graphcycles.cc 19.4 KB
Newer Older
wangdawei's avatar
wangdawei committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// GraphCycles provides incremental cycle detection on a dynamic
// graph using the following algorithm:
//
// A dynamic topological sort algorithm for directed acyclic graphs
// David J. Pearce, Paul H. J. Kelly
// Journal of Experimental Algorithmics (JEA) JEA Homepage archive
// Volume 11, 2006, Article No. 1.7
//
// Brief summary of the algorithm:
//
// (1) Maintain a rank for each node that is consistent
//     with the topological sort of the graph. I.e., path from x to y
//     implies rank[x] < rank[y].
// (2) When a new edge (x->y) is inserted, do nothing if rank[x] < rank[y].
// (3) Otherwise: adjust ranks in the neighborhood of x and y.

#include "absl/base/attributes.h"
// This file is a no-op if the required LowLevelAlloc support is missing.
#include "absl/base/internal/low_level_alloc.h"
#ifndef ABSL_LOW_LEVEL_ALLOC_MISSING

#include "absl/synchronization/internal/graphcycles.h"

#include <algorithm>
#include <array>
#include "absl/base/internal/hide_ptr.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/spinlock.h"

// Do not use STL.   This module does not use standard memory allocation.

namespace absl {
namespace synchronization_internal {

namespace {

// Avoid LowLevelAlloc's default arena since it calls malloc hooks in
// which people are doing things like acquiring Mutexes.
static absl::base_internal::SpinLock arena_mu(
    absl::base_internal::kLinkerInitialized);
static base_internal::LowLevelAlloc::Arena* arena;

static void InitArenaIfNecessary() {
  arena_mu.Lock();
  if (arena == nullptr) {
    arena = base_internal::LowLevelAlloc::NewArena(0);
  }
  arena_mu.Unlock();
}

// Number of inlined elements in Vec.  Hash table implementation
// relies on this being a power of two.
static const uint32_t kInline = 8;

// A simple LowLevelAlloc based resizable vector with inlined storage
// for a few elements.  T must be a plain type since constructor
// and destructor are not run on elements of type T managed by Vec.
template <typename T>
class Vec {
 public:
  Vec() { Init(); }
  ~Vec() { Discard(); }

  void clear() {
    Discard();
    Init();
  }

  bool empty() const { return size_ == 0; }
  uint32_t size() const { return size_; }
  T* begin() { return ptr_; }
  T* end() { return ptr_ + size_; }
  const T& operator[](uint32_t i) const { return ptr_[i]; }
  T& operator[](uint32_t i) { return ptr_[i]; }
  const T& back() const { return ptr_[size_-1]; }
  void pop_back() { size_--; }

  void push_back(const T& v) {
    if (size_ == capacity_) Grow(size_ + 1);
    ptr_[size_] = v;
    size_++;
  }

  void resize(uint32_t n) {
    if (n > capacity_) Grow(n);
    size_ = n;
  }

  void fill(const T& val) {
    for (uint32_t i = 0; i < size(); i++) {
      ptr_[i] = val;
    }
  }

  // Guarantees src is empty at end.
  // Provided for the hash table resizing code below.
  void MoveFrom(Vec<T>* src) {
    if (src->ptr_ == src->space_) {
      // Need to actually copy
      resize(src->size_);
      std::copy(src->ptr_, src->ptr_ + src->size_, ptr_);
      src->size_ = 0;
    } else {
      Discard();
      ptr_ = src->ptr_;
      size_ = src->size_;
      capacity_ = src->capacity_;
      src->Init();
    }
  }

 private:
  T* ptr_;
  T space_[kInline];
  uint32_t size_;
  uint32_t capacity_;

  void Init() {
    ptr_ = space_;
    size_ = 0;
    capacity_ = kInline;
  }

  void Discard() {
    if (ptr_ != space_) base_internal::LowLevelAlloc::Free(ptr_);
  }

  void Grow(uint32_t n) {
    while (capacity_ < n) {
      capacity_ *= 2;
    }
    size_t request = static_cast<size_t>(capacity_) * sizeof(T);
    T* copy = static_cast<T*>(
        base_internal::LowLevelAlloc::AllocWithArena(request, arena));
    std::copy(ptr_, ptr_ + size_, copy);
    Discard();
    ptr_ = copy;
  }

  Vec(const Vec&) = delete;
  Vec& operator=(const Vec&) = delete;
};

// A hash set of non-negative int32_t that uses Vec for its underlying storage.
class NodeSet {
 public:
  NodeSet() { Init(); }

  void clear() { Init(); }
  bool contains(int32_t v) const { return table_[FindIndex(v)] == v; }

  bool insert(int32_t v) {
    uint32_t i = FindIndex(v);
    if (table_[i] == v) {
      return false;
    }
    if (table_[i] == kEmpty) {
      // Only inserting over an empty cell increases the number of occupied
      // slots.
      occupied_++;
    }
    table_[i] = v;
    // Double when 75% full.
    if (occupied_ >= table_.size() - table_.size()/4) Grow();
    return true;
  }

  void erase(uint32_t v) {
    uint32_t i = FindIndex(v);
    if (static_cast<uint32_t>(table_[i]) == v) {
      table_[i] = kDel;
    }
  }

  // Iteration: is done via HASH_FOR_EACH
  // Example:
  //    HASH_FOR_EACH(elem, node->out) { ... }
#define HASH_FOR_EACH(elem, eset) \
  for (int32_t elem, _cursor = 0; (eset).Next(&_cursor, &elem); )
  bool Next(int32_t* cursor, int32_t* elem) {
    while (static_cast<uint32_t>(*cursor) < table_.size()) {
      int32_t v = table_[*cursor];
      (*cursor)++;
      if (v >= 0) {
        *elem = v;
        return true;
      }
    }
    return false;
  }

 private:
  enum : int32_t { kEmpty = -1, kDel = -2 };
  Vec<int32_t> table_;
  uint32_t occupied_;     // Count of non-empty slots (includes deleted slots)

  static uint32_t Hash(uint32_t a) { return a * 41; }

  // Return index for storing v.  May return an empty index or deleted index
  int FindIndex(int32_t v) const {
    // Search starting at hash index.
    const uint32_t mask = table_.size() - 1;
    uint32_t i = Hash(v) & mask;
    int deleted_index = -1;  // If >= 0, index of first deleted element we see
    while (true) {
      int32_t e = table_[i];
      if (v == e) {
        return i;
      } else if (e == kEmpty) {
        // Return any previously encountered deleted slot.
        return (deleted_index >= 0) ? deleted_index : i;
      } else if (e == kDel && deleted_index < 0) {
        // Keep searching since v might be present later.
        deleted_index = i;
      }
      i = (i + 1) & mask;  // Linear probing; quadratic is slightly slower.
    }
  }

  void Init() {
    table_.clear();
    table_.resize(kInline);
    table_.fill(kEmpty);
    occupied_ = 0;
  }

  void Grow() {
    Vec<int32_t> copy;
    copy.MoveFrom(&table_);
    occupied_ = 0;
    table_.resize(copy.size() * 2);
    table_.fill(kEmpty);

    for (const auto& e : copy) {
      if (e >= 0) insert(e);
    }
  }

  NodeSet(const NodeSet&) = delete;
  NodeSet& operator=(const NodeSet&) = delete;
};

// We encode a node index and a node version in GraphId.  The version
// number is incremented when the GraphId is freed which automatically
// invalidates all copies of the GraphId.

inline GraphId MakeId(int32_t index, uint32_t version) {
  GraphId g;
  g.handle =
      (static_cast<uint64_t>(version) << 32) | static_cast<uint32_t>(index);
  return g;
}

inline int32_t NodeIndex(GraphId id) {
  return static_cast<uint32_t>(id.handle & 0xfffffffful);
}

inline uint32_t NodeVersion(GraphId id) {
  return static_cast<uint32_t>(id.handle >> 32);
}

struct Node {
  int32_t rank;               // rank number assigned by Pearce-Kelly algorithm
  uint32_t version;           // Current version number
  int32_t next_hash;          // Next entry in hash table
  bool visited;               // Temporary marker used by depth-first-search
  uintptr_t masked_ptr;       // User-supplied pointer
  NodeSet in;                 // List of immediate predecessor nodes in graph
  NodeSet out;                // List of immediate successor nodes in graph
  int priority;               // Priority of recorded stack trace.
  int nstack;                 // Depth of recorded stack trace.
  void* stack[40];            // stack[0,nstack-1] holds stack trace for node.
};

// Hash table for pointer to node index lookups.
class PointerMap {
 public:
  explicit PointerMap(const Vec<Node*>* nodes) : nodes_(nodes) {
    table_.fill(-1);
  }

  int32_t Find(void* ptr) {
    auto masked = base_internal::HidePtr(ptr);
    for (int32_t i = table_[Hash(ptr)]; i != -1;) {
      Node* n = (*nodes_)[i];
      if (n->masked_ptr == masked) return i;
      i = n->next_hash;
    }
    return -1;
  }

  void Add(void* ptr, int32_t i) {
    int32_t* head = &table_[Hash(ptr)];
    (*nodes_)[i]->next_hash = *head;
    *head = i;
  }

  int32_t Remove(void* ptr) {
    // Advance through linked list while keeping track of the
    // predecessor slot that points to the current entry.
    auto masked = base_internal::HidePtr(ptr);
    for (int32_t* slot = &table_[Hash(ptr)]; *slot != -1; ) {
      int32_t index = *slot;
      Node* n = (*nodes_)[index];
      if (n->masked_ptr == masked) {
        *slot = n->next_hash;  // Remove n from linked list
        n->next_hash = -1;
        return index;
      }
      slot = &n->next_hash;
    }
    return -1;
  }

 private:
  // Number of buckets in hash table for pointer lookups.
  static constexpr uint32_t kHashTableSize = 8171;  // should be prime

  const Vec<Node*>* nodes_;
  std::array<int32_t, kHashTableSize> table_;

  static uint32_t Hash(void* ptr) {
    return reinterpret_cast<uintptr_t>(ptr) % kHashTableSize;
  }
};

}  // namespace

struct GraphCycles::Rep {
  Vec<Node*> nodes_;
  Vec<int32_t> free_nodes_;  // Indices for unused entries in nodes_
  PointerMap ptrmap_;

  // Temporary state.
  Vec<int32_t> deltaf_;  // Results of forward DFS
  Vec<int32_t> deltab_;  // Results of backward DFS
  Vec<int32_t> list_;    // All nodes to reprocess
  Vec<int32_t> merged_;  // Rank values to assign to list_ entries
  Vec<int32_t> stack_;   // Emulates recursion stack for depth-first searches

  Rep() : ptrmap_(&nodes_) {}
};

static Node* FindNode(GraphCycles::Rep* rep, GraphId id) {
  Node* n = rep->nodes_[NodeIndex(id)];
  return (n->version == NodeVersion(id)) ? n : nullptr;
}

GraphCycles::GraphCycles() {
  InitArenaIfNecessary();
  rep_ = new (base_internal::LowLevelAlloc::AllocWithArena(sizeof(Rep), arena))
      Rep;
}

GraphCycles::~GraphCycles() {
  for (auto* node : rep_->nodes_) {
    node->Node::~Node();
    base_internal::LowLevelAlloc::Free(node);
  }
  rep_->Rep::~Rep();
  base_internal::LowLevelAlloc::Free(rep_);
}

bool GraphCycles::CheckInvariants() const {
  Rep* r = rep_;
  NodeSet ranks;  // Set of ranks seen so far.
  for (uint32_t x = 0; x < r->nodes_.size(); x++) {
    Node* nx = r->nodes_[x];
    void* ptr = base_internal::UnhidePtr<void>(nx->masked_ptr);
    if (ptr != nullptr && static_cast<uint32_t>(r->ptrmap_.Find(ptr)) != x) {
      ABSL_RAW_LOG(FATAL, "Did not find live node in hash table %u %p", x, ptr);
    }
    if (nx->visited) {
      ABSL_RAW_LOG(FATAL, "Did not clear visited marker on node %u", x);
    }
    if (!ranks.insert(nx->rank)) {
      ABSL_RAW_LOG(FATAL, "Duplicate occurrence of rank %d", nx->rank);
    }
    HASH_FOR_EACH(y, nx->out) {
      Node* ny = r->nodes_[y];
      if (nx->rank >= ny->rank) {
        ABSL_RAW_LOG(FATAL, "Edge %u->%d has bad rank assignment %d->%d", x, y,
                     nx->rank, ny->rank);
      }
    }
  }
  return true;
}

GraphId GraphCycles::GetId(void* ptr) {
  int32_t i = rep_->ptrmap_.Find(ptr);
  if (i != -1) {
    return MakeId(i, rep_->nodes_[i]->version);
  } else if (rep_->free_nodes_.empty()) {
    Node* n =
        new (base_internal::LowLevelAlloc::AllocWithArena(sizeof(Node), arena))
            Node;
    n->version = 1;  // Avoid 0 since it is used by InvalidGraphId()
    n->visited = false;
    n->rank = rep_->nodes_.size();
    n->masked_ptr = base_internal::HidePtr(ptr);
    n->nstack = 0;
    n->priority = 0;
    rep_->nodes_.push_back(n);
    rep_->ptrmap_.Add(ptr, n->rank);
    return MakeId(n->rank, n->version);
  } else {
    // Preserve preceding rank since the set of ranks in use must be
    // a permutation of [0,rep_->nodes_.size()-1].
    int32_t r = rep_->free_nodes_.back();
    rep_->free_nodes_.pop_back();
    Node* n = rep_->nodes_[r];
    n->masked_ptr = base_internal::HidePtr(ptr);
    n->nstack = 0;
    n->priority = 0;
    rep_->ptrmap_.Add(ptr, r);
    return MakeId(r, n->version);
  }
}

void GraphCycles::RemoveNode(void* ptr) {
  int32_t i = rep_->ptrmap_.Remove(ptr);
  if (i == -1) {
    return;
  }
  Node* x = rep_->nodes_[i];
  HASH_FOR_EACH(y, x->out) {
    rep_->nodes_[y]->in.erase(i);
  }
  HASH_FOR_EACH(y, x->in) {
    rep_->nodes_[y]->out.erase(i);
  }
  x->in.clear();
  x->out.clear();
  x->masked_ptr = base_internal::HidePtr<void>(nullptr);
  if (x->version == std::numeric_limits<uint32_t>::max()) {
    // Cannot use x any more
  } else {
    x->version++;  // Invalidates all copies of node.
    rep_->free_nodes_.push_back(i);
  }
}

void* GraphCycles::Ptr(GraphId id) {
  Node* n = FindNode(rep_, id);
  return n == nullptr ? nullptr
                      : base_internal::UnhidePtr<void>(n->masked_ptr);
}

bool GraphCycles::HasNode(GraphId node) {
  return FindNode(rep_, node) != nullptr;
}

bool GraphCycles::HasEdge(GraphId x, GraphId y) const {
  Node* xn = FindNode(rep_, x);
  return xn && FindNode(rep_, y) && xn->out.contains(NodeIndex(y));
}

void GraphCycles::RemoveEdge(GraphId x, GraphId y) {
  Node* xn = FindNode(rep_, x);
  Node* yn = FindNode(rep_, y);
  if (xn && yn) {
    xn->out.erase(NodeIndex(y));
    yn->in.erase(NodeIndex(x));
    // No need to update the rank assignment since a previous valid
    // rank assignment remains valid after an edge deletion.
  }
}

static bool ForwardDFS(GraphCycles::Rep* r, int32_t n, int32_t upper_bound);
static void BackwardDFS(GraphCycles::Rep* r, int32_t n, int32_t lower_bound);
static void Reorder(GraphCycles::Rep* r);
static void Sort(const Vec<Node*>&, Vec<int32_t>* delta);
static void MoveToList(
    GraphCycles::Rep* r, Vec<int32_t>* src, Vec<int32_t>* dst);

bool GraphCycles::InsertEdge(GraphId idx, GraphId idy) {
  Rep* r = rep_;
  const int32_t x = NodeIndex(idx);
  const int32_t y = NodeIndex(idy);
  Node* nx = FindNode(r, idx);
  Node* ny = FindNode(r, idy);
  if (nx == nullptr || ny == nullptr) return true;  // Expired ids

  if (nx == ny) return false;  // Self edge
  if (!nx->out.insert(y)) {
    // Edge already exists.
    return true;
  }

  ny->in.insert(x);

  if (nx->rank <= ny->rank) {
    // New edge is consistent with existing rank assignment.
    return true;
  }

  // Current rank assignments are incompatible with the new edge.  Recompute.
  // We only need to consider nodes that fall in the range [ny->rank,nx->rank].
  if (!ForwardDFS(r, y, nx->rank)) {
    // Found a cycle.  Undo the insertion and tell caller.
    nx->out.erase(y);
    ny->in.erase(x);
    // Since we do not call Reorder() on this path, clear any visited
    // markers left by ForwardDFS.
    for (const auto& d : r->deltaf_) {
      r->nodes_[d]->visited = false;
    }
    return false;
  }
  BackwardDFS(r, x, ny->rank);
  Reorder(r);
  return true;
}

static bool ForwardDFS(GraphCycles::Rep* r, int32_t n, int32_t upper_bound) {
  // Avoid recursion since stack space might be limited.
  // We instead keep a stack of nodes to visit.
  r->deltaf_.clear();
  r->stack_.clear();
  r->stack_.push_back(n);
  while (!r->stack_.empty()) {
    n = r->stack_.back();
    r->stack_.pop_back();
    Node* nn = r->nodes_[n];
    if (nn->visited) continue;

    nn->visited = true;
    r->deltaf_.push_back(n);

    HASH_FOR_EACH(w, nn->out) {
      Node* nw = r->nodes_[w];
      if (nw->rank == upper_bound) {
        return false;  // Cycle
      }
      if (!nw->visited && nw->rank < upper_bound) {
        r->stack_.push_back(w);
      }
    }
  }
  return true;
}

static void BackwardDFS(GraphCycles::Rep* r, int32_t n, int32_t lower_bound) {
  r->deltab_.clear();
  r->stack_.clear();
  r->stack_.push_back(n);
  while (!r->stack_.empty()) {
    n = r->stack_.back();
    r->stack_.pop_back();
    Node* nn = r->nodes_[n];
    if (nn->visited) continue;

    nn->visited = true;
    r->deltab_.push_back(n);

    HASH_FOR_EACH(w, nn->in) {
      Node* nw = r->nodes_[w];
      if (!nw->visited && lower_bound < nw->rank) {
        r->stack_.push_back(w);
      }
    }
  }
}

static void Reorder(GraphCycles::Rep* r) {
  Sort(r->nodes_, &r->deltab_);
  Sort(r->nodes_, &r->deltaf_);

  // Adds contents of delta lists to list_ (backwards deltas first).
  r->list_.clear();
  MoveToList(r, &r->deltab_, &r->list_);
  MoveToList(r, &r->deltaf_, &r->list_);

  // Produce sorted list of all ranks that will be reassigned.
  r->merged_.resize(r->deltab_.size() + r->deltaf_.size());
  std::merge(r->deltab_.begin(), r->deltab_.end(),
             r->deltaf_.begin(), r->deltaf_.end(),
             r->merged_.begin());

  // Assign the ranks in order to the collected list.
  for (uint32_t i = 0; i < r->list_.size(); i++) {
    r->nodes_[r->list_[i]]->rank = r->merged_[i];
  }
}

static void Sort(const Vec<Node*>& nodes, Vec<int32_t>* delta) {
  struct ByRank {
    const Vec<Node*>* nodes;
    bool operator()(int32_t a, int32_t b) const {
      return (*nodes)[a]->rank < (*nodes)[b]->rank;
    }
  };
  ByRank cmp;
  cmp.nodes = &nodes;
  std::sort(delta->begin(), delta->end(), cmp);
}

static void MoveToList(
    GraphCycles::Rep* r, Vec<int32_t>* src, Vec<int32_t>* dst) {
  for (auto& v : *src) {
    int32_t w = v;
    v = r->nodes_[w]->rank;         // Replace v entry with its rank
    r->nodes_[w]->visited = false;  // Prepare for future DFS calls
    dst->push_back(w);
  }
}

int GraphCycles::FindPath(GraphId idx, GraphId idy, int max_path_len,
                          GraphId path[]) const {
  Rep* r = rep_;
  if (FindNode(r, idx) == nullptr || FindNode(r, idy) == nullptr) return 0;
  const int32_t x = NodeIndex(idx);
  const int32_t y = NodeIndex(idy);

  // Forward depth first search starting at x until we hit y.
  // As we descend into a node, we push it onto the path.
  // As we leave a node, we remove it from the path.
  int path_len = 0;

  NodeSet seen;
  r->stack_.clear();
  r->stack_.push_back(x);
  while (!r->stack_.empty()) {
    int32_t n = r->stack_.back();
    r->stack_.pop_back();
    if (n < 0) {
      // Marker to indicate that we are leaving a node
      path_len--;
      continue;
    }

    if (path_len < max_path_len) {
      path[path_len] = MakeId(n, rep_->nodes_[n]->version);
    }
    path_len++;
    r->stack_.push_back(-1);  // Will remove tentative path entry

    if (n == y) {
      return path_len;
    }

    HASH_FOR_EACH(w, r->nodes_[n]->out) {
      if (seen.insert(w)) {
        r->stack_.push_back(w);
      }
    }
  }

  return 0;
}

bool GraphCycles::IsReachable(GraphId x, GraphId y) const {
  return FindPath(x, y, 0, nullptr) > 0;
}

void GraphCycles::UpdateStackTrace(GraphId id, int priority,
                                   int (*get_stack_trace)(void** stack, int)) {
  Node* n = FindNode(rep_, id);
  if (n == nullptr || n->priority >= priority) {
    return;
  }
  n->nstack = (*get_stack_trace)(n->stack, ABSL_ARRAYSIZE(n->stack));
  n->priority = priority;
}

int GraphCycles::GetStackTrace(GraphId id, void*** ptr) {
  Node* n = FindNode(rep_, id);
  if (n == nullptr) {
    *ptr = nullptr;
    return 0;
  } else {
    *ptr = n->stack;
    return n->nstack;
  }
}

}  // namespace synchronization_internal
}  // namespace absl

#endif  // ABSL_LOW_LEVEL_ALLOC_MISSING