SparseMatrix.h 55.8 KB
Newer Older
zhaoyunfei's avatar
zhaoyunfei committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SPARSEMATRIX_H
#define EIGEN_SPARSEMATRIX_H

namespace Eigen { 

/** \ingroup SparseCore_Module
  *
  * \class SparseMatrix
  *
  * \brief A versatible sparse matrix representation
  *
  * This class implements a more versatile variants of the common \em compressed row/column storage format.
  * Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index.
  * All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra
  * space in between the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero
  * can be done with limited memory reallocation and copies.
  *
  * A call to the function makeCompressed() turns the matrix into the standard \em compressed format
  * compatible with many library.
  *
  * More details on this storage sceheme are given in the \ref TutorialSparse "manual pages".
  *
  * \tparam _Scalar the scalar type, i.e. the type of the coefficients
  * \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility
  *                 is ColMajor or RowMajor. The default is 0 which means column-major.
  * \tparam _StorageIndex the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int.
  *
  * \warning In %Eigen 3.2, the undocumented type \c SparseMatrix::Index was improperly defined as the storage index type (e.g., int),
  *          whereas it is now (starting from %Eigen 3.3) deprecated and always defined as Eigen::Index.
  *          Codes making use of \c SparseMatrix::Index, might thus likely have to be changed to use \c SparseMatrix::StorageIndex instead.
  *
  * This class can be extended with the help of the plugin mechanism described on the page
  * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN.
  */

namespace internal {
template<typename _Scalar, int _Options, typename _StorageIndex>
struct traits<SparseMatrix<_Scalar, _Options, _StorageIndex> >
{
  typedef _Scalar Scalar;
  typedef _StorageIndex StorageIndex;
  typedef Sparse StorageKind;
  typedef MatrixXpr XprKind;
  enum {
    RowsAtCompileTime = Dynamic,
    ColsAtCompileTime = Dynamic,
    MaxRowsAtCompileTime = Dynamic,
    MaxColsAtCompileTime = Dynamic,
    Flags = _Options | NestByRefBit | LvalueBit | CompressedAccessBit,
    SupportedAccessPatterns = InnerRandomAccessPattern
  };
};

template<typename _Scalar, int _Options, typename _StorageIndex, int DiagIndex>
struct traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
{
  typedef SparseMatrix<_Scalar, _Options, _StorageIndex> MatrixType;
  typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
  typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;

  typedef _Scalar Scalar;
  typedef Dense StorageKind;
  typedef _StorageIndex StorageIndex;
  typedef MatrixXpr XprKind;

  enum {
    RowsAtCompileTime = Dynamic,
    ColsAtCompileTime = 1,
    MaxRowsAtCompileTime = Dynamic,
    MaxColsAtCompileTime = 1,
    Flags = LvalueBit
  };
};

template<typename _Scalar, int _Options, typename _StorageIndex, int DiagIndex>
struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
 : public traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
{
  enum {
    Flags = 0
  };
};

} // end namespace internal

template<typename _Scalar, int _Options, typename _StorageIndex>
class SparseMatrix
  : public SparseCompressedBase<SparseMatrix<_Scalar, _Options, _StorageIndex> >
{
    typedef SparseCompressedBase<SparseMatrix> Base;
    using Base::convert_index;
    friend class SparseVector<_Scalar,0,_StorageIndex>;
    template<typename, typename, typename, typename, typename>
    friend struct internal::Assignment;
  public:
    using Base::isCompressed;
    using Base::nonZeros;
    EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix)
    using Base::operator+=;
    using Base::operator-=;

    typedef MappedSparseMatrix<Scalar,Flags> Map;
    typedef Diagonal<SparseMatrix> DiagonalReturnType;
    typedef Diagonal<const SparseMatrix> ConstDiagonalReturnType;
    typedef typename Base::InnerIterator InnerIterator;
    typedef typename Base::ReverseInnerIterator ReverseInnerIterator;
    

    using Base::IsRowMajor;
    typedef internal::CompressedStorage<Scalar,StorageIndex> Storage;
    enum {
      Options = _Options
    };

    typedef typename Base::IndexVector IndexVector;
    typedef typename Base::ScalarVector ScalarVector;
  protected:
    typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;

    Index m_outerSize;
    Index m_innerSize;
    StorageIndex* m_outerIndex;
    StorageIndex* m_innerNonZeros;     // optional, if null then the data is compressed
    Storage m_data;

  public:
    
    /** \returns the number of rows of the matrix */
    inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
    /** \returns the number of columns of the matrix */
    inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }

    /** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */
    inline Index innerSize() const { return m_innerSize; }
    /** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) */
    inline Index outerSize() const { return m_outerSize; }
    
    /** \returns a const pointer to the array of values.
      * This function is aimed at interoperability with other libraries.
      * \sa innerIndexPtr(), outerIndexPtr() */
    inline const Scalar* valuePtr() const { return m_data.valuePtr(); }
    /** \returns a non-const pointer to the array of values.
      * This function is aimed at interoperability with other libraries.
      * \sa innerIndexPtr(), outerIndexPtr() */
    inline Scalar* valuePtr() { return m_data.valuePtr(); }

    /** \returns a const pointer to the array of inner indices.
      * This function is aimed at interoperability with other libraries.
      * \sa valuePtr(), outerIndexPtr() */
    inline const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); }
    /** \returns a non-const pointer to the array of inner indices.
      * This function is aimed at interoperability with other libraries.
      * \sa valuePtr(), outerIndexPtr() */
    inline StorageIndex* innerIndexPtr() { return m_data.indexPtr(); }

    /** \returns a const pointer to the array of the starting positions of the inner vectors.
      * This function is aimed at interoperability with other libraries.
      * \sa valuePtr(), innerIndexPtr() */
    inline const StorageIndex* outerIndexPtr() const { return m_outerIndex; }
    /** \returns a non-const pointer to the array of the starting positions of the inner vectors.
      * This function is aimed at interoperability with other libraries.
      * \sa valuePtr(), innerIndexPtr() */
    inline StorageIndex* outerIndexPtr() { return m_outerIndex; }

    /** \returns a const pointer to the array of the number of non zeros of the inner vectors.
      * This function is aimed at interoperability with other libraries.
      * \warning it returns the null pointer 0 in compressed mode */
    inline const StorageIndex* innerNonZeroPtr() const { return m_innerNonZeros; }
    /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors.
      * This function is aimed at interoperability with other libraries.
      * \warning it returns the null pointer 0 in compressed mode */
    inline StorageIndex* innerNonZeroPtr() { return m_innerNonZeros; }

    /** \internal */
    inline Storage& data() { return m_data; }
    /** \internal */
    inline const Storage& data() const { return m_data; }

    /** \returns the value of the matrix at position \a i, \a j
      * This function returns Scalar(0) if the element is an explicit \em zero */
    inline Scalar coeff(Index row, Index col) const
    {
      eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
      
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;
      Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
      return m_data.atInRange(m_outerIndex[outer], end, StorageIndex(inner));
    }

    /** \returns a non-const reference to the value of the matrix at position \a i, \a j
      *
      * If the element does not exist then it is inserted via the insert(Index,Index) function
      * which itself turns the matrix into a non compressed form if that was not the case.
      *
      * This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index)
      * function if the element does not already exist.
      */
    inline Scalar& coeffRef(Index row, Index col)
    {
      eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
      
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;

      Index start = m_outerIndex[outer];
      Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
      eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
      if(end<=start)
        return insert(row,col);
      const Index p = m_data.searchLowerIndex(start,end-1,StorageIndex(inner));
      if((p<end) && (m_data.index(p)==inner))
        return m_data.value(p);
      else
        return insert(row,col);
    }

    /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
      * The non zero coefficient must \b not already exist.
      *
      * If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed
      * mode while reserving room for 2 x this->innerSize() non zeros if reserve(Index) has not been called earlier.
      * In this case, the insertion procedure is optimized for a \e sequential insertion mode where elements are assumed to be
      * inserted by increasing outer-indices.
      * 
      * If that's not the case, then it is strongly recommended to either use a triplet-list to assemble the matrix, or to first
      * call reserve(const SizesType &) to reserve the appropriate number of non-zero elements per inner vector.
      *
      * Assuming memory has been appropriately reserved, this function performs a sorted insertion in O(1)
      * if the elements of each inner vector are inserted in increasing inner index order, and in O(nnz_j) for a random insertion.
      *
      */
    Scalar& insert(Index row, Index col);

  public:

    /** Removes all non zeros but keep allocated memory
      *
      * This function does not free the currently allocated memory. To release as much as memory as possible,
      * call \code mat.data().squeeze(); \endcode after resizing it.
      * 
      * \sa resize(Index,Index), data()
      */
    inline void setZero()
    {
      m_data.clear();
      memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex));
      if(m_innerNonZeros)
        memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex));
    }

    /** Preallocates \a reserveSize non zeros.
      *
      * Precondition: the matrix must be in compressed mode. */
    inline void reserve(Index reserveSize)
    {
      eigen_assert(isCompressed() && "This function does not make sense in non compressed mode.");
      m_data.reserve(reserveSize);
    }
    
    #ifdef EIGEN_PARSED_BY_DOXYGEN
    /** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j.
      *
      * This function turns the matrix in non-compressed mode.
      * 
      * The type \c SizesType must expose the following interface:
        \code
        typedef value_type;
        const value_type& operator[](i) const;
        \endcode
      * for \c i in the [0,this->outerSize()[ range.
      * Typical choices include std::vector<int>, Eigen::VectorXi, Eigen::VectorXi::Constant, etc.
      */
    template<class SizesType>
    inline void reserve(const SizesType& reserveSizes);
    #else
    template<class SizesType>
    inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif =
    #if (!EIGEN_COMP_MSVC) || (EIGEN_COMP_MSVC>=1500) // MSVC 2005 fails to compile with this typename
        typename
    #endif
        SizesType::value_type())
    {
      EIGEN_UNUSED_VARIABLE(enableif);
      reserveInnerVectors(reserveSizes);
    }
    #endif // EIGEN_PARSED_BY_DOXYGEN
  protected:
    template<class SizesType>
    inline void reserveInnerVectors(const SizesType& reserveSizes)
    {
      if(isCompressed())
      {
        Index totalReserveSize = 0;
        // turn the matrix into non-compressed mode
        m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
        if (!m_innerNonZeros) internal::throw_std_bad_alloc();
        
        // temporarily use m_innerSizes to hold the new starting points.
        StorageIndex* newOuterIndex = m_innerNonZeros;
        
        StorageIndex count = 0;
        for(Index j=0; j<m_outerSize; ++j)
        {
          newOuterIndex[j] = count;
          count += reserveSizes[j] + (m_outerIndex[j+1]-m_outerIndex[j]);
          totalReserveSize += reserveSizes[j];
        }
        m_data.reserve(totalReserveSize);
        StorageIndex previousOuterIndex = m_outerIndex[m_outerSize];
        for(Index j=m_outerSize-1; j>=0; --j)
        {
          StorageIndex innerNNZ = previousOuterIndex - m_outerIndex[j];
          for(Index i=innerNNZ-1; i>=0; --i)
          {
            m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
            m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
          }
          previousOuterIndex = m_outerIndex[j];
          m_outerIndex[j] = newOuterIndex[j];
          m_innerNonZeros[j] = innerNNZ;
        }
        m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1];
        
        m_data.resize(m_outerIndex[m_outerSize]);
      }
      else
      {
        StorageIndex* newOuterIndex = static_cast<StorageIndex*>(std::malloc((m_outerSize+1)*sizeof(StorageIndex)));
        if (!newOuterIndex) internal::throw_std_bad_alloc();
        
        StorageIndex count = 0;
        for(Index j=0; j<m_outerSize; ++j)
        {
          newOuterIndex[j] = count;
          StorageIndex alreadyReserved = (m_outerIndex[j+1]-m_outerIndex[j]) - m_innerNonZeros[j];
          StorageIndex toReserve = std::max<StorageIndex>(reserveSizes[j], alreadyReserved);
          count += toReserve + m_innerNonZeros[j];
        }
        newOuterIndex[m_outerSize] = count;
        
        m_data.resize(count);
        for(Index j=m_outerSize-1; j>=0; --j)
        {
          Index offset = newOuterIndex[j] - m_outerIndex[j];
          if(offset>0)
          {
            StorageIndex innerNNZ = m_innerNonZeros[j];
            for(Index i=innerNNZ-1; i>=0; --i)
            {
              m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
              m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
            }
          }
        }
        
        std::swap(m_outerIndex, newOuterIndex);
        std::free(newOuterIndex);
      }
      
    }
  public:

    //--- low level purely coherent filling ---

    /** \internal
      * \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
      * - the nonzero does not already exist
      * - the new coefficient is the last one according to the storage order
      *
      * Before filling a given inner vector you must call the statVec(Index) function.
      *
      * After an insertion session, you should call the finalize() function.
      *
      * \sa insert, insertBackByOuterInner, startVec */
    inline Scalar& insertBack(Index row, Index col)
    {
      return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
    }

    /** \internal
      * \sa insertBack, startVec */
    inline Scalar& insertBackByOuterInner(Index outer, Index inner)
    {
      eigen_assert(Index(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)");
      eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)");
      Index p = m_outerIndex[outer+1];
      ++m_outerIndex[outer+1];
      m_data.append(Scalar(0), inner);
      return m_data.value(p);
    }

    /** \internal
      * \warning use it only if you know what you are doing */
    inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
    {
      Index p = m_outerIndex[outer+1];
      ++m_outerIndex[outer+1];
      m_data.append(Scalar(0), inner);
      return m_data.value(p);
    }

    /** \internal
      * \sa insertBack, insertBackByOuterInner */
    inline void startVec(Index outer)
    {
      eigen_assert(m_outerIndex[outer]==Index(m_data.size()) && "You must call startVec for each inner vector sequentially");
      eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially");
      m_outerIndex[outer+1] = m_outerIndex[outer];
    }

    /** \internal
      * Must be called after inserting a set of non zero entries using the low level compressed API.
      */
    inline void finalize()
    {
      if(isCompressed())
      {
        StorageIndex size = internal::convert_index<StorageIndex>(m_data.size());
        Index i = m_outerSize;
        // find the last filled column
        while (i>=0 && m_outerIndex[i]==0)
          --i;
        ++i;
        while (i<=m_outerSize)
        {
          m_outerIndex[i] = size;
          ++i;
        }
      }
    }

    //---

    template<typename InputIterators>
    void setFromTriplets(const InputIterators& begin, const InputIterators& end);

    template<typename InputIterators,typename DupFunctor>
    void setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func);

    void sumupDuplicates() { collapseDuplicates(internal::scalar_sum_op<Scalar,Scalar>()); }

    template<typename DupFunctor>
    void collapseDuplicates(DupFunctor dup_func = DupFunctor());

    //---
    
    /** \internal
      * same as insert(Index,Index) except that the indices are given relative to the storage order */
    Scalar& insertByOuterInner(Index j, Index i)
    {
      return insert(IsRowMajor ? j : i, IsRowMajor ? i : j);
    }

    /** Turns the matrix into the \em compressed format.
      */
    void makeCompressed()
    {
      if(isCompressed())
        return;
      
      eigen_internal_assert(m_outerIndex!=0 && m_outerSize>0);
      
      Index oldStart = m_outerIndex[1];
      m_outerIndex[1] = m_innerNonZeros[0];
      for(Index j=1; j<m_outerSize; ++j)
      {
        Index nextOldStart = m_outerIndex[j+1];
        Index offset = oldStart - m_outerIndex[j];
        if(offset>0)
        {
          for(Index k=0; k<m_innerNonZeros[j]; ++k)
          {
            m_data.index(m_outerIndex[j]+k) = m_data.index(oldStart+k);
            m_data.value(m_outerIndex[j]+k) = m_data.value(oldStart+k);
          }
        }
        m_outerIndex[j+1] = m_outerIndex[j] + m_innerNonZeros[j];
        oldStart = nextOldStart;
      }
      std::free(m_innerNonZeros);
      m_innerNonZeros = 0;
      m_data.resize(m_outerIndex[m_outerSize]);
      m_data.squeeze();
    }

    /** Turns the matrix into the uncompressed mode */
    void uncompress()
    {
      if(m_innerNonZeros != 0)
        return; 
      m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
      for (Index i = 0; i < m_outerSize; i++)
      {
        m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i]; 
      }
    }

    /** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerance \a epsilon */
    void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
    {
      prune(default_prunning_func(reference,epsilon));
    }
    
    /** Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate \a keep.
      * The functor type \a KeepFunc must implement the following function:
      * \code
      * bool operator() (const Index& row, const Index& col, const Scalar& value) const;
      * \endcode
      * \sa prune(Scalar,RealScalar)
      */
    template<typename KeepFunc>
    void prune(const KeepFunc& keep = KeepFunc())
    {
      // TODO optimize the uncompressed mode to avoid moving and allocating the data twice
      makeCompressed();

      StorageIndex k = 0;
      for(Index j=0; j<m_outerSize; ++j)
      {
        Index previousStart = m_outerIndex[j];
        m_outerIndex[j] = k;
        Index end = m_outerIndex[j+1];
        for(Index i=previousStart; i<end; ++i)
        {
          if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i)))
          {
            m_data.value(k) = m_data.value(i);
            m_data.index(k) = m_data.index(i);
            ++k;
          }
        }
      }
      m_outerIndex[m_outerSize] = k;
      m_data.resize(k,0);
    }

    /** Resizes the matrix to a \a rows x \a cols matrix leaving old values untouched.
      *
      * If the sizes of the matrix are decreased, then the matrix is turned to \b uncompressed-mode
      * and the storage of the out of bounds coefficients is kept and reserved.
      * Call makeCompressed() to pack the entries and squeeze extra memory.
      *
      * \sa reserve(), setZero(), makeCompressed()
      */
    void conservativeResize(Index rows, Index cols) 
    {
      // No change
      if (this->rows() == rows && this->cols() == cols) return;
      
      // If one dimension is null, then there is nothing to be preserved
      if(rows==0 || cols==0) return resize(rows,cols);

      Index innerChange = IsRowMajor ? cols - this->cols() : rows - this->rows();
      Index outerChange = IsRowMajor ? rows - this->rows() : cols - this->cols();
      StorageIndex newInnerSize = convert_index(IsRowMajor ? cols : rows);

      // Deals with inner non zeros
      if (m_innerNonZeros)
      {
        // Resize m_innerNonZeros
        StorageIndex *newInnerNonZeros = static_cast<StorageIndex*>(std::realloc(m_innerNonZeros, (m_outerSize + outerChange) * sizeof(StorageIndex)));
        if (!newInnerNonZeros) internal::throw_std_bad_alloc();
        m_innerNonZeros = newInnerNonZeros;
        
        for(Index i=m_outerSize; i<m_outerSize+outerChange; i++)          
          m_innerNonZeros[i] = 0;
      } 
      else if (innerChange < 0) 
      {
        // Inner size decreased: allocate a new m_innerNonZeros
        m_innerNonZeros = static_cast<StorageIndex*>(std::malloc((m_outerSize+outerChange+1) * sizeof(StorageIndex)));
        if (!m_innerNonZeros) internal::throw_std_bad_alloc();
        for(Index i = 0; i < m_outerSize; i++)
          m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
      }
      
      // Change the m_innerNonZeros in case of a decrease of inner size
      if (m_innerNonZeros && innerChange < 0)
      {
        for(Index i = 0; i < m_outerSize + (std::min)(outerChange, Index(0)); i++)
        {
          StorageIndex &n = m_innerNonZeros[i];
          StorageIndex start = m_outerIndex[i];
          while (n > 0 && m_data.index(start+n-1) >= newInnerSize) --n; 
        }
      }
      
      m_innerSize = newInnerSize;

      // Re-allocate outer index structure if necessary
      if (outerChange == 0)
        return;
          
      StorageIndex *newOuterIndex = static_cast<StorageIndex*>(std::realloc(m_outerIndex, (m_outerSize + outerChange + 1) * sizeof(StorageIndex)));
      if (!newOuterIndex) internal::throw_std_bad_alloc();
      m_outerIndex = newOuterIndex;
      if (outerChange > 0)
      {
        StorageIndex lastIdx = m_outerSize == 0 ? 0 : m_outerIndex[m_outerSize];
        for(Index i=m_outerSize; i<m_outerSize+outerChange+1; i++)          
          m_outerIndex[i] = lastIdx; 
      }
      m_outerSize += outerChange;
    }
    
    /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero.
      * 
      * This function does not free the currently allocated memory. To release as much as memory as possible,
      * call \code mat.data().squeeze(); \endcode after resizing it.
      * 
      * \sa reserve(), setZero()
      */
    void resize(Index rows, Index cols)
    {
      const Index outerSize = IsRowMajor ? rows : cols;
      m_innerSize = IsRowMajor ? cols : rows;
      m_data.clear();
      if (m_outerSize != outerSize || m_outerSize==0)
      {
        std::free(m_outerIndex);
        m_outerIndex = static_cast<StorageIndex*>(std::malloc((outerSize + 1) * sizeof(StorageIndex)));
        if (!m_outerIndex) internal::throw_std_bad_alloc();
        
        m_outerSize = outerSize;
      }
      if(m_innerNonZeros)
      {
        std::free(m_innerNonZeros);
        m_innerNonZeros = 0;
      }
      memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex));
    }

    /** \internal
      * Resize the nonzero vector to \a size */
    void resizeNonZeros(Index size)
    {
      m_data.resize(size);
    }

    /** \returns a const expression of the diagonal coefficients. */
    const ConstDiagonalReturnType diagonal() const { return ConstDiagonalReturnType(*this); }
    
    /** \returns a read-write expression of the diagonal coefficients.
      * \warning If the diagonal entries are written, then all diagonal
      * entries \b must already exist, otherwise an assertion will be raised.
      */
    DiagonalReturnType diagonal() { return DiagonalReturnType(*this); }

    /** Default constructor yielding an empty \c 0 \c x \c 0 matrix */
    inline SparseMatrix()
      : m_outerSize(-1), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      resize(0, 0);
    }

    /** Constructs a \a rows \c x \a cols empty matrix */
    inline SparseMatrix(Index rows, Index cols)
      : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      resize(rows, cols);
    }

    /** Constructs a sparse matrix from the sparse expression \a other */
    template<typename OtherDerived>
    inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other)
      : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
        YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
      check_template_parameters();
      const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit);
      if (needToTranspose)
        *this = other.derived();
      else
      {
        #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
          EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
        #endif
        internal::call_assignment_no_alias(*this, other.derived());
      }
    }
    
    /** Constructs a sparse matrix from the sparse selfadjoint view \a other */
    template<typename OtherDerived, unsigned int UpLo>
    inline SparseMatrix(const SparseSelfAdjointView<OtherDerived, UpLo>& other)
      : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      Base::operator=(other);
    }

    /** Copy constructor (it performs a deep copy) */
    inline SparseMatrix(const SparseMatrix& other)
      : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      *this = other.derived();
    }

    /** \brief Copy constructor with in-place evaluation */
    template<typename OtherDerived>
    SparseMatrix(const ReturnByValue<OtherDerived>& other)
      : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      initAssignment(other);
      other.evalTo(*this);
    }
    
    /** \brief Copy constructor with in-place evaluation */
    template<typename OtherDerived>
    explicit SparseMatrix(const DiagonalBase<OtherDerived>& other)
      : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      *this = other.derived();
    }

    /** Swaps the content of two sparse matrices of the same type.
      * This is a fast operation that simply swaps the underlying pointers and parameters. */
    inline void swap(SparseMatrix& other)
    {
      //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
      std::swap(m_outerIndex, other.m_outerIndex);
      std::swap(m_innerSize, other.m_innerSize);
      std::swap(m_outerSize, other.m_outerSize);
      std::swap(m_innerNonZeros, other.m_innerNonZeros);
      m_data.swap(other.m_data);
    }

    /** Sets *this to the identity matrix.
      * This function also turns the matrix into compressed mode, and drop any reserved memory. */
    inline void setIdentity()
    {
      eigen_assert(rows() == cols() && "ONLY FOR SQUARED MATRICES");
      this->m_data.resize(rows());
      Eigen::Map<IndexVector>(this->m_data.indexPtr(), rows()).setLinSpaced(0, StorageIndex(rows()-1));
      Eigen::Map<ScalarVector>(this->m_data.valuePtr(), rows()).setOnes();
      Eigen::Map<IndexVector>(this->m_outerIndex, rows()+1).setLinSpaced(0, StorageIndex(rows()));
      std::free(m_innerNonZeros);
      m_innerNonZeros = 0;
    }
    inline SparseMatrix& operator=(const SparseMatrix& other)
    {
      if (other.isRValue())
      {
        swap(other.const_cast_derived());
      }
      else if(this!=&other)
      {
        #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
          EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
        #endif
        initAssignment(other);
        if(other.isCompressed())
        {
          internal::smart_copy(other.m_outerIndex, other.m_outerIndex + m_outerSize + 1, m_outerIndex);
          m_data = other.m_data;
        }
        else
        {
          Base::operator=(other);
        }
      }
      return *this;
    }

#ifndef EIGEN_PARSED_BY_DOXYGEN
    template<typename OtherDerived>
    inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other)
    { return Base::operator=(other.derived()); }
#endif // EIGEN_PARSED_BY_DOXYGEN

    template<typename OtherDerived>
    EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other);

    friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
    {
      EIGEN_DBG_SPARSE(
        s << "Nonzero entries:\n";
        if(m.isCompressed())
        {
          for (Index i=0; i<m.nonZeros(); ++i)
            s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
        }
        else
        {
          for (Index i=0; i<m.outerSize(); ++i)
          {
            Index p = m.m_outerIndex[i];
            Index pe = m.m_outerIndex[i]+m.m_innerNonZeros[i];
            Index k=p;
            for (; k<pe; ++k) {
              s << "(" << m.m_data.value(k) << "," << m.m_data.index(k) << ") ";
            }
            for (; k<m.m_outerIndex[i+1]; ++k) {
              s << "(_,_) ";
            }
          }
        }
        s << std::endl;
        s << std::endl;
        s << "Outer pointers:\n";
        for (Index i=0; i<m.outerSize(); ++i) {
          s << m.m_outerIndex[i] << " ";
        }
        s << " $" << std::endl;
        if(!m.isCompressed())
        {
          s << "Inner non zeros:\n";
          for (Index i=0; i<m.outerSize(); ++i) {
            s << m.m_innerNonZeros[i] << " ";
          }
          s << " $" << std::endl;
        }
        s << std::endl;
      );
      s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m);
      return s;
    }

    /** Destructor */
    inline ~SparseMatrix()
    {
      std::free(m_outerIndex);
      std::free(m_innerNonZeros);
    }

    /** Overloaded for performance */
    Scalar sum() const;
    
#   ifdef EIGEN_SPARSEMATRIX_PLUGIN
#     include EIGEN_SPARSEMATRIX_PLUGIN
#   endif

protected:

    template<typename Other>
    void initAssignment(const Other& other)
    {
      resize(other.rows(), other.cols());
      if(m_innerNonZeros)
      {
        std::free(m_innerNonZeros);
        m_innerNonZeros = 0;
      }
    }

    /** \internal
      * \sa insert(Index,Index) */
    EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col);

    /** \internal
      * A vector object that is equal to 0 everywhere but v at the position i */
    class SingletonVector
    {
        StorageIndex m_index;
        StorageIndex m_value;
      public:
        typedef StorageIndex value_type;
        SingletonVector(Index i, Index v)
          : m_index(convert_index(i)), m_value(convert_index(v))
        {}

        StorageIndex operator[](Index i) const { return i==m_index ? m_value : 0; }
    };

    /** \internal
      * \sa insert(Index,Index) */
    EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col);

public:
    /** \internal
      * \sa insert(Index,Index) */
    EIGEN_STRONG_INLINE Scalar& insertBackUncompressed(Index row, Index col)
    {
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;

      eigen_assert(!isCompressed());
      eigen_assert(m_innerNonZeros[outer]<=(m_outerIndex[outer+1] - m_outerIndex[outer]));

      Index p = m_outerIndex[outer] + m_innerNonZeros[outer]++;
      m_data.index(p) = convert_index(inner);
      return (m_data.value(p) = Scalar(0));
    }
protected:
    struct IndexPosPair {
      IndexPosPair(Index a_i, Index a_p) : i(a_i), p(a_p) {}
      Index i;
      Index p;
    };

    /** \internal assign \a diagXpr to the diagonal of \c *this
      * There are different strategies:
      *   1 - if *this is overwritten (Func==assign_op) or *this is empty, then we can work treat *this as a dense vector expression.
      *   2 - otherwise, for each diagonal coeff,
      *     2.a - if it already exists, then we update it,
      *     2.b - otherwise, if *this is uncompressed and that the current inner-vector has empty room for at least 1 element, then we perform an in-place insertion.
      *     2.c - otherwise, we'll have to reallocate and copy everything, so instead of doing so for each new element, it is recorded in a std::vector.
      *   3 - at the end, if some entries failed to be inserted in-place, then we alloc a new buffer, copy each chunk at the right position, and insert the new elements.
      * 
      * TODO: some piece of code could be isolated and reused for a general in-place update strategy.
      * TODO: if we start to defer the insertion of some elements (i.e., case 2.c executed once),
      *       then it *might* be better to disable case 2.b since they will have to be copied anyway.
      */
    template<typename DiagXpr, typename Func>
    void assignDiagonal(const DiagXpr diagXpr, const Func& assignFunc)
    {
      Index n = diagXpr.size();

      const bool overwrite = internal::is_same<Func, internal::assign_op<Scalar,Scalar> >::value;
      if(overwrite)
      {
        if((this->rows()!=n) || (this->cols()!=n))
          this->resize(n, n);
      }

      if(m_data.size()==0 || overwrite)
      {
        typedef Array<StorageIndex,Dynamic,1> ArrayXI;  
        this->makeCompressed();
        this->resizeNonZeros(n);
        Eigen::Map<ArrayXI>(this->innerIndexPtr(), n).setLinSpaced(0,StorageIndex(n)-1);
        Eigen::Map<ArrayXI>(this->outerIndexPtr(), n+1).setLinSpaced(0,StorageIndex(n));
        Eigen::Map<Array<Scalar,Dynamic,1> > values = this->coeffs();
        values.setZero();
        internal::call_assignment_no_alias(values, diagXpr, assignFunc);
      }
      else
      {
        bool isComp = isCompressed();
        internal::evaluator<DiagXpr> diaEval(diagXpr);
        std::vector<IndexPosPair> newEntries;

        // 1 - try in-place update and record insertion failures
        for(Index i = 0; i<n; ++i)
        {
          internal::LowerBoundIndex lb = this->lower_bound(i,i);
          Index p = lb.value;
          if(lb.found)
          {
            // the coeff already exists
            assignFunc.assignCoeff(m_data.value(p), diaEval.coeff(i));
          }
          else if((!isComp) && m_innerNonZeros[i] < (m_outerIndex[i+1]-m_outerIndex[i]))
          {
            // non compressed mode with local room for inserting one element
            m_data.moveChunk(p, p+1, m_outerIndex[i]+m_innerNonZeros[i]-p);
            m_innerNonZeros[i]++;
            m_data.value(p) = Scalar(0);
            m_data.index(p) = StorageIndex(i);
            assignFunc.assignCoeff(m_data.value(p), diaEval.coeff(i));
          }
          else
          {
            // defer insertion
            newEntries.push_back(IndexPosPair(i,p));
          }
        }
        // 2 - insert deferred entries
        Index n_entries = Index(newEntries.size());
        if(n_entries>0)
        {
          Storage newData(m_data.size()+n_entries);
          Index prev_p = 0;
          Index prev_i = 0;
          for(Index k=0; k<n_entries;++k)
          {
            Index i = newEntries[k].i;
            Index p = newEntries[k].p;
            internal::smart_copy(m_data.valuePtr()+prev_p, m_data.valuePtr()+p, newData.valuePtr()+prev_p+k);
            internal::smart_copy(m_data.indexPtr()+prev_p, m_data.indexPtr()+p, newData.indexPtr()+prev_p+k);
            for(Index j=prev_i;j<i;++j)
              m_outerIndex[j+1] += k;
            if(!isComp)
              m_innerNonZeros[i]++;
            prev_p = p;
            prev_i = i;
            newData.value(p+k) = Scalar(0);
            newData.index(p+k) = StorageIndex(i);
            assignFunc.assignCoeff(newData.value(p+k), diaEval.coeff(i));
          }
          {
            internal::smart_copy(m_data.valuePtr()+prev_p, m_data.valuePtr()+m_data.size(), newData.valuePtr()+prev_p+n_entries);
            internal::smart_copy(m_data.indexPtr()+prev_p, m_data.indexPtr()+m_data.size(), newData.indexPtr()+prev_p+n_entries);
            for(Index j=prev_i+1;j<=m_outerSize;++j)
              m_outerIndex[j] += n_entries;
          }
          m_data.swap(newData);
        }
      }
    }

private:
  static void check_template_parameters()
  {
    EIGEN_STATIC_ASSERT(NumTraits<StorageIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
    EIGEN_STATIC_ASSERT((Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS);
  }

  struct default_prunning_func {
    default_prunning_func(const Scalar& ref, const RealScalar& eps) : reference(ref), epsilon(eps) {}
    inline bool operator() (const Index&, const Index&, const Scalar& value) const
    {
      return !internal::isMuchSmallerThan(value, reference, epsilon);
    }
    Scalar reference;
    RealScalar epsilon;
  };
};

namespace internal {

template<typename InputIterator, typename SparseMatrixType, typename DupFunctor>
void set_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, DupFunctor dup_func)
{
  enum { IsRowMajor = SparseMatrixType::IsRowMajor };
  typedef typename SparseMatrixType::Scalar Scalar;
  typedef typename SparseMatrixType::StorageIndex StorageIndex;
  SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor,StorageIndex> trMat(mat.rows(),mat.cols());

  if(begin!=end)
  {
    // pass 1: count the nnz per inner-vector
    typename SparseMatrixType::IndexVector wi(trMat.outerSize());
    wi.setZero();
    for(InputIterator it(begin); it!=end; ++it)
    {
      eigen_assert(it->row()>=0 && it->row()<mat.rows() && it->col()>=0 && it->col()<mat.cols());
      wi(IsRowMajor ? it->col() : it->row())++;
    }

    // pass 2: insert all the elements into trMat
    trMat.reserve(wi);
    for(InputIterator it(begin); it!=end; ++it)
      trMat.insertBackUncompressed(it->row(),it->col()) = it->value();

    // pass 3:
    trMat.collapseDuplicates(dup_func);
  }

  // pass 4: transposed copy -> implicit sorting
  mat = trMat;
}

}


/** Fill the matrix \c *this with the list of \em triplets defined by the iterator range \a begin - \a end.
  *
  * A \em triplet is a tuple (i,j,value) defining a non-zero element.
  * The input list of triplets does not have to be sorted, and can contains duplicated elements.
  * In any case, the result is a \b sorted and \b compressed sparse matrix where the duplicates have been summed up.
  * This is a \em O(n) operation, with \em n the number of triplet elements.
  * The initial contents of \c *this is destroyed.
  * The matrix \c *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor,
  * or the resize(Index,Index) method. The sizes are not extracted from the triplet list.
  *
  * The \a InputIterators value_type must provide the following interface:
  * \code
  * Scalar value() const; // the value
  * Scalar row() const;   // the row index i
  * Scalar col() const;   // the column index j
  * \endcode
  * See for instance the Eigen::Triplet template class.
  *
  * Here is a typical usage example:
  * \code
    typedef Triplet<double> T;
    std::vector<T> tripletList;
    triplets.reserve(estimation_of_entries);
    for(...)
    {
      // ...
      tripletList.push_back(T(i,j,v_ij));
    }
    SparseMatrixType m(rows,cols);
    m.setFromTriplets(tripletList.begin(), tripletList.end());
    // m is ready to go!
  * \endcode
  *
  * \warning The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define
  * an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather
  * be explicitly stored into a std::vector for instance.
  */
template<typename Scalar, int _Options, typename _StorageIndex>
template<typename InputIterators>
void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIterators& begin, const InputIterators& end)
{
  internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,_Options,_StorageIndex> >(begin, end, *this, internal::scalar_sum_op<Scalar,Scalar>());
}

/** The same as setFromTriplets but when duplicates are met the functor \a dup_func is applied:
  * \code
  * value = dup_func(OldValue, NewValue)
  * \endcode 
  * Here is a C++11 example keeping the latest entry only:
  * \code
  * mat.setFromTriplets(triplets.begin(), triplets.end(), [] (const Scalar&,const Scalar &b) { return b; });
  * \endcode
  */
template<typename Scalar, int _Options, typename _StorageIndex>
template<typename InputIterators,typename DupFunctor>
void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func)
{
  internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,_Options,_StorageIndex>, DupFunctor>(begin, end, *this, dup_func);
}

/** \internal */
template<typename Scalar, int _Options, typename _StorageIndex>
template<typename DupFunctor>
void SparseMatrix<Scalar,_Options,_StorageIndex>::collapseDuplicates(DupFunctor dup_func)
{
  eigen_assert(!isCompressed());
  // TODO, in practice we should be able to use m_innerNonZeros for that task
  IndexVector wi(innerSize());
  wi.fill(-1);
  StorageIndex count = 0;
  // for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers
  for(Index j=0; j<outerSize(); ++j)
  {
    StorageIndex start   = count;
    Index oldEnd  = m_outerIndex[j]+m_innerNonZeros[j];
    for(Index k=m_outerIndex[j]; k<oldEnd; ++k)
    {
      Index i = m_data.index(k);
      if(wi(i)>=start)
      {
        // we already meet this entry => accumulate it
        m_data.value(wi(i)) = dup_func(m_data.value(wi(i)), m_data.value(k));
      }
      else
      {
        m_data.value(count) = m_data.value(k);
        m_data.index(count) = m_data.index(k);
        wi(i) = count;
        ++count;
      }
    }
    m_outerIndex[j] = start;
  }
  m_outerIndex[m_outerSize] = count;

  // turn the matrix into compressed form
  std::free(m_innerNonZeros);
  m_innerNonZeros = 0;
  m_data.resize(m_outerIndex[m_outerSize]);
}

template<typename Scalar, int _Options, typename _StorageIndex>
template<typename OtherDerived>
EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_StorageIndex>& SparseMatrix<Scalar,_Options,_StorageIndex>::operator=(const SparseMatrixBase<OtherDerived>& other)
{
  EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
        YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)

  #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
    EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
  #endif
      
  const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit);
  if (needToTranspose)
  {
    #ifdef EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN
      EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN
    #endif
    // two passes algorithm:
    //  1 - compute the number of coeffs per dest inner vector
    //  2 - do the actual copy/eval
    // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed
    typedef typename internal::nested_eval<OtherDerived,2,typename internal::plain_matrix_type<OtherDerived>::type >::type OtherCopy;
    typedef typename internal::remove_all<OtherCopy>::type _OtherCopy;
    typedef internal::evaluator<_OtherCopy> OtherCopyEval;
    OtherCopy otherCopy(other.derived());
    OtherCopyEval otherCopyEval(otherCopy);

    SparseMatrix dest(other.rows(),other.cols());
    Eigen::Map<IndexVector> (dest.m_outerIndex,dest.outerSize()).setZero();

    // pass 1
    // FIXME the above copy could be merged with that pass
    for (Index j=0; j<otherCopy.outerSize(); ++j)
      for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it)
        ++dest.m_outerIndex[it.index()];

    // prefix sum
    StorageIndex count = 0;
    IndexVector positions(dest.outerSize());
    for (Index j=0; j<dest.outerSize(); ++j)
    {
      StorageIndex tmp = dest.m_outerIndex[j];
      dest.m_outerIndex[j] = count;
      positions[j] = count;
      count += tmp;
    }
    dest.m_outerIndex[dest.outerSize()] = count;
    // alloc
    dest.m_data.resize(count);
    // pass 2
    for (StorageIndex j=0; j<otherCopy.outerSize(); ++j)
    {
      for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it)
      {
        Index pos = positions[it.index()]++;
        dest.m_data.index(pos) = j;
        dest.m_data.value(pos) = it.value();
      }
    }
    this->swap(dest);
    return *this;
  }
  else
  {
    if(other.isRValue())
    {
      initAssignment(other.derived());
    }
    // there is no special optimization
    return Base::operator=(other.derived());
  }
}

template<typename _Scalar, int _Options, typename _StorageIndex>
typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insert(Index row, Index col)
{
  eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
  
  const Index outer = IsRowMajor ? row : col;
  const Index inner = IsRowMajor ? col : row;
  
  if(isCompressed())
  {
    if(nonZeros()==0)
    {
      // reserve space if not already done
      if(m_data.allocatedSize()==0)
        m_data.reserve(2*m_innerSize);
      
      // turn the matrix into non-compressed mode
      m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
      if(!m_innerNonZeros) internal::throw_std_bad_alloc();
      
      memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex));
      
      // pack all inner-vectors to the end of the pre-allocated space
      // and allocate the entire free-space to the first inner-vector
      StorageIndex end = convert_index(m_data.allocatedSize());
      for(Index j=1; j<=m_outerSize; ++j)
        m_outerIndex[j] = end;
    }
    else
    {
      // turn the matrix into non-compressed mode
      m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
      if(!m_innerNonZeros) internal::throw_std_bad_alloc();
      for(Index j=0; j<m_outerSize; ++j)
        m_innerNonZeros[j] = m_outerIndex[j+1]-m_outerIndex[j];
    }
  }
  
  // check whether we can do a fast "push back" insertion
  Index data_end = m_data.allocatedSize();
  
  // First case: we are filling a new inner vector which is packed at the end.
  // We assume that all remaining inner-vectors are also empty and packed to the end.
  if(m_outerIndex[outer]==data_end)
  {
    eigen_internal_assert(m_innerNonZeros[outer]==0);
    
    // pack previous empty inner-vectors to end of the used-space
    // and allocate the entire free-space to the current inner-vector.
    StorageIndex p = convert_index(m_data.size());
    Index j = outer;
    while(j>=0 && m_innerNonZeros[j]==0)
      m_outerIndex[j--] = p;
    
    // push back the new element
    ++m_innerNonZeros[outer];
    m_data.append(Scalar(0), inner);
    
    // check for reallocation
    if(data_end != m_data.allocatedSize())
    {
      // m_data has been reallocated
      //  -> move remaining inner-vectors back to the end of the free-space
      //     so that the entire free-space is allocated to the current inner-vector.
      eigen_internal_assert(data_end < m_data.allocatedSize());
      StorageIndex new_end = convert_index(m_data.allocatedSize());
      for(Index k=outer+1; k<=m_outerSize; ++k)
        if(m_outerIndex[k]==data_end)
          m_outerIndex[k] = new_end;
    }
    return m_data.value(p);
  }
  
  // Second case: the next inner-vector is packed to the end
  // and the current inner-vector end match the used-space.
  if(m_outerIndex[outer+1]==data_end && m_outerIndex[outer]+m_innerNonZeros[outer]==m_data.size())
  {
    eigen_internal_assert(outer+1==m_outerSize || m_innerNonZeros[outer+1]==0);
    
    // add space for the new element
    ++m_innerNonZeros[outer];
    m_data.resize(m_data.size()+1);
    
    // check for reallocation
    if(data_end != m_data.allocatedSize())
    {
      // m_data has been reallocated
      //  -> move remaining inner-vectors back to the end of the free-space
      //     so that the entire free-space is allocated to the current inner-vector.
      eigen_internal_assert(data_end < m_data.allocatedSize());
      StorageIndex new_end = convert_index(m_data.allocatedSize());
      for(Index k=outer+1; k<=m_outerSize; ++k)
        if(m_outerIndex[k]==data_end)
          m_outerIndex[k] = new_end;
    }
    
    // and insert it at the right position (sorted insertion)
    Index startId = m_outerIndex[outer];
    Index p = m_outerIndex[outer]+m_innerNonZeros[outer]-1;
    while ( (p > startId) && (m_data.index(p-1) > inner) )
    {
      m_data.index(p) = m_data.index(p-1);
      m_data.value(p) = m_data.value(p-1);
      --p;
    }
    
    m_data.index(p) = convert_index(inner);
    return (m_data.value(p) = Scalar(0));
  }
  
  if(m_data.size() != m_data.allocatedSize())
  {
    // make sure the matrix is compatible to random un-compressed insertion:
    m_data.resize(m_data.allocatedSize());
    this->reserveInnerVectors(Array<StorageIndex,Dynamic,1>::Constant(m_outerSize, 2));
  }
  
  return insertUncompressed(row,col);
}
    
template<typename _Scalar, int _Options, typename _StorageIndex>
EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertUncompressed(Index row, Index col)
{
  eigen_assert(!isCompressed());

  const Index outer = IsRowMajor ? row : col;
  const StorageIndex inner = convert_index(IsRowMajor ? col : row);

  Index room = m_outerIndex[outer+1] - m_outerIndex[outer];
  StorageIndex innerNNZ = m_innerNonZeros[outer];
  if(innerNNZ>=room)
  {
    // this inner vector is full, we need to reallocate the whole buffer :(
    reserve(SingletonVector(outer,std::max<StorageIndex>(2,innerNNZ)));
  }

  Index startId = m_outerIndex[outer];
  Index p = startId + m_innerNonZeros[outer];
  while ( (p > startId) && (m_data.index(p-1) > inner) )
  {
    m_data.index(p) = m_data.index(p-1);
    m_data.value(p) = m_data.value(p-1);
    --p;
  }
  eigen_assert((p<=startId || m_data.index(p-1)!=inner) && "you cannot insert an element that already exists, you must call coeffRef to this end");

  m_innerNonZeros[outer]++;

  m_data.index(p) = inner;
  return (m_data.value(p) = Scalar(0));
}

template<typename _Scalar, int _Options, typename _StorageIndex>
EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertCompressed(Index row, Index col)
{
  eigen_assert(isCompressed());

  const Index outer = IsRowMajor ? row : col;
  const Index inner = IsRowMajor ? col : row;

  Index previousOuter = outer;
  if (m_outerIndex[outer+1]==0)
  {
    // we start a new inner vector
    while (previousOuter>=0 && m_outerIndex[previousOuter]==0)
    {
      m_outerIndex[previousOuter] = convert_index(m_data.size());
      --previousOuter;
    }
    m_outerIndex[outer+1] = m_outerIndex[outer];
  }

  // here we have to handle the tricky case where the outerIndex array
  // starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g.,
  // the 2nd inner vector...
  bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
                && (std::size_t(m_outerIndex[outer+1]) == m_data.size());

  std::size_t startId = m_outerIndex[outer];
  // FIXME let's make sure sizeof(long int) == sizeof(std::size_t)
  std::size_t p = m_outerIndex[outer+1];
  ++m_outerIndex[outer+1];

  double reallocRatio = 1;
  if (m_data.allocatedSize()<=m_data.size())
  {
    // if there is no preallocated memory, let's reserve a minimum of 32 elements
    if (m_data.size()==0)
    {
      m_data.reserve(32);
    }
    else
    {
      // we need to reallocate the data, to reduce multiple reallocations
      // we use a smart resize algorithm based on the current filling ratio
      // in addition, we use double to avoid integers overflows
      double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1);
      reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size());
      // furthermore we bound the realloc ratio to:
      //   1) reduce multiple minor realloc when the matrix is almost filled
      //   2) avoid to allocate too much memory when the matrix is almost empty
      reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.);
    }
  }
  m_data.resize(m_data.size()+1,reallocRatio);

  if (!isLastVec)
  {
    if (previousOuter==-1)
    {
      // oops wrong guess.
      // let's correct the outer offsets
      for (Index k=0; k<=(outer+1); ++k)
        m_outerIndex[k] = 0;
      Index k=outer+1;
      while(m_outerIndex[k]==0)
        m_outerIndex[k++] = 1;
      while (k<=m_outerSize && m_outerIndex[k]!=0)
        m_outerIndex[k++]++;
      p = 0;
      --k;
      k = m_outerIndex[k]-1;
      while (k>0)
      {
        m_data.index(k) = m_data.index(k-1);
        m_data.value(k) = m_data.value(k-1);
        k--;
      }
    }
    else
    {
      // we are not inserting into the last inner vec
      // update outer indices:
      Index j = outer+2;
      while (j<=m_outerSize && m_outerIndex[j]!=0)
        m_outerIndex[j++]++;
      --j;
      // shift data of last vecs:
      Index k = m_outerIndex[j]-1;
      while (k>=Index(p))
      {
        m_data.index(k) = m_data.index(k-1);
        m_data.value(k) = m_data.value(k-1);
        k--;
      }
    }
  }

  while ( (p > startId) && (m_data.index(p-1) > inner) )
  {
    m_data.index(p) = m_data.index(p-1);
    m_data.value(p) = m_data.value(p-1);
    --p;
  }

  m_data.index(p) = inner;
  return (m_data.value(p) = Scalar(0));
}

namespace internal {

template<typename _Scalar, int _Options, typename _StorageIndex>
struct evaluator<SparseMatrix<_Scalar,_Options,_StorageIndex> >
  : evaluator<SparseCompressedBase<SparseMatrix<_Scalar,_Options,_StorageIndex> > >
{
  typedef evaluator<SparseCompressedBase<SparseMatrix<_Scalar,_Options,_StorageIndex> > > Base;
  typedef SparseMatrix<_Scalar,_Options,_StorageIndex> SparseMatrixType;
  evaluator() : Base() {}
  explicit evaluator(const SparseMatrixType &mat) : Base(mat) {}
};

}

} // end namespace Eigen

#endif // EIGEN_SPARSEMATRIX_H