSameCondition(head, s)) {
        // head now has successor; may skip
        head->skip = s;
      }
      head = s;  // s is new head
    }
  }
  s->state.store(PerThreadSynch::kQueued, std::memory_order_relaxed);
  return head;
}

// Dequeue the successor pw->next of thread pw from the Mutex waiter queue
// whose last element is head.  The new head element is returned, or null
// if the list is made empty.
// Dequeue is called with both spinlock and Mutex held.
static PerThreadSynch *Dequeue(PerThreadSynch *head, PerThreadSynch *pw) {
  PerThreadSynch *w = pw->next;
  pw->next = w->next;         // snip w out of list
  if (head == w) {            // we removed the head
    head = (pw == w) ? nullptr : pw;  // either emptied list, or pw is new head
  } else if (pw != head && MuSameCondition(pw, pw->next)) {
    // pw can skip to its new successor
    if (pw->next->skip !=
        nullptr) {  // either skip to its successors skip target
      pw->skip = pw->next->skip;
    } else {                   // or to pw's successor
      pw->skip = pw->next;
    }
  }
  return head;
}

// Traverse the elements [ pw->next, h] of the circular list whose last element
// is head.
// Remove all elements with wake==true and place them in the
// singly-linked list wake_list in the order found.   Assumes that
// there is only one such element if the element has how == kExclusive.
// Return the new head.
static PerThreadSynch *DequeueAllWakeable(PerThreadSynch *head,
                                          PerThreadSynch *pw,
                                          PerThreadSynch **wake_tail) {
  PerThreadSynch *orig_h = head;
  PerThreadSynch *w = pw->next;
  bool skipped = false;
  do {
    if (w->wake) {                    // remove this element
      ABSL_RAW_CHECK(pw->skip == nullptr, "bad skip in DequeueAllWakeable");
      // we're removing pw's successor so either pw->skip is zero or we should
      // already have removed pw since if pw->skip!=null, pw has the same
      // condition as w.
      head = Dequeue(head, pw);
      w->next = *wake_tail;           // keep list terminated
      *wake_tail = w;                 // add w to wake_list;
      wake_tail = &w->next;           // next addition to end
      if (w->waitp->how == kExclusive) {  // wake at most 1 writer
        break;
      }
    } else {                // not waking this one; skip
      pw = Skip(w);       // skip as much as possible
      skipped = true;
    }
    w = pw->next;
    // We want to stop processing after we've considered the original head,
    // orig_h.  We can't test for w==orig_h in the loop because w may skip over
    // it; we are guaranteed only that w's predecessor will not skip over
    // orig_h.  When we've considered orig_h, either we've processed it and
    // removed it (so orig_h != head), or we considered it and skipped it (so
    // skipped==true && pw == head because skipping from head always skips by
    // just one, leaving pw pointing at head).  So we want to
    // continue the loop with the negation of that expression.
  } while (orig_h == head && (pw != head || !skipped));
  return head;
}

// Try to remove thread s from the list of waiters on this mutex.
// Does nothing if s is not on the waiter list.
void Mutex::TryRemove(PerThreadSynch *s) {
  intptr_t v = mu_.load(std::memory_order_relaxed);
  // acquire spinlock & lock
  if ((v & (kMuWait | kMuSpin | kMuWriter | kMuReader)) == kMuWait &&
      mu_.compare_exchange_strong(v, v | kMuSpin | kMuWriter,
                                  std::memory_order_acquire,
                                  std::memory_order_relaxed)) {
    PerThreadSynch *h = GetPerThreadSynch(v);
    if (h != nullptr) {
      PerThreadSynch *pw = h;   // pw is w's predecessor
      PerThreadSynch *w;
      if ((w = pw->next) != s) {  // search for thread,
        do {                      // processing at least one element
          if (!MuSameCondition(s, w)) {  // seeking different condition
            pw = Skip(w);                // so skip all that won't match
            // we don't have to worry about dangling skip fields
            // in the threads we skipped; none can point to s
            // because their condition differs from s
          } else {          // seeking same condition
            FixSkip(w, s);  // fix up any skip pointer from w to s
            pw = w;
          }
          // don't search further if we found the thread, or we're about to
          // process the first thread again.
        } while ((w = pw->next) != s && pw != h);
      }
      if (w == s) {                 // found thread; remove it
        // pw->skip may be non-zero here; the loop above ensured that
        // no ancestor of s can skip to s, so removal is safe anyway.
        h = Dequeue(h, pw);
        s->next = nullptr;
        s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
      }
    }
    intptr_t nv;
    do {                        // release spinlock and lock
      v = mu_.load(std::memory_order_relaxed);
      nv = v & (kMuDesig | kMuEvent);
      if (h != nullptr) {
        nv |= kMuWait | reinterpret_cast<intptr_t>(h);
        h->readers = 0;            // we hold writer lock
        h->maybe_unlocking = false;  // finished unlocking
      }
    } while (!mu_.compare_exchange_weak(v, nv,
                                        std::memory_order_release,
                                        std::memory_order_relaxed));
  }
}

// Wait until thread "s", which must be the current thread, is removed from the
// this mutex's waiter queue.  If "s->waitp->timeout" has a timeout, wake up
// if the wait extends past the absolute time specified, even if "s" is still
// on the mutex queue.  In this case, remove "s" from the queue and return
// true, otherwise return false.
void Mutex::Block(PerThreadSynch *s) {
  while (s->state.load(std::memory_order_acquire) == PerThreadSynch::kQueued) {
    if (!DecrementSynchSem(this, s, s->waitp->timeout)) {
      // After a timeout, we go into a spin loop until we remove ourselves
      // from the queue, or someone else removes us.  We can't be sure to be
      // able to remove ourselves in a single lock acquisition because this
      // mutex may be held, and the holder has the right to read the centre
      // of the waiter queue without holding the spinlock.
      this->TryRemove(s);
      int c = 0;
      while (s->next != nullptr) {
        c = Delay(c, GENTLE);
        this->TryRemove(s);
      }
      if (kDebugMode) {
        // This ensures that we test the case that TryRemove() is called when s
        // is not on the queue.
        this->TryRemove(s);
      }
      s->waitp->timeout = KernelTimeout::Never();      // timeout is satisfied
      s->waitp->cond = nullptr;  // condition no longer relevant for wakeups
    }
  }
  ABSL_RAW_CHECK(s->waitp != nullptr || s->suppress_fatal_errors,
                 "detected illegal recursion in Mutex code");
  s->waitp = nullptr;
}

// Wake thread w, and return the next thread in the list.
PerThreadSynch *Mutex::Wakeup(PerThreadSynch *w) {
  PerThreadSynch *next = w->next;
  w->next = nullptr;
  w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
  IncrementSynchSem(this, w);

  return next;
}

static GraphId GetGraphIdLocked(Mutex *mu)
    EXCLUSIVE_LOCKS_REQUIRED(deadlock_graph_mu) {
  if (!deadlock_graph) {  // (re)create the deadlock graph.
    deadlock_graph =
        new (base_internal::LowLevelAlloc::Alloc(sizeof(*deadlock_graph)))
            GraphCycles;
  }
  return deadlock_graph->GetId(mu);
}

static GraphId GetGraphId(Mutex *mu) LOCKS_EXCLUDED(deadlock_graph_mu) {
  deadlock_graph_mu.Lock();
  GraphId id = GetGraphIdLocked(mu);
  deadlock_graph_mu.Unlock();
  return id;
}

// Record a lock acquisition.  This is used in debug mode for deadlock
// detection.  The held_locks pointer points to the relevant data
// structure for each case.
static void LockEnter(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) {
  int n = held_locks->n;
  int i = 0;
  while (i != n && held_locks->locks[i].id != id) {
    i++;
  }
  if (i == n) {
    if (n == ABSL_ARRAYSIZE(held_locks->locks)) {
      held_locks->overflow = true;  // lost some data
    } else {                        // we have room for lock
      held_locks->locks[i].mu = mu;
      held_locks->locks[i].count = 1;
      held_locks->locks[i].id = id;
      held_locks->n = n + 1;
    }
  } else {
    held_locks->locks[i].count++;
  }
}

// Record a lock release.  Each call to LockEnter(mu, id, x) should be
// eventually followed by a call to LockLeave(mu, id, x) by the same thread.
// It does not process the event if is not needed when deadlock detection is
// disabled.
static void LockLeave(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) {
  int n = held_locks->n;
  int i = 0;
  while (i != n && held_locks->locks[i].id != id) {
    i++;
  }
  if (i == n) {
    if (!held_locks->overflow) {
      // The deadlock id may have been reassigned after ForgetDeadlockInfo,
      // but in that case mu should still be present.
      i = 0;
      while (i != n && held_locks->locks[i].mu != mu) {
        i++;
      }
      if (i == n) {  // mu missing means releasing unheld lock
        SynchEvent *mu_events = GetSynchEvent(mu);
        ABSL_RAW_LOG(FATAL,
                     "thread releasing lock it does not hold: %p %s; "
                     ,
                     static_cast<void *>(mu),
                     mu_events == nullptr ? "" : mu_events->name);
      }
    }
  } else if (held_locks->locks[i].count == 1) {
    held_locks->n = n - 1;
    held_locks->locks[i] = held_locks->locks[n - 1];
    held_locks->locks[n - 1].id = InvalidGraphId();
    held_locks->locks[n - 1].mu =
        nullptr;  // clear mu to please the leak detector.
  } else {
    assert(held_locks->locks[i].count > 0);
    held_locks->locks[i].count--;
  }
}

// Call LockEnter() if in debug mode and deadlock detection is enabled.
static inline void DebugOnlyLockEnter(Mutex *mu) {
  if (kDebugMode) {
    if (synch_deadlock_detection.load(std::memory_order_acquire) !=
        OnDeadlockCycle::kIgnore) {
      LockEnter(mu, GetGraphId(mu), Synch_GetAllLocks());
    }
  }
}

// Call LockEnter() if in debug mode and deadlock detection is enabled.
static inline void DebugOnlyLockEnter(Mutex *mu, GraphId id) {
  if (kDebugMode) {
    if (synch_deadlock_detection.load(std::memory_order_acquire) !=
        OnDeadlockCycle::kIgnore) {
      LockEnter(mu, id, Synch_GetAllLocks());
    }
  }
}

// Call LockLeave() if in debug mode and deadlock detection is enabled.
static inline void DebugOnlyLockLeave(Mutex *mu) {
  if (kDebugMode) {
    if (synch_deadlock_detection.load(std::memory_order_acquire) !=
        OnDeadlockCycle::kIgnore) {
      LockLeave(mu, GetGraphId(mu), Synch_GetAllLocks());
    }
  }
}

static char *StackString(void **pcs, int n, char *buf, int maxlen,
                         bool symbolize) {
  static const int kSymLen = 200;
  char sym[kSymLen];
  int len = 0;
  for (int i = 0; i != n; i++) {
    if (symbolize) {
      if (!symbolizer(pcs[i], sym, kSymLen)) {
        sym[0] = '\0';
      }
      snprintf(buf + len, maxlen - len, "%s\t@ %p %s\n",
               (i == 0 ? "\n" : ""),
               pcs[i], sym);
    } else {
      snprintf(buf + len, maxlen - len, " %p", pcs[i]);
    }
    len += strlen(&buf[len]);
  }
  return buf;
}

static char *CurrentStackString(char *buf, int maxlen, bool symbolize) {
  void *pcs[40];
  return StackString(pcs, absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 2), buf,
                     maxlen, symbolize);
}

namespace {
enum { kMaxDeadlockPathLen = 10 };  // maximum length of a deadlock cycle;
                                    // a path this long would be remarkable
// Buffers required to report a deadlock.
// We do not allocate them on stack to avoid large stack frame.
struct DeadlockReportBuffers {
  char buf[6100];
  GraphId path[kMaxDeadlockPathLen];
};

struct ScopedDeadlockReportBuffers {
  ScopedDeadlockReportBuffers() {
    b = reinterpret_cast<DeadlockReportBuffers *>(
        base_internal::LowLevelAlloc::Alloc(sizeof(*b)));
  }
  ~ScopedDeadlockReportBuffers() { base_internal::LowLevelAlloc::Free(b); }
  DeadlockReportBuffers *b;
};

// Helper to pass to GraphCycles::UpdateStackTrace.
int GetStack(void** stack, int max_depth) {
  return absl::GetStackTrace(stack, max_depth, 3);
}
}  // anonymous namespace

// Called in debug mode when a thread is about to acquire a lock in a way that
// may block.
static GraphId DeadlockCheck(Mutex *mu) {
  if (synch_deadlock_detection.load(std::memory_order_acquire) ==
      OnDeadlockCycle::kIgnore) {
    return InvalidGraphId();
  }

  SynchLocksHeld *all_locks = Synch_GetAllLocks();

  absl::base_internal::SpinLockHolder lock(&deadlock_graph_mu);
  const GraphId mu_id = GetGraphIdLocked(mu);

  if (all_locks->n == 0) {
    // There are no other locks held. Return now so that we don't need to
    // call GetSynchEvent(). This way we do not record the stack trace
    // for this Mutex. It's ok, since if this Mutex is involved in a deadlock,
    // it can't always be the first lock acquired by a thread.
    return mu_id;
  }

  // We prefer to keep stack traces that show a thread holding and acquiring
  // as many locks as possible.  This increases the chances that a given edge
  // in the acquires-before graph will be represented in the stack traces
  // recorded for the locks.
  deadlock_graph->UpdateStackTrace(mu_id, all_locks->n + 1, GetStack);

  // For each other mutex already held by this thread:
  for (int i = 0; i != all_locks->n; i++) {
    const GraphId other_node_id = all_locks->locks[i].id;
    const Mutex *other =
        static_cast<const Mutex *>(deadlock_graph->Ptr(other_node_id));
    if (other == nullptr) {
      // Ignore stale lock
      continue;
    }

    // Add the acquired-before edge to the graph.
    if (!deadlock_graph->InsertEdge(other_node_id, mu_id)) {
      ScopedDeadlockReportBuffers scoped_buffers;
      DeadlockReportBuffers *b = scoped_buffers.b;
      static int number_of_reported_deadlocks = 0;
      number_of_reported_deadlocks++;
      // Symbolize only 2 first deadlock report to avoid huge slowdowns.
      bool symbolize = number_of_reported_deadlocks <= 2;
      ABSL_RAW_LOG(ERROR, "Potential Mutex deadlock: %s",
                   CurrentStackString(b->buf, sizeof (b->buf), symbolize));
      int len = 0;
      for (int j = 0; j != all_locks->n; j++) {
        void* pr = deadlock_graph->Ptr(all_locks->locks[j].id);
        if (pr != nullptr) {
          snprintf(b->buf + len, sizeof (b->buf) - len, " %p", pr);
          len += static_cast<int>(strlen(&b->buf[len]));
        }
      }
      ABSL_RAW_LOG(ERROR, "Acquiring %p    Mutexes held: %s",
                   static_cast<void *>(mu), b->buf);
      ABSL_RAW_LOG(ERROR, "Cycle: ");
      int path_len = deadlock_graph->FindPath(
          mu_id, other_node_id, ABSL_ARRAYSIZE(b->path), b->path);
      for (int j = 0; j != path_len; j++) {
        GraphId id = b->path[j];
        Mutex *path_mu = static_cast<Mutex *>(deadlock_graph->Ptr(id));
        if (path_mu == nullptr) continue;
        void** stack;
        int depth = deadlock_graph->GetStackTrace(id, &stack);
        snprintf(b->buf, sizeof(b->buf),
                 "mutex@%p stack: ", static_cast<void *>(path_mu));
        StackString(stack, depth, b->buf + strlen(b->buf),
                    static_cast<int>(sizeof(b->buf) - strlen(b->buf)),
                    symbolize);
        ABSL_RAW_LOG(ERROR, "%s", b->buf);
      }
      if (synch_deadlock_detection.load(std::memory_order_acquire) ==
          OnDeadlockCycle::kAbort) {
        deadlock_graph_mu.Unlock();  // avoid deadlock in fatal sighandler
        ABSL_RAW_LOG(FATAL, "dying due to potential deadlock");
        return mu_id;
      }
      break;   // report at most one potential deadlock per acquisition
    }
  }

  return mu_id;
}

// Invoke DeadlockCheck() iff we're in debug mode and
// deadlock checking has been enabled.
static inline GraphId DebugOnlyDeadlockCheck(Mutex *mu) {
  if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
                        OnDeadlockCycle::kIgnore) {
    return DeadlockCheck(mu);
  } else {
    return InvalidGraphId();
  }
}

void Mutex::ForgetDeadlockInfo() {
  if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
                        OnDeadlockCycle::kIgnore) {
    deadlock_graph_mu.Lock();
    if (deadlock_graph != nullptr) {
      deadlock_graph->RemoveNode(this);
    }
    deadlock_graph_mu.Unlock();
  }
}

void Mutex::AssertNotHeld() const {
  // We have the data to allow this check only if in debug mode and deadlock
  // detection is enabled.
  if (kDebugMode &&
      (mu_.load(std::memory_order_relaxed) & (kMuWriter | kMuReader)) != 0 &&
      synch_deadlock_detection.load(std::memory_order_acquire) !=
          OnDeadlockCycle::kIgnore) {
    GraphId id = GetGraphId(const_cast<Mutex *>(this));
    SynchLocksHeld *locks = Synch_GetAllLocks();
    for (int i = 0; i != locks->n; i++) {
      if (locks->locks[i].id == id) {
        SynchEvent *mu_events = GetSynchEvent(this);
        ABSL_RAW_LOG(FATAL, "thread should not hold mutex %p %s",
                     static_cast<const void *>(this),
                     (mu_events == nullptr ? "" : mu_events->name));
      }
    }
  }
}

// Attempt to acquire *mu, and return whether successful.  The implementation
// may spin for a short while if the lock cannot be acquired immediately.
static bool TryAcquireWithSpinning(std::atomic<intptr_t>* mu) {
  int c = mutex_globals.spinloop_iterations;
  int result = -1;  // result of operation:  0=false, 1=true, -1=unknown

  do {  // do/while somewhat faster on AMD
    intptr_t v = mu->load(std::memory_order_relaxed);
    if ((v & (kMuReader|kMuEvent)) != 0) {  // a reader or tracing -> give up
      result = 0;
    } else if (((v & kMuWriter) == 0) &&  // no holder -> try to acquire
               mu->compare_exchange_strong(v, kMuWriter | v,
                                           std::memory_order_acquire,
                                           std::memory_order_relaxed)) {
      result = 1;
    }
  } while (result == -1 && --c > 0);
  return result == 1;
}

ABSL_XRAY_LOG_ARGS(1) void Mutex::Lock() {
  ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
  GraphId id = DebugOnlyDeadlockCheck(this);
  intptr_t v = mu_.load(std::memory_order_relaxed);
  // try fast acquire, then spin loop
  if ((v & (kMuWriter | kMuReader | kMuEvent)) != 0 ||
      !mu_.compare_exchange_strong(v, kMuWriter | v,
                                   std::memory_order_acquire,
                                   std::memory_order_relaxed)) {
    // try spin acquire, then slow loop
    if (!TryAcquireWithSpinning(&this->mu_)) {
      this->LockSlow(kExclusive, nullptr, 0);
    }
  }
  DebugOnlyLockEnter(this, id);
  ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
}

ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderLock() {
  ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
  GraphId id = DebugOnlyDeadlockCheck(this);
  intptr_t v = mu_.load(std::memory_order_relaxed);
  // try fast acquire, then slow loop
  if ((v & (kMuWriter | kMuWait | kMuEvent)) != 0 ||
      !mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
                                   std::memory_order_acquire,
                                   std::memory_order_relaxed)) {
    this->LockSlow(kShared, nullptr, 0);
  }
  DebugOnlyLockEnter(this, id);
  ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
}

void Mutex::LockWhen(const Condition &cond) {
  ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
  GraphId id = DebugOnlyDeadlockCheck(this);
  this->LockSlow(kExclusive, &cond, 0);
  DebugOnlyLockEnter(this, id);
  ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
}

bool Mutex::LockWhenWithTimeout(const Condition &cond, absl::Duration timeout) {
  return LockWhenWithDeadline(cond, DeadlineFromTimeout(timeout));
}

bool Mutex::LockWhenWithDeadline(const Condition &cond, absl::Time deadline) {
  ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
  GraphId id = DebugOnlyDeadlockCheck(this);
  bool res = LockSlowWithDeadline(kExclusive, &cond,
                                  KernelTimeout(deadline), 0);
  DebugOnlyLockEnter(this, id);
  ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
  return res;
}

void Mutex::ReaderLockWhen(const Condition &cond) {
  ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
  GraphId id = DebugOnlyDeadlockCheck(this);
  this->LockSlow(kShared, &cond, 0);
  DebugOnlyLockEnter(this, id);
  ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
}

bool Mutex::ReaderLockWhenWithTimeout(const Condition &cond,
                                      absl::Duration timeout) {
  return ReaderLockWhenWithDeadline(cond, DeadlineFromTimeout(timeout));
}

bool Mutex::ReaderLockWhenWithDeadline(const Condition &cond,
                                       absl::Time deadline) {
  ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
  GraphId id = DebugOnlyDeadlockCheck(this);
  bool res = LockSlowWithDeadline(kShared, &cond, KernelTimeout(deadline), 0);
  DebugOnlyLockEnter(this, id);
  ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
  return res;
}

void Mutex::Await(const Condition &cond) {
  if (cond.Eval()) {    // condition already true; nothing to do
    if (kDebugMode) {
      this->AssertReaderHeld();
    }
  } else {              // normal case
    ABSL_RAW_CHECK(this->AwaitCommon(cond, KernelTimeout::Never()),
                   "condition untrue on return from Await");
  }
}

bool Mutex::AwaitWithTimeout(const Condition &cond, absl::Duration timeout) {
  return AwaitWithDeadline(cond, DeadlineFromTimeout(timeout));
}

bool Mutex::AwaitWithDeadline(const Condition &cond, absl::Time deadline) {
  if (cond.Eval()) {      // condition already true; nothing to do
    if (kDebugMode) {
      this->AssertReaderHeld();
    }
    return true;
  }

  KernelTimeout t{deadline};
  bool res = this->AwaitCommon(cond, t);
  ABSL_RAW_CHECK(res || t.has_timeout(),
                 "condition untrue on return from Await");
  return res;
}

bool Mutex::AwaitCommon(const Condition &cond, KernelTimeout t) {
  this->AssertReaderHeld();
  MuHow how =
      (mu_.load(std::memory_order_relaxed) & kMuWriter) ? kExclusive : kShared;
  ABSL_TSAN_MUTEX_PRE_UNLOCK(this, TsanFlags(how));
  SynchWaitParams waitp(
      how, &cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this),
      nullptr /*no cv_word*/);
  int flags = kMuHasBlocked;
  if (!Condition::GuaranteedEqual(&cond, nullptr)) {
    flags |= kMuIsCond;
  }
  this->UnlockSlow(&waitp);
  this->Block(waitp.thread);
  ABSL_TSAN_MUTEX_POST_UNLOCK(this, TsanFlags(how));
  ABSL_TSAN_MUTEX_PRE_LOCK(this, TsanFlags(how));
  this->LockSlowLoop(&waitp, flags);
  bool res = waitp.cond != nullptr ||  // => cond known true from LockSlowLoop
             cond.Eval();
  ABSL_TSAN_MUTEX_POST_LOCK(this, TsanFlags(how), 0);
  return res;
}

ABSL_XRAY_LOG_ARGS(1) bool Mutex::TryLock() {
  ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_try_lock);
  intptr_t v = mu_.load(std::memory_order_relaxed);
  if ((v & (kMuWriter | kMuReader | kMuEvent)) == 0 &&  // try fast acquire
      mu_.compare_exchange_strong(v, kMuWriter | v,
                                  std::memory_order_acquire,
                                  std::memory_order_relaxed)) {
    DebugOnlyLockEnter(this);
    ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
    return true;
  }
  if ((v & kMuEvent) != 0) {              // we're recording events
    if ((v & kExclusive->slow_need_zero) == 0 &&  // try fast acquire
        mu_.compare_exchange_strong(
            v, (kExclusive->fast_or | v) + kExclusive->fast_add,
            std::memory_order_acquire, std::memory_order_relaxed)) {
      DebugOnlyLockEnter(this);
      PostSynchEvent(this, SYNCH_EV_TRYLOCK_SUCCESS);
      ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
      return true;
    } else {
      PostSynchEvent(this, SYNCH_EV_TRYLOCK_FAILED);
    }
  }
  ABSL_TSAN_MUTEX_POST_LOCK(
      this, __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0);
  return false;
}

ABSL_XRAY_LOG_ARGS(1) bool Mutex::ReaderTryLock() {
  ABSL_TSAN_MUTEX_PRE_LOCK(this,
                           __tsan_mutex_read_lock | __tsan_mutex_try_lock);
  intptr_t v = mu_.load(std::memory_order_relaxed);
  // The while-loops (here and below) iterate only if the mutex word keeps
  // changing (typically because the reader count changes) under the CAS.  We
  // limit the number of attempts to avoid having to think about livelock.
  int loop_limit = 5;
  while ((v & (kMuWriter|kMuWait|kMuEvent)) == 0 && loop_limit != 0) {
    if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
                                    std::memory_order_acquire,
                                    std::memory_order_relaxed)) {
      DebugOnlyLockEnter(this);
      ABSL_TSAN_MUTEX_POST_LOCK(
          this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
      return true;
    }
    loop_limit--;
    v = mu_.load(std::memory_order_relaxed);
  }
  if ((v & kMuEvent) != 0) {   // we're recording events
    loop_limit = 5;
    while ((v & kShared->slow_need_zero) == 0 && loop_limit != 0) {
      if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
                                      std::memory_order_acquire,
                                      std::memory_order_relaxed)) {
        DebugOnlyLockEnter(this);
        PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_SUCCESS);
        ABSL_TSAN_MUTEX_POST_LOCK(
            this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
        return true;
      }
      loop_limit--;
      v = mu_.load(std::memory_order_relaxed);
    }
    if ((v & kMuEvent) != 0) {
      PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_FAILED);
    }
  }
  ABSL_TSAN_MUTEX_POST_LOCK(this,
                            __tsan_mutex_read_lock | __tsan_mutex_try_lock |
                                __tsan_mutex_try_lock_failed,
                            0);
  return false;
}

ABSL_XRAY_LOG_ARGS(1) void Mutex::Unlock() {
  ABSL_TSAN_MUTEX_PRE_UNLOCK(this, 0);
  DebugOnlyLockLeave(this);
  intptr_t v = mu_.load(std::memory_order_relaxed);

  if (kDebugMode && ((v & (kMuWriter | kMuReader)) != kMuWriter)) {
    ABSL_RAW_LOG(FATAL, "Mutex unlocked when destroyed or not locked: v=0x%x",
                 static_cast<unsigned>(v));
  }

  // should_try_cas is whether we'll try a compare-and-swap immediately.
  // NOTE: optimized out when kDebugMode is false.
  bool should_try_cas = ((v & (kMuEvent | kMuWriter)) == kMuWriter &&
                          (v & (kMuWait | kMuDesig)) != kMuWait);
  // But, we can use an alternate computation of it, that compilers
  // currently don't find on their own.  When that changes, this function
  // can be simplified.
  intptr_t x = (v ^ (kMuWriter | kMuWait)) & (kMuWriter | kMuEvent);
  intptr_t y = (v ^ (kMuWriter | kMuWait)) & (kMuWait | kMuDesig);
  // Claim: "x == 0 && y > 0" is equal to should_try_cas.
  // Also, because kMuWriter and kMuEvent exceed kMuDesig and kMuWait,
  // all possible non-zero values for x exceed all possible values for y.
  // Therefore, (x == 0 && y > 0) == (x < y).
  if (kDebugMode && should_try_cas != (x < y)) {
    // We would usually use PRIdPTR here, but is not correctly implemented
    // within the android toolchain.
    ABSL_RAW_LOG(FATAL, "internal logic error %llx %llx %llx\n",
                 static_cast<long long>(v), static_cast<long long>(x),
                 static_cast<long long>(y));
  }
  if (x < y &&
      mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
                                  std::memory_order_release,
                                  std::memory_order_relaxed)) {
    // fast writer release (writer with no waiters or with designated waker)
  } else {
    this->UnlockSlow(nullptr /*no waitp*/);  // take slow path
  }
  ABSL_TSAN_MUTEX_POST_UNLOCK(this, 0);
}

// Requires v to represent a reader-locked state.
static bool ExactlyOneReader(intptr_t v) {
  assert((v & (kMuWriter|kMuReader)) == kMuReader);
  assert((v & kMuHigh) != 0);
  // The more straightforward "(v & kMuHigh) == kMuOne" also works, but
  // on some architectures the following generates slightly smaller code.
  // It may be faster too.
  constexpr intptr_t kMuMultipleWaitersMask = kMuHigh ^ kMuOne;
  return (v & kMuMultipleWaitersMask) == 0;
}

ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderUnlock() {
  ABSL_TSAN_MUTEX_PRE_UNLOCK(this, __tsan_mutex_read_lock);
  DebugOnlyLockLeave(this);
  intptr_t v = mu_.load(std::memory_order_relaxed);
  assert((v & (kMuWriter|kMuReader)) == kMuReader);
  if ((v & (kMuReader|kMuWait|kMuEvent)) == kMuReader) {
    // fast reader release (reader with no waiters)
    intptr_t clear = ExactlyOneReader(v) ? kMuReader|kMuOne : kMuOne;
    if (mu_.compare_exchange_strong(v, v - clear,
                                    std::memory_order_release,
                                    std::memory_order_relaxed)) {
      ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
      return;
    }
  }
  this->UnlockSlow(nullptr /*no waitp*/);  // take slow path
  ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
}

// The zap_desig_waker bitmask is used to clear the designated waker flag in
// the mutex if this thread has blocked, and therefore may be the designated
// waker.
static const intptr_t zap_desig_waker[] = {
    ~static_cast<intptr_t>(0),  // not blocked
    ~static_cast<intptr_t>(
        kMuDesig)  // blocked; turn off the designated waker bit
};

// The ignore_waiting_writers bitmask is used to ignore the existence
// of waiting writers if a reader that has already blocked once
// wakes up.
static const intptr_t ignore_waiting_writers[] = {
    ~static_cast<intptr_t>(0),  // not blocked
    ~static_cast<intptr_t>(
        kMuWrWait)  // blocked; pretend there are no waiting writers
};

// Internal version of LockWhen().  See LockSlowWithDeadline()
void Mutex::LockSlow(MuHow how, const Condition *cond, int flags) {
  ABSL_RAW_CHECK(
      this->LockSlowWithDeadline(how, cond, KernelTimeout::Never(), flags),
      "condition untrue on return from LockSlow");
}

// Compute cond->Eval() and tell race detectors that we do it under mutex mu.
static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu,
                                          bool locking, Mutex::MuHow how) {
  // Delicate annotation dance.
  // We are currently inside of read/write lock/unlock operation.
  // All memory accesses are ignored inside of mutex operations + for unlock
  // operation tsan considers that we've already released the mutex.
  bool res = false;
  if (locking) {
    // For lock we pretend that we have finished the operation,
    // evaluate the predicate, then unlock the mutex and start locking it again
    // to match the annotation at the end of outer lock operation.
    // Note: we can't simply do POST_LOCK, Eval, PRE_LOCK, because then tsan
    // will think the lock acquisition is recursive which will trigger
    // deadlock detector.
    ABSL_TSAN_MUTEX_POST_LOCK(mu, TsanFlags(how), 0);
    res = cond->Eval();
    ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, TsanFlags(how));
    ABSL_TSAN_MUTEX_POST_UNLOCK(mu, TsanFlags(how));
    ABSL_TSAN_MUTEX_PRE_LOCK(mu, TsanFlags(how));
  } else {
    // Similarly, for unlock we pretend that we have unlocked the mutex,
    // lock the mutex, evaluate the predicate, and start unlocking it again
    // to match the annotation at the end of outer unlock operation.
    ABSL_TSAN_MUTEX_POST_UNLOCK(mu, TsanFlags(how));
    ABSL_TSAN_MUTEX_PRE_LOCK(mu, TsanFlags(how));
    ABSL_TSAN_MUTEX_POST_LOCK(mu, TsanFlags(how), 0);
    res = cond->Eval();
    ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, TsanFlags(how));
  }
  // Prevent unused param warnings in non-TSAN builds.
  static_cast<void>(mu);
  static_cast<void>(how);
  return res;
}

// Compute cond->Eval() hiding it from race detectors.
// We are hiding it because inside of UnlockSlow we can evaluate a predicate
// that was just added by a concurrent Lock operation; Lock adds the predicate
// to the internal Mutex list without actually acquiring the Mutex
// (it only acquires the internal spinlock, which is rightfully invisible for
// tsan). As the result there is no tsan-visible synchronization between the
// addition and this thread. So if we would enable race detection here,
// it would race with the predicate initialization.
static inline bool EvalConditionIgnored(Mutex *mu, const Condition *cond) {
  // Memory accesses are already ignored inside of lock/unlock operations,
  // but synchronization operations are also ignored. When we evaluate the
  // predicate we must ignore only memory accesses but not synchronization,
  // because missed synchronization can lead to false reports later.
  // So we "divert" (which un-ignores both memory accesses and synchronization)
  // and then separately turn on ignores of memory accesses.
  ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
  ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
  bool res = cond->Eval();
  ANNOTATE_IGNORE_READS_AND_WRITES_END();
  ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
  static_cast<void>(mu);  // Prevent unused param warning in non-TSAN builds.
  return res;
}

// Internal equivalent of *LockWhenWithDeadline(), where
//   "t" represents the absolute timeout; !t.has_timeout() means "forever".
//   "how" is "kShared" (for ReaderLockWhen) or "kExclusive" (for LockWhen)
// In flags, bits are ored together:
// - kMuHasBlocked indicates that the client has already blocked on the call so
//   the designated waker bit must be cleared and waiting writers should not
//   obstruct this call
// - kMuIsCond indicates that this is a conditional acquire (condition variable,
//   Await,  LockWhen) so contention profiling should be suppressed.
bool Mutex::LockSlowWithDeadline(MuHow how, const Condition *cond,
                                 KernelTimeout t, int flags) {
  intptr_t v = mu_.load(std::memory_order_relaxed);
  bool unlock = false;
  if ((v & how->fast_need_zero) == 0 &&  // try fast acquire
      mu_.compare_exchange_strong(
          v, (how->fast_or | (v & zap_desig_waker[flags & kMuHasBlocked])) +
                 how->fast_add,
          std::memory_order_acquire, std::memory_order_relaxed)) {
    if (cond == nullptr || EvalConditionAnnotated(cond, this, true, how)) {
      return true;
    }
    unlock = true;
  }
  SynchWaitParams waitp(
      how, cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this),
      nullptr /*no cv_word*/);
  if (!Condition::GuaranteedEqual(cond, nullptr)) {
    flags |= kMuIsCond;
  }
  if (unlock) {
    this->UnlockSlow(&waitp);
    this->Block(waitp.thread);
    flags |= kMuHasBlocked;
  }
  this->LockSlowLoop(&waitp, flags);
  return waitp.cond != nullptr ||  // => cond known true from LockSlowLoop
         cond == nullptr || EvalConditionAnnotated(cond, this, true, how);
}

// RAW_CHECK_FMT() takes a condition, a printf-style format string, and
// the printf-style argument list.   The format string must be a literal.
// Arguments after the first are not evaluated unless the condition is true.
#define RAW_CHECK_FMT(cond, ...)                                   \
  do {                                                             \
    if (ABSL_PREDICT_FALSE(!(cond))) {                             \
      ABSL_RAW_LOG(FATAL, "Check " #cond " failed: " __VA_ARGS__); \
    }                                                              \
  } while (0)

static void CheckForMutexCorruption(intptr_t v, const char* label) {
  // Test for either of two situations that should not occur in v:
  //   kMuWriter and kMuReader
  //   kMuWrWait and !kMuWait
  const intptr_t w = v ^ kMuWait;
  // By flipping that bit, we can now test for:
  //   kMuWriter and kMuReader in w
  //   kMuWrWait and kMuWait in w
  // We've chosen these two pairs of values to be so that they will overlap,
  // respectively, when the word is left shifted by three.  This allows us to
  // save a branch in the common (correct) case of them not being coincident.
  static_assert(kMuReader << 3 == kMuWriter, "must match");
  static_assert(kMuWait << 3 == kMuWrWait, "must match");
  if (ABSL_PREDICT_TRUE((w & (w << 3) & (kMuWriter | kMuWrWait)) == 0)) return;
  RAW_CHECK_FMT((v & (kMuWriter | kMuReader)) != (kMuWriter | kMuReader),
                "%s: Mutex corrupt: both reader and writer lock held: %p",
                label, reinterpret_cast<void *>(v));
  RAW_CHECK_FMT((v & (kMuWait | kMuWrWait)) != kMuWrWait,
                "%s: Mutex corrupt: waiting writer with no waiters: %p",
                label, reinterpret_cast<void *>(v));
  assert(false);
}

void Mutex::LockSlowLoop(SynchWaitParams *waitp, int flags) {
  int c = 0;
  intptr_t v = mu_.load(std::memory_order_relaxed);
  if ((v & kMuEvent) != 0) {
    PostSynchEvent(this,
         waitp->how == kExclusive?  SYNCH_EV_LOCK: SYNCH_EV_READERLOCK);
  }
  ABSL_RAW_CHECK(
      waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
      "detected illegal recursion into Mutex code");
  for (;;) {
    v = mu_.load(std::memory_order_relaxed);
    CheckForMutexCorruption(v, "Lock");
    if ((v & waitp->how->slow_need_zero) == 0) {
      if (mu_.compare_exchange_strong(
              v, (waitp->how->fast_or |
                  (v & zap_desig_waker[flags & kMuHasBlocked])) +
                     waitp->how->fast_add,
              std::memory_order_acquire, std::memory_order_relaxed)) {
        if (waitp->cond == nullptr ||
            EvalConditionAnnotated(waitp->cond, this, true, waitp->how)) {
          break;  // we timed out, or condition true, so return
        }
        this->UnlockSlow(waitp);  // got lock but condition false
        this->Block(waitp->thread);
        flags |= kMuHasBlocked;
        c = 0;
      }
    } else {                      // need to access waiter list
      bool dowait = false;
      if ((v & (kMuSpin|kMuWait)) == 0) {   // no waiters
        // This thread tries to become the one and only waiter.
        PerThreadSynch *new_h = Enqueue(nullptr, waitp, v, flags);
        intptr_t nv = (v & zap_desig_waker[flags & kMuHasBlocked] & kMuLow) |
                      kMuWait;
        ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to empty list failed");
        if (waitp->how == kExclusive && (v & kMuReader) != 0) {
          nv |= kMuWrWait;
        }
        if (mu_.compare_exchange_strong(
                v, reinterpret_cast<intptr_t>(new_h) | nv,
                std::memory_order_release, std::memory_order_relaxed)) {
          dowait = true;
        } else {            // attempted Enqueue() failed
          // zero out the waitp field set by Enqueue()
          waitp->thread->waitp = nullptr;
        }
      } else if ((v & waitp->how->slow_inc_need_zero &
                  ignore_waiting_writers[flags & kMuHasBlocked]) == 0) {
        // This is a reader that needs to increment the reader count,
        // but the count is currently held in the last waiter.
        if (mu_.compare_exchange_strong(
                v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin |
                       kMuReader,
                std::memory_order_acquire, std::memory_order_relaxed)) {
          PerThreadSynch *h = GetPerThreadSynch(v);
          h->readers += kMuOne;       // inc reader count in waiter
          do {                        // release spinlock
            v = mu_.load(std::memory_order_relaxed);
          } while (!mu_.compare_exchange_weak(v, (v & ~kMuSpin) | kMuReader,
                                              std::memory_order_release,
                                              std::memory_order_relaxed));
          if (waitp->cond == nullptr ||
              EvalConditionAnnotated(waitp->cond, this, true, waitp->how)) {
            break;  // we timed out, or condition true, so return
          }
          this->UnlockSlow(waitp);           // got lock but condition false
          this->Block(waitp->thread);
          flags |= kMuHasBlocked;
          c = 0;
        }
      } else if ((v & kMuSpin) == 0 &&  // attempt to queue ourselves
                 mu_.compare_exchange_strong(
                     v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin |
                            kMuWait,
                     std::memory_order_acquire, std::memory_order_relaxed)) {
        PerThreadSynch *h = GetPerThreadSynch(v);
        PerThreadSynch *new_h = Enqueue(h, waitp, v, flags);
        intptr_t wr_wait = 0;
        ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to list failed");
        if (waitp->how == kExclusive && (v & kMuReader) != 0) {
          wr_wait = kMuWrWait;      // give priority to a waiting writer
        }
        do {                        // release spinlock
          v = mu_.load(std::memory_order_relaxed);
        } while (!mu_.compare_exchange_weak(
            v, (v & (kMuLow & ~kMuSpin)) | kMuWait | wr_wait |
            reinterpret_cast<intptr_t>(new_h),
            std::memory_order_release, std::memory_order_relaxed));
        dowait = true;
      }
      if (dowait) {
        this->Block(waitp->thread);  // wait until removed from list or timeout
        flags |= kMuHasBlocked;
        c = 0;
      }
    }
    ABSL_RAW_CHECK(
        waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
        "detected illegal recursion into Mutex code");
    c = Delay(c, GENTLE);          // delay, then try again
  }
  ABSL_RAW_CHECK(
      waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
      "detected illegal recursion into Mutex code");
  if ((v & kMuEvent) != 0) {
    PostSynchEvent(this,
                   waitp->how == kExclusive? SYNCH_EV_LOCK_RETURNING :
                                      SYNCH_EV_READERLOCK_RETURNING);
  }
}

// Unlock this mutex, which is held by the current thread.
// If waitp is non-zero, it must be the wait parameters for the current thread
// which holds the lock but is not runnable because its condition is false
// or it is in the process of blocking on a condition variable; it must requeue
// itself on the mutex/condvar to wait for its condition to become true.
void Mutex::UnlockSlow(SynchWaitParams *waitp) {
  intptr_t v = mu_.load(std::memory_order_relaxed);
  this->AssertReaderHeld();
  CheckForMutexCorruption(v, "Unlock");
  if ((v & kMuEvent) != 0) {
    PostSynchEvent(this,
                (v & kMuWriter) != 0? SYNCH_EV_UNLOCK: SYNCH_EV_READERUNLOCK);
  }
  int c = 0;
  // the waiter under consideration to wake, or zero
  PerThreadSynch *w = nullptr;
  // the predecessor to w or zero
  PerThreadSynch *pw = nullptr;
  // head of the list searched previously, or zero
  PerThreadSynch *old_h = nullptr;
  // a condition that's known to be false.
  const Condition *known_false = nullptr;
  PerThreadSynch *wake_list = kPerThreadSynchNull;   // list of threads to wake
  intptr_t wr_wait = 0;        // set to kMuWrWait if we wake a reader and a
                               // later writer could have acquired the lock
                               // (starvation avoidance)
  ABSL_RAW_CHECK(waitp == nullptr || waitp->thread->waitp == nullptr ||
                     waitp->thread->suppress_fatal_errors,
                 "detected illegal recursion into Mutex code");
  // This loop finds threads wake_list to wakeup if any, and removes them from
  // the list of waiters.  In addition, it places waitp.thread on the queue of
  // waiters if waitp is non-zero.
  for (;;) {
    v = mu_.load(std::memory_order_relaxed);
    if ((v & kMuWriter) != 0 && (v & (kMuWait | kMuDesig)) != kMuWait &&
        waitp == nullptr) {
      // fast writer release (writer with no waiters or with designated waker)
      if (mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
                                      std::memory_order_release,
                                      std::memory_order_relaxed)) {
        return;
      }
    } else if ((v & (kMuReader | kMuWait)) == kMuReader && waitp == nullptr) {
      // fast reader release (reader with no waiters)
      intptr_t clear = ExactlyOneReader(v) ? kMuReader | kMuOne : kMuOne;
      if (mu_.compare_exchange_strong(v, v - clear,
                                      std::memory_order_release,
                                      std::memory_order_relaxed)) {
        return;
      }
    } else if ((v & kMuSpin) == 0 &&  // attempt to get spinlock
               mu_.compare_exchange_strong(v, v | kMuSpin,
                                           std::memory_order_acquire,
                                           std::memory_order_relaxed)) {
      if ((v & kMuWait) == 0) {       // no one to wake
        intptr_t nv;
        bool do_enqueue = true;  // always Enqueue() the first time
        ABSL_RAW_CHECK(waitp != nullptr,
                       "UnlockSlow is confused");  // about to sleep
        do {    // must loop to release spinlock as reader count may change
          v = mu_.load(std::memory_order_relaxed);
          // decrement reader count if there are readers
          intptr_t new_readers = (v >= kMuOne)?  v - kMuOne : v;
          PerThreadSynch *new_h = nullptr;
          if (do_enqueue) {
            // If we are enqueuing on a CondVar (waitp->cv_word != nullptr) then
            // we must not retry here.  The initial attempt will always have
            // succeeded, further attempts would enqueue us against *this due to
            // Fer() handling.
            do_enqueue = (waitp->cv_word == nullptr);
            new_h = Enqueue(nullptr, waitp, new_readers, kMuIsCond);
          }
          intptr_t clear = kMuWrWait | kMuWriter;  // by default clear write bit
          if ((v & kMuWriter) == 0 && ExactlyOneReader(v)) {  // last reader
            clear = kMuWrWait | kMuReader;                    // clear read bit
          }
          nv = (v & kMuLow & ~clear & ~kMuSpin);
          if (new_h != nullptr) {
            nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
          } else {  // new_h could be nullptr if we queued ourselves on a
                    // CondVar
            // In that case, we must place the reader count back in the mutex
            // word, as Enqueue() did not store it in the new waiter.
            nv |= new_readers & kMuHigh;
          }
          // release spinlock & our lock; retry if reader-count changed
          // (writer count cannot change since we hold lock)
        } while (!mu_.compare_exchange_weak(v, nv,
                                            std::memory_order_release,
                                            std::memory_order_relaxed));
        break;
      }

      // There are waiters.
      // Set h to the head of the circular waiter list.
      PerThreadSynch *h = GetPerThreadSynch(v);
      if ((v & kMuReader) != 0 && (h->readers & kMuHigh) > kMuOne) {
        // a reader but not the last
        h->readers -= kMuOne;  // release our lock
        intptr_t nv = v;       // normally just release spinlock
        if (waitp != nullptr) {  // but waitp!=nullptr => must queue ourselves
          PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond);
          ABSL_RAW_CHECK(new_h != nullptr,
                         "waiters disappeared during Enqueue()!");
          nv &= kMuLow;
          nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
        }
        mu_.store(nv, std::memory_order_release);  // release spinlock
        // can release with a store because there were waiters
        break;
      }

      // Either we didn't search before, or we marked the queue
      // as "maybe_unlocking" and no one else should have changed it.
      ABSL_RAW_CHECK(old_h == nullptr || h->maybe_unlocking,
                     "Mutex queue changed beneath us");

      // The lock is becoming free, and there's a waiter
      if (old_h != nullptr &&
          !old_h->may_skip) {                  // we used old_h as a terminator
        old_h->may_skip = true;                // allow old_h to skip once more
        ABSL_RAW_CHECK(old_h->skip == nullptr, "illegal skip from head");
        if (h != old_h && MuSameCondition(old_h, old_h->next)) {
          old_h->skip = old_h->next;  // old_h not head & can skip to successor
        }
      }
      if (h->next->waitp->how == kExclusive &&
          Condition::GuaranteedEqual(h->next->waitp->cond, nullptr)) {
        // easy case: writer with no condition; no need to search
        pw = h;                       // wake w, the successor of h (=pw)
        w = h->next;
        w->wake = true;
        // We are waking up a writer.  This writer may be racing against
        // an already awake reader for the lock.  We want the
        // writer to usually win this race,
        // because if it doesn't, we can potentially keep taking a reader
        // perpetually and writers will starve.  Worse than
        // that, this can also starve other readers if kMuWrWait gets set
        // later.
        wr_wait = kMuWrWait;
      } else if (w != nullptr && (w->waitp->how == kExclusive || h == old_h)) {
        // we found a waiter w to wake on a previous iteration and either it's
        // a writer, or we've searched the entire list so we have all the
        // readers.
        if (pw == nullptr) {  // if w's predecessor is unknown, it must be h
          pw = h;
        }
      } else {
        // At this point we don't know all the waiters to wake, and the first
        // waiter has a condition or is a reader.  We avoid searching over
        // waiters we've searched on previous iterations by starting at
        // old_h if it's set.  If old_h==h, there's no one to wakeup at all.
        if (old_h == h) {      // we've searched before, and nothing's new
                               // so there's no one to wake.
          intptr_t nv = (v & ~(kMuReader|kMuWriter|kMuWrWait));
          h->readers = 0;
          h->maybe_unlocking = false;   // finished unlocking
          if (waitp != nullptr) {       // we must queue ourselves and sleep
            PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond);
            nv &= kMuLow;
            if (new_h != nullptr) {
              nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
            }  // else new_h could be nullptr if we queued ourselves on a
               // CondVar
          }
          // release spinlock & lock
          // can release with a store because there were waiters
          mu_.store(nv, std::memory_order_release);
          break;
        }

        // set up to walk the list
        PerThreadSynch *w_walk;   // current waiter during list walk
        PerThreadSynch *pw_walk;  // previous waiter during list walk
        if (old_h != nullptr) {  // we've searched up to old_h before
          pw_walk = old_h;
          w_walk = old_h->next;
        } else {            // no prior search, start at beginning
          pw_walk =
              nullptr;  // h->next's predecessor may change; don't record it
          w_walk = h->next;
        }

        h->may_skip = false;  // ensure we never skip past h in future searches
                              // even if other waiters are queued after it.
        ABSL_RAW_CHECK(h->skip == nullptr, "illegal skip from head");

        h->maybe_unlocking = true;  // we're about to scan the waiter list
                                    // without the spinlock held.
                                    // Enqueue must be conservative about
                                    // priority queuing.

        // We must release the spinlock to evaluate the conditions.
        mu_.store(v, std::memory_order_release);  // release just spinlock
        // can release with a store because there were waiters

        // h is the last waiter queued, and w_walk the first unsearched waiter.
        // Without the spinlock, the locations mu_ and h->next may now change
        // underneath us, but since we hold the lock itself, the only legal
        // change is to add waiters between h and w_walk.  Therefore, it's safe
        // to walk the path from w_walk to h inclusive. (TryRemove() can remove
        // a waiter anywhere, but it acquires both the spinlock and the Mutex)

        old_h = h;        // remember we searched to here

        // Walk the path upto and including h looking for waiters we can wake.
        while (pw_walk != h) {
          w_walk->wake = false;
          if (w_walk->waitp->cond ==
                  nullptr ||  // no condition => vacuously true OR
              (w_walk->waitp->cond != known_false &&
               // this thread's condition is not known false, AND
               //  is in fact true
               EvalConditionIgnored(this, w_walk->waitp->cond))) {
            if (w == nullptr) {
              w_walk->wake = true;    // can wake this waiter
              w = w_walk;
              pw = pw_walk;
              if (w_walk->waitp->how == kExclusive) {
                wr_wait = kMuWrWait;
                break;                // bail if waking this writer
              }
            } else if (w_walk->waitp->how == kShared) {  // wake if a reader
              w_walk->wake = true;
            } else {   // writer with true condition
              wr_wait = kMuWrWait;
            }
          } else {                  // can't wake; condition false
            known_false = w_walk->waitp->cond;  // remember last false condition
          }
          if (w_walk->wake) {   // we're waking reader w_walk
            pw_walk = w_walk;   // don't skip similar waiters
          } else {              // not waking; skip as much as possible
            pw_walk = Skip(w_walk);
          }
          // If pw_walk == h, then load of pw_walk->next can race with
          // concurrent write in Enqueue(). However, at the same time
          // we do not need to do the load, because we will bail out
          // from the loop anyway.
          if (pw_walk != h) {
            w_walk = pw_walk->next;
          }
        }

        continue;  // restart for(;;)-loop to wakeup w or to find more waiters
      }
      ABSL_RAW_CHECK(pw->next == w, "pw not w's predecessor");
      // The first (and perhaps only) waiter we've chosen to wake is w, whose
      // predecessor is pw.  If w is a reader, we must wake all the other
      // waiters with wake==true as well.  We may also need to queue
      // ourselves if waitp != null.  The spinlock and the lock are still
      // held.

      // This traverses the list in [ pw->next, h ], where h is the head,
      // removing all elements with wake==true and placing them in the
      // singly-linked list wake_list.  Returns the new head.
      h = DequeueAllWakeable(h, pw, &wake_list);

      intptr_t nv = (v & kMuEvent) | kMuDesig;
                                             // assume no waiters left,
                                             // set kMuDesig for INV1a

      if (waitp != nullptr) {  // we must queue ourselves and sleep
        h = Enqueue(h, waitp, v, kMuIsCond);
        // h is new last waiter; could be null if we queued ourselves on a
        // CondVar
      }

      ABSL_RAW_CHECK(wake_list != kPerThreadSynchNull,
                     "unexpected empty wake list");

      if (h != nullptr) {  // there are waiters left
        h->readers = 0;
        h->maybe_unlocking = false;     // finished unlocking
        nv |= wr_wait | kMuWait | reinterpret_cast<intptr_t>(h);
      }

      // release both spinlock & lock
      // can release with a store because there were waiters
      mu_.store(nv, std::memory_order_release);
      break;  // out of for(;;)-loop
    }
    c = Delay(c, AGGRESSIVE);  // aggressive here; no one can proceed till we do
  }                            // end of for(;;)-loop

  if (wake_list != kPerThreadSynchNull) {
    int64_t enqueue_timestamp = wake_list->waitp->contention_start_cycles;
    bool cond_waiter = wake_list->cond_waiter;
    do {
      wake_list = Wakeup(wake_list);              // wake waiters
    } while (wake_list != kPerThreadSynchNull);
    if (!cond_waiter) {
      // Sample lock contention events only if the (first) waiter was trying to
      // acquire the lock, not waiting on a condition variable or Condition.
      int64_t wait_cycles = base_internal::CycleClock::Now() - enqueue_timestamp;
      mutex_tracer("slow release", this, wait_cycles);
      ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0);
      submit_profile_data(enqueue_timestamp);
      ABSL_TSAN_MUTEX_POST_DIVERT(this, 0);
    }
  }
}

// Used by CondVar implementation to reacquire mutex after waking from
// condition variable.  This routine is used instead of Lock() because the
// waiting thread may have been moved from the condition variable queue to the
// mutex queue without a wakeup, by Trans().  In that case, when the thread is
// finally woken, the woken thread will believe it has been woken from the
// condition variable (i.e. its PC will be in when in the CondVar code), when
// in fact it has just been woken from the mutex.  Thus, it must enter the slow
// path of the mutex in the same state as if it had just woken from the mutex.
// That is, it must ensure to clear kMuDesig (INV1b).
void Mutex::Trans(MuHow how) {
  this->LockSlow(how, nullptr, kMuHasBlocked | kMuIsCond);
}

// Used by CondVar implementation to effectively wake thread w from the
// condition variable.  If this mutex is free, we simply wake the thread.
// It will later acquire the mutex with high probability.  Otherwise, we
// enqueue thread w on this mutex.
void Mutex::Fer(PerThreadSynch *w) {
  int c = 0;
  ABSL_RAW_CHECK(w->waitp->cond == nullptr,
                 "Mutex::Fer while waiting on Condition");
  ABSL_RAW_CHECK(!w->waitp->timeout.has_timeout(),
                 "Mutex::Fer while in timed wait");
  ABSL_RAW_CHECK(w->waitp->cv_word == nullptr,
                 "Mutex::Fer with pending CondVar queueing");
  for (;;) {
    intptr_t v = mu_.load(std::memory_order_relaxed);
    // Note: must not queue if the mutex is unlocked (nobody will wake it).
    // For example, we can have only kMuWait (conditional) or maybe
    // kMuWait|kMuWrWait.
    // conflicting != 0 implies that the waking thread cannot currently take
    // the mutex, which in turn implies that someone else has it and can wake
    // us if we queue.
    const intptr_t conflicting =
        kMuWriter | (w->waitp->how == kShared ? 0 : kMuReader);
    if ((v & conflicting) == 0) {
      w->next = nullptr;
      w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
      IncrementSynchSem(this, w);
      return;
    } else {
      if ((v & (kMuSpin|kMuWait)) == 0) {       // no waiters
        // This thread tries to become the one and only waiter.
        PerThreadSynch *new_h = Enqueue(nullptr, w->waitp, v, kMuIsCond);
        ABSL_RAW_CHECK(new_h != nullptr,
                       "Enqueue failed");  // we must queue ourselves
        if (mu_.compare_exchange_strong(
                v, reinterpret_cast<intptr_t>(new_h) | (v & kMuLow) | kMuWait,
                std::memory_order_release, std::memory_order_relaxed)) {
          return;
        }
      } else if ((v & kMuSpin) == 0 &&
                 mu_.compare_exchange_strong(v, v | kMuSpin | kMuWait)) {
        PerThreadSynch *h = GetPerThreadSynch(v);
        PerThreadSynch *new_h = Enqueue(h, w->waitp, v, kMuIsCond);
        ABSL_RAW_CHECK(new_h != nullptr,
                       "Enqueue failed");  // we must queue ourselves
        do {
          v = mu_.load(std::memory_order_relaxed);
        } while (!mu_.compare_exchange_weak(
            v,
            (v & kMuLow & ~kMuSpin) | kMuWait |
                reinterpret_cast<intptr_t>(new_h),
            std::memory_order_release, std::memory_order_relaxed));
        return;
      }
    }
    c = Delay(c, GENTLE);
  }
}

void Mutex::AssertHeld() const {
  if ((mu_.load(std::memory_order_relaxed) & kMuWriter) == 0) {
    SynchEvent *e = GetSynchEvent(this);
    ABSL_RAW_LOG(FATAL, "thread should hold write lock on Mutex %p %s",
                 static_cast<const void *>(this),
                 (e == nullptr ? "" : e->name));
  }
}

void Mutex::AssertReaderHeld() const {
  if ((mu_.load(std::memory_order_relaxed) & (kMuReader | kMuWriter)) == 0) {
    SynchEvent *e = GetSynchEvent(this);
    ABSL_RAW_LOG(
        FATAL, "thread should hold at least a read lock on Mutex %p %s",
        static_cast<const void *>(this), (e == nullptr ? "" : e->name));
  }
}

// -------------------------------- condition variables
static const intptr_t kCvSpin = 0x0001L;   // spinlock protects waiter list
static const intptr_t kCvEvent = 0x0002L;  // record events

static const intptr_t kCvLow = 0x0003L;  // low order bits of CV

// Hack to make constant values available to gdb pretty printer
enum { kGdbCvSpin = kCvSpin, kGdbCvEvent = kCvEvent, kGdbCvLow = kCvLow, };

static_assert(PerThreadSynch::kAlignment > kCvLow,
              "PerThreadSynch::kAlignment must be greater than kCvLow");

void CondVar::EnableDebugLog(const char *name) {
  SynchEvent *e = EnsureSynchEvent(&this->cv_, name, kCvEvent, kCvSpin);
  e->log = true;
  UnrefSynchEvent(e);
}

CondVar::~CondVar() {
  if ((cv_.load(std::memory_order_relaxed) & kCvEvent) != 0) {
    ForgetSynchEvent(&this->cv_, kCvEvent, kCvSpin);
  }
}


// Remove thread s from the list of waiters on this condition variable.
void CondVar::Remove(PerThreadSynch *s) {
  intptr_t v;
  int c = 0;
  for (v = cv_.load(std::memory_order_relaxed);;
       v = cv_.load(std::memory_order_relaxed)) {
    if ((v & kCvSpin) == 0 &&  // attempt to acquire spinlock
        cv_.compare_exchange_strong(v, v | kCvSpin,
                                    std::memory_order_acquire,
                                    std::memory_order_relaxed)) {
      PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
      if (h != nullptr) {
        PerThreadSynch *w = h;
        while (w->next != s && w->next != h) {  // search for thread
          w = w->next;
        }
        if (w->next == s) {           // found thread; remove it
          w->next = s->next;
          if (h == s) {
            h = (w == s) ? nullptr : w;
          }
          s->next = nullptr;
          s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
        }
      }
                                      // release spinlock
      cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
                std::memory_order_release);
      return;
    } else {
      c = Delay(c, GENTLE);            // try again after a delay
    }
  }
}

// Queue thread waitp->thread on condition variable word cv_word using
// wait parameters waitp.
// We split this into a separate routine, rather than simply doing it as part
// of WaitCommon().  If we were to queue ourselves on the condition variable
// before calling Mutex::UnlockSlow(), the Mutex code might be re-entered (via
// the logging code, or via a Condition function) and might potentially attempt
// to block this thread.  That would be a problem if the thread were already on
// a the condition variable waiter queue.  Thus, we use the waitp->cv_word
// to tell the unlock code to call CondVarEnqueue() to queue the thread on the
// condition variable queue just before the mutex is to be unlocked, and (most
// importantly) after any call to an external routine that might re-enter the
// mutex code.
static void CondVarEnqueue(SynchWaitParams *waitp) {
  // This thread might be transferred to the Mutex queue by Fer() when
  // we are woken.  To make sure that is what happens, Enqueue() doesn't
  // call CondVarEnqueue() again but instead uses its normal code.  We
  // must do this before we queue ourselves so that cv_word will be null
  // when seen by the dequeuer, who may wish immediately to requeue
  // this thread on another queue.
  std::atomic<intptr_t> *cv_word = waitp->cv_word;
  waitp->cv_word = nullptr;

  intptr_t v = cv_word->load(std::memory_order_relaxed);
  int c = 0;
  while ((v & kCvSpin) != 0 ||  // acquire spinlock
         !cv_word->compare_exchange_weak(v, v | kCvSpin,
                                         std::memory_order_acquire,
                                         std::memory_order_relaxed)) {
    c = Delay(c, GENTLE);
    v = cv_word->load(std::memory_order_relaxed);
  }
  ABSL_RAW_CHECK(waitp->thread->waitp == nullptr, "waiting when shouldn't be");
  waitp->thread->waitp = waitp;      // prepare ourselves for waiting
  PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
  if (h == nullptr) {  // add this thread to waiter list
    waitp->thread->next = waitp->thread;
  } else {
    waitp->thread->next = h->next;
    h->next = waitp->thread;
  }
  waitp->thread->state.store(PerThreadSynch::kQueued,
                             std::memory_order_relaxed);
  cv_word->store((v & kCvEvent) | reinterpret_cast<intptr_t>(waitp->thread),
                 std::memory_order_release);
}

bool CondVar::WaitCommon(Mutex *mutex, KernelTimeout t) {
  bool rc = false;          // return value; true iff we timed-out

  intptr_t mutex_v = mutex->mu_.load(std::memory_order_relaxed);
  Mutex::MuHow mutex_how = ((mutex_v & kMuWriter) != 0) ? kExclusive : kShared;
  ABSL_TSAN_MUTEX_PRE_UNLOCK(mutex, TsanFlags(mutex_how));

  // maybe trace this call
  intptr_t v = cv_.load(std::memory_order_relaxed);
  cond_var_tracer("Wait", this);
  if ((v & kCvEvent) != 0) {
    PostSynchEvent(this, SYNCH_EV_WAIT);
  }

  // Release mu and wait on condition variable.
  SynchWaitParams waitp(mutex_how, nullptr, t, mutex,
                        Synch_GetPerThreadAnnotated(mutex), &cv_);
  // UnlockSlow() will call CondVarEnqueue() just before releasing the
  // Mutex, thus queuing this thread on the condition variable.  See
  // CondVarEnqueue() for the reasons.
  mutex->UnlockSlow(&waitp);

  // wait for signal
  while (waitp.thread->state.load(std::memory_order_acquire) ==
         PerThreadSynch::kQueued) {
    if (!Mutex::DecrementSynchSem(mutex, waitp.thread, t)) {
      this->Remove(waitp.thread);
      rc = true;
    }
  }

  ABSL_RAW_CHECK(waitp.thread->waitp != nullptr, "not waiting when should be");
  waitp.thread->waitp = nullptr;  // cleanup

  // maybe trace this call
  cond_var_tracer("Unwait", this);
  if ((v & kCvEvent) != 0) {
    PostSynchEvent(this, SYNCH_EV_WAIT_RETURNING);
  }

  // From synchronization point of view Wait is unlock of the mutex followed
  // by lock of the mutex. We've annotated start of unlock in the beginning
  // of the function. Now, finish unlock and annotate lock of the mutex.
  // (Trans is effectively lock).
  ABSL_TSAN_MUTEX_POST_UNLOCK(mutex, TsanFlags(mutex_how));
  ABSL_TSAN_MUTEX_PRE_LOCK(mutex, TsanFlags(mutex_how));
  mutex->Trans(mutex_how);  // Reacquire mutex
  ABSL_TSAN_MUTEX_POST_LOCK(mutex, TsanFlags(mutex_how), 0);
  return rc;
}

bool CondVar::WaitWithTimeout(Mutex *mu, absl::Duration timeout) {
  return WaitWithDeadline(mu, DeadlineFromTimeout(timeout));
}

bool CondVar::WaitWithDeadline(Mutex *mu, absl::Time deadline) {
  return WaitCommon(mu, KernelTimeout(deadline));
}

void CondVar::Wait(Mutex *mu) {
  WaitCommon(mu, KernelTimeout::Never());
}

// Wake thread w
// If it was a timed wait, w will be waiting on w->cv
// Otherwise, if it was not a Mutex mutex, w will be waiting on w->sem
// Otherwise, w is transferred to the Mutex mutex via Mutex::Fer().
void CondVar::Wakeup(PerThreadSynch *w) {
  if (w->waitp->timeout.has_timeout() || w->waitp->cvmu == nullptr) {
    // The waiting thread only needs to observe "w->state == kAvailable" to be
    // released, we must cache "cvmu" before clearing "next".
    Mutex *mu = w->waitp->cvmu;
    w->next = nullptr;
    w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
    Mutex::IncrementSynchSem(mu, w);
  } else {
    w->waitp->cvmu->Fer(w);
  }
}

void CondVar::Signal() {
  ABSL_TSAN_MUTEX_PRE_SIGNAL(0, 0);
  intptr_t v;
  int c = 0;
  for (v = cv_.load(std::memory_order_relaxed); v != 0;
       v = cv_.load(std::memory_order_relaxed)) {
    if ((v & kCvSpin) == 0 &&  // attempt to acquire spinlock
        cv_.compare_exchange_strong(v, v | kCvSpin,
                                    std::memory_order_acquire,
                                    std::memory_order_relaxed)) {
      PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
      PerThreadSynch *w = nullptr;
      if (h != nullptr) {  // remove first waiter
        w = h->next;
        if (w == h) {
          h = nullptr;
        } else {
          h->next = w->next;
        }
      }
                                      // release spinlock
      cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
                std::memory_order_release);
      if (w != nullptr) {
        CondVar::Wakeup(w);                // wake waiter, if there was one
        cond_var_tracer("Signal wakeup", this);
      }
      if ((v & kCvEvent) != 0) {
        PostSynchEvent(this, SYNCH_EV_SIGNAL);
      }
      ABSL_TSAN_MUTEX_POST_SIGNAL(0, 0);
      return;
    } else {
      c = Delay(c, GENTLE);
    }
  }
  ABSL_TSAN_MUTEX_POST_SIGNAL(0, 0);
}

void CondVar::SignalAll () {
  ABSL_TSAN_MUTEX_PRE_SIGNAL(0, 0);
  intptr_t v;
  int c = 0;
  for (v = cv_.load(std::memory_order_relaxed); v != 0;
       v = cv_.load(std::memory_order_relaxed)) {
    // empty the list if spinlock free
    // We do this by simply setting the list to empty using
    // compare and swap.   We then have the entire list in our hands,
    // which cannot be changing since we grabbed it while no one
    // held the lock.
    if ((v & kCvSpin) == 0 &&
        cv_.compare_exchange_strong(v, v & kCvEvent, std::memory_order_acquire,
                                    std::memory_order_relaxed)) {
      PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
      if (h != nullptr) {
        PerThreadSynch *w;
        PerThreadSynch *n = h->next;
        do {                          // for every thread, wake it up
          w = n;
          n = n->next;
          CondVar::Wakeup(w);
        } while (w != h);
        cond_var_tracer("SignalAll wakeup", this);
      }
      if ((v & kCvEvent) != 0) {
        PostSynchEvent(this, SYNCH_EV_SIGNALALL);
      }
      ABSL_TSAN_MUTEX_POST_SIGNAL(0, 0);
      return;
    } else {
      c = Delay(c, GENTLE);           // try again after a delay
    }
  }
  ABSL_TSAN_MUTEX_POST_SIGNAL(0, 0);
}

void ReleasableMutexLock::Release() {
  ABSL_RAW_CHECK(this->mu_ != nullptr,
                 "ReleasableMutexLock::Release may only be called once");
  this->mu_->Unlock();
  this->mu_ = nullptr;
}

#ifdef THREAD_SANITIZER
extern "C" void __tsan_read1(void *addr);
#else
#define __tsan_read1(addr)  // do nothing if TSan not enabled
#endif

// A function that just returns its argument, dereferenced
static bool Dereference(void *arg) {
  // ThreadSanitizer does not instrument this file for memory accesses.
  // This function dereferences a user variable that can participate
  // in a data race, so we need to manually tell TSan about this memory access.
  __tsan_read1(arg);
  return *(static_cast<bool *>(arg));
}

Condition::Condition() {}   // null constructor, used for kTrue only
const Condition Condition::kTrue;

Condition::Condition(bool (*func)(void *), void *arg)
    : eval_(&CallVoidPtrFunction),
      function_(func),
      method_(nullptr),
      arg_(arg) {}

bool Condition::CallVoidPtrFunction(const Condition *c) {
  return (*c->function_)(c->arg_);
}

Condition::Condition(const bool *cond)
    : eval_(CallVoidPtrFunction),
      function_(Dereference),
      method_(nullptr),
      // const_cast is safe since Dereference does not modify arg
      arg_(const_cast<bool *>(cond)) {}

bool Condition::Eval() const {
  // eval_ == null for kTrue
  return (this->eval_ == nullptr) || (*this->eval_)(this);
}

bool Condition::GuaranteedEqual(const Condition *a, const Condition *b) {
  if (a == nullptr) {
    return b == nullptr || b->eval_ == nullptr;
  }
  if (b == nullptr || b->eval_ == nullptr) {
    return a->eval_ == nullptr;
  }
  return a->eval_ == b->eval_ && a->function_ == b->function_ &&
         a->arg_ == b->arg_ && a->method_ == b->method_;
}

}  // namespace absl