charconv_parse.cc 18 KB
Newer Older
wangdawei's avatar
wangdawei committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/strings/internal/charconv_parse.h"
#include "absl/strings/charconv.h"

#include <cassert>
#include <cstdint>
#include <limits>

#include "absl/strings/internal/memutil.h"

namespace absl {
namespace {

// ParseFloat<10> will read the first 19 significant digits of the mantissa.
// This number was chosen for multiple reasons.
//
// (a) First, for whatever integer type we choose to represent the mantissa, we
// want to choose the largest possible number of decimal digits for that integer
// type.  We are using uint64_t, which can express any 19-digit unsigned
// integer.
//
// (b) Second, we need to parse enough digits that the binary value of any
// mantissa we capture has more bits of resolution than the mantissa
// representation in the target float.  Our algorithm requires at least 3 bits
// of headway, but 19 decimal digits give a little more than that.
//
// The following static assertions verify the above comments:
constexpr int kDecimalMantissaDigitsMax = 19;

static_assert(std::numeric_limits<uint64_t>::digits10 ==
                  kDecimalMantissaDigitsMax,
              "(a) above");

// IEEE doubles, which we assume in Abseil, have 53 binary bits of mantissa.
static_assert(std::numeric_limits<double>::is_iec559, "IEEE double assumed");
static_assert(std::numeric_limits<double>::radix == 2, "IEEE double fact");
static_assert(std::numeric_limits<double>::digits == 53, "IEEE double fact");

// The lowest valued 19-digit decimal mantissa we can read still contains
// sufficient information to reconstruct a binary mantissa.
static_assert(1000000000000000000u > (uint64_t(1) << (53 + 3)), "(b) above");

// ParseFloat<16> will read the first 15 significant digits of the mantissa.
//
// Because a base-16-to-base-2 conversion can be done exactly, we do not need
// to maximize the number of scanned hex digits to improve our conversion.  What
// is required is to scan two more bits than the mantissa can represent, so that
// we always round correctly.
//
// (One extra bit does not suffice to perform correct rounding, since a number
// exactly halfway between two representable floats has unique rounding rules,
// so we need to differentiate between a "halfway between" number and a "closer
// to the larger value" number.)
constexpr int kHexadecimalMantissaDigitsMax = 15;

// The minimum number of significant bits that will be read from
// kHexadecimalMantissaDigitsMax hex digits.  We must subtract by three, since
// the most significant digit can be a "1", which only contributes a single
// significant bit.
constexpr int kGuaranteedHexadecimalMantissaBitPrecision =
    4 * kHexadecimalMantissaDigitsMax - 3;

static_assert(kGuaranteedHexadecimalMantissaBitPrecision >
                  std::numeric_limits<double>::digits + 2,
              "kHexadecimalMantissaDigitsMax too small");

// We also impose a limit on the number of significant digits we will read from
// an exponent, to avoid having to deal with integer overflow.  We use 9 for
// this purpose.
//
// If we read a 9 digit exponent, the end result of the conversion will
// necessarily be infinity or zero, depending on the sign of the exponent.
// Therefore we can just drop extra digits on the floor without any extra
// logic.
constexpr int kDecimalExponentDigitsMax = 9;
static_assert(std::numeric_limits<int>::digits10 >= kDecimalExponentDigitsMax,
              "int type too small");

// To avoid incredibly large inputs causing integer overflow for our exponent,
// we impose an arbitrary but very large limit on the number of significant
// digits we will accept.  The implementation refuses to match a string with
// more consecutive significant mantissa digits than this.
constexpr int kDecimalDigitLimit = 50000000;

// Corresponding limit for hexadecimal digit inputs.  This is one fourth the
// amount of kDecimalDigitLimit, since each dropped hexadecimal digit requires
// a binary exponent adjustment of 4.
constexpr int kHexadecimalDigitLimit = kDecimalDigitLimit / 4;

// The largest exponent we can read is 999999999 (per
// kDecimalExponentDigitsMax), and the largest exponent adjustment we can get
// from dropped mantissa digits is 2 * kDecimalDigitLimit, and the sum of these
// comfortably fits in an integer.
//
// We count kDecimalDigitLimit twice because there are independent limits for
// numbers before and after the decimal point.  (In the case where there are no
// significant digits before the decimal point, there are independent limits for
// post-decimal-point leading zeroes and for significant digits.)
static_assert(999999999 + 2 * kDecimalDigitLimit <
                  std::numeric_limits<int>::max(),
              "int type too small");
static_assert(999999999 + 2 * (4 * kHexadecimalDigitLimit) <
                  std::numeric_limits<int>::max(),
              "int type too small");

// Returns true if the provided bitfield allows parsing an exponent value
// (e.g., "1.5e100").
bool AllowExponent(chars_format flags) {
  bool fixed = (flags & chars_format::fixed) == chars_format::fixed;
  bool scientific =
      (flags & chars_format::scientific) == chars_format::scientific;
  return scientific || !fixed;
}

// Returns true if the provided bitfield requires an exponent value be present.
bool RequireExponent(chars_format flags) {
  bool fixed = (flags & chars_format::fixed) == chars_format::fixed;
  bool scientific =
      (flags & chars_format::scientific) == chars_format::scientific;
  return scientific && !fixed;
}

const int8_t kAsciiToInt[256] = {
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0,  1,  2,  3,  4,  5,  6,  7,  8,
    9,  -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1,
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    -1, -1, -1, -1, -1, -1, -1, -1, -1};

// Returns true if `ch` is a digit in the given base
template <int base>
bool IsDigit(char ch);

// Converts a valid `ch` to its digit value in the given base.
template <int base>
unsigned ToDigit(char ch);

// Returns true if `ch` is the exponent delimiter for the given base.
template <int base>
bool IsExponentCharacter(char ch);

// Returns the maximum number of significant digits we will read for a float
// in the given base.
template <int base>
constexpr int MantissaDigitsMax();

// Returns the largest consecutive run of digits we will accept when parsing a
// number in the given base.
template <int base>
constexpr int DigitLimit();

// Returns the amount the exponent must be adjusted by for each dropped digit.
// (For decimal this is 1, since the digits are in base 10 and the exponent base
// is also 10, but for hexadecimal this is 4, since the digits are base 16 but
// the exponent base is 2.)
template <int base>
constexpr int DigitMagnitude();

template <>
bool IsDigit<10>(char ch) {
  return ch >= '0' && ch <= '9';
}
template <>
bool IsDigit<16>(char ch) {
  return kAsciiToInt[static_cast<unsigned char>(ch)] >= 0;
}

template <>
unsigned ToDigit<10>(char ch) {
  return ch - '0';
}
template <>
unsigned ToDigit<16>(char ch) {
  return kAsciiToInt[static_cast<unsigned char>(ch)];
}

template <>
bool IsExponentCharacter<10>(char ch) {
  return ch == 'e' || ch == 'E';
}

template <>
bool IsExponentCharacter<16>(char ch) {
  return ch == 'p' || ch == 'P';
}

template <>
constexpr int MantissaDigitsMax<10>() {
  return kDecimalMantissaDigitsMax;
}
template <>
constexpr int MantissaDigitsMax<16>() {
  return kHexadecimalMantissaDigitsMax;
}

template <>
constexpr int DigitLimit<10>() {
  return kDecimalDigitLimit;
}
template <>
constexpr int DigitLimit<16>() {
  return kHexadecimalDigitLimit;
}

template <>
constexpr int DigitMagnitude<10>() {
  return 1;
}
template <>
constexpr int DigitMagnitude<16>() {
  return 4;
}

// Reads decimal digits from [begin, end) into *out.  Returns the number of
// digits consumed.
//
// After max_digits has been read, keeps consuming characters, but no longer
// adjusts *out.  If a nonzero digit is dropped this way, *dropped_nonzero_digit
// is set; otherwise, it is left unmodified.
//
// If no digits are matched, returns 0 and leaves *out unchanged.
//
// ConsumeDigits does not protect against overflow on *out; max_digits must
// be chosen with respect to type T to avoid the possibility of overflow.
template <int base, typename T>
std::size_t ConsumeDigits(const char* begin, const char* end, int max_digits,
                          T* out, bool* dropped_nonzero_digit) {
  if (base == 10) {
    assert(max_digits <= std::numeric_limits<T>::digits10);
  } else if (base == 16) {
    assert(max_digits * 4 <= std::numeric_limits<T>::digits);
  }
  const char* const original_begin = begin;
  T accumulator = *out;
  const char* significant_digits_end =
      (end - begin > max_digits) ? begin + max_digits : end;
  while (begin < significant_digits_end && IsDigit<base>(*begin)) {
    // Do not guard against *out overflow; max_digits was chosen to avoid this.
    // Do assert against it, to detect problems in debug builds.
    auto digit = static_cast<T>(ToDigit<base>(*begin));
    assert(accumulator * base >= accumulator);
    accumulator *= base;
    assert(accumulator + digit >= accumulator);
    accumulator += digit;
    ++begin;
  }
  bool dropped_nonzero = false;
  while (begin < end && IsDigit<base>(*begin)) {
    dropped_nonzero = dropped_nonzero || (*begin != '0');
    ++begin;
  }
  if (dropped_nonzero && dropped_nonzero_digit != nullptr) {
    *dropped_nonzero_digit = true;
  }
  *out = accumulator;
  return begin - original_begin;
}

// Returns true if `v` is one of the chars allowed inside parentheses following
// a NaN.
bool IsNanChar(char v) {
  return (v == '_') || (v >= '0' && v <= '9') || (v >= 'a' && v <= 'z') ||
         (v >= 'A' && v <= 'Z');
}

// Checks the range [begin, end) for a strtod()-formatted infinity or NaN.  If
// one is found, sets `out` appropriately and returns true.
bool ParseInfinityOrNan(const char* begin, const char* end,
                        strings_internal::ParsedFloat* out) {
  if (end - begin < 3) {
    return false;
  }
  switch (*begin) {
    case 'i':
    case 'I': {
      // An infinity std::string consists of the characters "inf" or "infinity",
      // case insensitive.
      if (strings_internal::memcasecmp(begin + 1, "nf", 2) != 0) {
        return false;
      }
      out->type = strings_internal::FloatType::kInfinity;
      if (end - begin >= 8 &&
          strings_internal::memcasecmp(begin + 3, "inity", 5) == 0) {
        out->end = begin + 8;
      } else {
        out->end = begin + 3;
      }
      return true;
    }
    case 'n':
    case 'N': {
      // A NaN consists of the characters "nan", case insensitive, optionally
      // followed by a parenthesized sequence of zero or more alphanumeric
      // characters and/or underscores.
      if (strings_internal::memcasecmp(begin + 1, "an", 2) != 0) {
        return false;
      }
      out->type = strings_internal::FloatType::kNan;
      out->end = begin + 3;
      // NaN is allowed to be followed by a parenthesized std::string, consisting of
      // only the characters [a-zA-Z0-9_].  Match that if it's present.
      begin += 3;
      if (begin < end && *begin == '(') {
        const char* nan_begin = begin + 1;
        while (nan_begin < end && IsNanChar(*nan_begin)) {
          ++nan_begin;
        }
        if (nan_begin < end && *nan_begin == ')') {
          // We found an extra NaN specifier range
          out->subrange_begin = begin + 1;
          out->subrange_end = nan_begin;
          out->end = nan_begin + 1;
        }
      }
      return true;
    }
    default:
      return false;
  }
}
}  // namespace

namespace strings_internal {

template <int base>
strings_internal::ParsedFloat ParseFloat(const char* begin, const char* end,
                                         chars_format format_flags) {
  strings_internal::ParsedFloat result;

  // Exit early if we're given an empty range.
  if (begin == end) return result;

  // Handle the infinity and NaN cases.
  if (ParseInfinityOrNan(begin, end, &result)) {
    return result;
  }

  const char* const mantissa_begin = begin;
  while (begin < end && *begin == '0') {
    ++begin;  // skip leading zeros
  }
  uint64_t mantissa = 0;

  int exponent_adjustment = 0;
  bool mantissa_is_inexact = false;
  std::size_t pre_decimal_digits = ConsumeDigits<base>(
      begin, end, MantissaDigitsMax<base>(), &mantissa, &mantissa_is_inexact);
  begin += pre_decimal_digits;
  int digits_left;
  if (pre_decimal_digits >= DigitLimit<base>()) {
    // refuse to parse pathological inputs
    return result;
  } else if (pre_decimal_digits > MantissaDigitsMax<base>()) {
    // We dropped some non-fraction digits on the floor.  Adjust our exponent
    // to compensate.
    exponent_adjustment =
        static_cast<int>(pre_decimal_digits - MantissaDigitsMax<base>());
    digits_left = 0;
  } else {
    digits_left =
        static_cast<int>(MantissaDigitsMax<base>() - pre_decimal_digits);
  }
  if (begin < end && *begin == '.') {
    ++begin;
    if (mantissa == 0) {
      // If we haven't seen any nonzero digits yet, keep skipping zeros.  We
      // have to adjust the exponent to reflect the changed place value.
      const char* begin_zeros = begin;
      while (begin < end && *begin == '0') {
        ++begin;
      }
      std::size_t zeros_skipped = begin - begin_zeros;
      if (zeros_skipped >= DigitLimit<base>()) {
        // refuse to parse pathological inputs
        return result;
      }
      exponent_adjustment -= static_cast<int>(zeros_skipped);
    }
    std::size_t post_decimal_digits = ConsumeDigits<base>(
        begin, end, digits_left, &mantissa, &mantissa_is_inexact);
    begin += post_decimal_digits;

    // Since `mantissa` is an integer, each significant digit we read after
    // the decimal point requires an adjustment to the exponent. "1.23e0" will
    // be stored as `mantissa` == 123 and `exponent` == -2 (that is,
    // "123e-2").
    if (post_decimal_digits >= DigitLimit<base>()) {
      // refuse to parse pathological inputs
      return result;
    } else if (post_decimal_digits > digits_left) {
      exponent_adjustment -= digits_left;
    } else {
      exponent_adjustment -= post_decimal_digits;
    }
  }
  // If we've found no mantissa whatsoever, this isn't a number.
  if (mantissa_begin == begin) {
    return result;
  }
  // A bare "." doesn't count as a mantissa either.
  if (begin - mantissa_begin == 1 && *mantissa_begin == '.') {
    return result;
  }

  if (mantissa_is_inexact) {
    // We dropped significant digits on the floor.  Handle this appropriately.
    if (base == 10) {
      // If we truncated significant decimal digits, store the full range of the
      // mantissa for future big integer math for exact rounding.
      result.subrange_begin = mantissa_begin;
      result.subrange_end = begin;
    } else if (base == 16) {
      // If we truncated hex digits, reflect this fact by setting the low
      // ("sticky") bit.  This allows for correct rounding in all cases.
      mantissa |= 1;
    }
  }
  result.mantissa = mantissa;

  const char* const exponent_begin = begin;
  result.literal_exponent = 0;
  bool found_exponent = false;
  if (AllowExponent(format_flags) && begin < end &&
      IsExponentCharacter<base>(*begin)) {
    bool negative_exponent = false;
    ++begin;
    if (begin < end && *begin == '-') {
      negative_exponent = true;
      ++begin;
    } else if (begin < end && *begin == '+') {
      ++begin;
    }
    const char* const exponent_digits_begin = begin;
    // Exponent is always expressed in decimal, even for hexadecimal floats.
    begin += ConsumeDigits<10>(begin, end, kDecimalExponentDigitsMax,
                               &result.literal_exponent, nullptr);
    if (begin == exponent_digits_begin) {
      // there were no digits where we expected an exponent.  We failed to read
      // an exponent and should not consume the 'e' after all.  Rewind 'begin'.
      found_exponent = false;
      begin = exponent_begin;
    } else {
      found_exponent = true;
      if (negative_exponent) {
        result.literal_exponent = -result.literal_exponent;
      }
    }
  }

  if (!found_exponent && RequireExponent(format_flags)) {
    // Provided flags required an exponent, but none was found.  This results
    // in a failure to scan.
    return result;
  }

  // Success!
  result.type = strings_internal::FloatType::kNumber;
  if (result.mantissa > 0) {
    result.exponent = result.literal_exponent +
                      (DigitMagnitude<base>() * exponent_adjustment);
  } else {
    result.exponent = 0;
  }
  result.end = begin;
  return result;
}

template ParsedFloat ParseFloat<10>(const char* begin, const char* end,
                                    chars_format format_flags);
template ParsedFloat ParseFloat<16>(const char* begin, const char* end,
                                    chars_format format_flags);

}  // namespace strings_internal
}  // namespace absl