MatrixLogarithm.h 17.1 KB
Newer Older
zhaoyunfei's avatar
zhaoyunfei committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATRIX_LOGARITHM
#define EIGEN_MATRIX_LOGARITHM

namespace Eigen { 

namespace internal { 

template <typename Scalar>
struct matrix_log_min_pade_degree 
{
  static const int value = 3;
};

template <typename Scalar>
struct matrix_log_max_pade_degree 
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static const int value = std::numeric_limits<RealScalar>::digits<= 24?  5:  // single precision
                           std::numeric_limits<RealScalar>::digits<= 53?  7:  // double precision
                           std::numeric_limits<RealScalar>::digits<= 64?  8:  // extended precision
                           std::numeric_limits<RealScalar>::digits<=106? 10:  // double-double
                                                                         11;  // quadruple precision
};

/** \brief Compute logarithm of 2x2 triangular matrix. */
template <typename MatrixType>
void matrix_log_compute_2x2(const MatrixType& A, MatrixType& result)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  using std::abs;
  using std::ceil;
  using std::imag;
  using std::log;

  Scalar logA00 = log(A(0,0));
  Scalar logA11 = log(A(1,1));

  result(0,0) = logA00;
  result(1,0) = Scalar(0);
  result(1,1) = logA11;

  Scalar y = A(1,1) - A(0,0);
  if (y==Scalar(0))
  {
    result(0,1) = A(0,1) / A(0,0);
  }
  else if ((abs(A(0,0)) < RealScalar(0.5)*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1))))
  {
    result(0,1) = A(0,1) * (logA11 - logA00) / y;
  }
  else
  {
    // computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
    RealScalar unwindingNumber = ceil((imag(logA11 - logA00) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI));
    result(0,1) = A(0,1) * (numext::log1p(y/A(0,0)) + Scalar(0,RealScalar(2*EIGEN_PI)*unwindingNumber)) / y;
  }
}

/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */
inline int matrix_log_get_pade_degree(float normTminusI)
{
  const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1,
            5.3149729967117310e-1 };
  const int minPadeDegree = matrix_log_min_pade_degree<float>::value;
  const int maxPadeDegree = matrix_log_max_pade_degree<float>::value;
  int degree = minPadeDegree;
  for (; degree <= maxPadeDegree; ++degree) 
    if (normTminusI <= maxNormForPade[degree - minPadeDegree])
      break;
  return degree;
}

/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */
inline int matrix_log_get_pade_degree(double normTminusI)
{
  const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2,
            1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
  const int minPadeDegree = matrix_log_min_pade_degree<double>::value;
  const int maxPadeDegree = matrix_log_max_pade_degree<double>::value;
  int degree = minPadeDegree;
  for (; degree <= maxPadeDegree; ++degree)
    if (normTminusI <= maxNormForPade[degree - minPadeDegree])
      break;
  return degree;
}

/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */
inline int matrix_log_get_pade_degree(long double normTminusI)
{
#if   LDBL_MANT_DIG == 53         // double precision
  const long double maxNormForPade[] = { 1.6206284795015624e-2L /* degree = 3 */ , 5.3873532631381171e-2L,
            1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L };
#elif LDBL_MANT_DIG <= 64         // extended precision
  const long double maxNormForPade[] = { 5.48256690357782863103e-3L /* degree = 3 */, 2.34559162387971167321e-2L,
            5.84603923897347449857e-2L, 1.08486423756725170223e-1L, 1.68385767881294446649e-1L,
            2.32777776523703892094e-1L };
#elif LDBL_MANT_DIG <= 106        // double-double
  const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5L /* degree = 3 */,
            9.34074328446359654039446552677759e-4L, 4.26117194647672175773064114582860e-3L,
            1.21546224740281848743149666560464e-2L, 2.61100544998339436713088248557444e-2L,
            4.66170074627052749243018566390567e-2L, 7.32585144444135027565872014932387e-2L,
            1.05026503471351080481093652651105e-1L };
#else                             // quadruple precision
  const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5L /* degree = 3 */,
            5.8853168473544560470387769480192666e-4L, 2.9216120366601315391789493628113520e-3L,
            8.8415758124319434347116734705174308e-3L, 1.9850836029449446668518049562565291e-2L,
            3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L,
            8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L };
#endif
  const int minPadeDegree = matrix_log_min_pade_degree<long double>::value;
  const int maxPadeDegree = matrix_log_max_pade_degree<long double>::value;
  int degree = minPadeDegree;
  for (; degree <= maxPadeDegree; ++degree)
    if (normTminusI <= maxNormForPade[degree - minPadeDegree])
      break;
  return degree;
}

/* \brief Compute Pade approximation to matrix logarithm */
template <typename MatrixType>
void matrix_log_compute_pade(MatrixType& result, const MatrixType& T, int degree)
{
  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
  const int minPadeDegree = 3;
  const int maxPadeDegree = 11;
  assert(degree >= minPadeDegree && degree <= maxPadeDegree);
  // FIXME this creates float-conversion-warnings if these are enabled.
  // Either manually convert each value, or disable the warning locally
  const RealScalar nodes[][maxPadeDegree] = { 
    { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L,  // degree 3
      0.8872983346207416885179265399782400L }, 
    { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L,  // degree 4
      0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L },
    { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L,  // degree 5
      0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
      0.9530899229693319963988134391496965L },
    { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L,  // degree 6
      0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
      0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L },
    { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L,  // degree 7
      0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
      0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
      0.9745539561713792622630948420239256L },
    { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L,  // degree 8
      0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
      0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
      0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L },
    { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L,  // degree 9
      0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
      0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
      0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
      0.9840801197538130449177881014518364L },
    { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L,  // degree 10
      0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
      0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
      0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
      0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L },
    { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L,  // degree 11
      0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
      0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
      0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
      0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
      0.9891143290730284964019690005614287L } };

  const RealScalar weights[][maxPadeDegree] = { 
    { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L,  // degree 3
      0.2777777777777777777777777777777778L },
    { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L,  // degree 4
      0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L },
    { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L,  // degree 5
      0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
      0.1184634425280945437571320203599587L },
    { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L,  // degree 6
      0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
      0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L },
    { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L,  // degree 7
      0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
      0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
      0.0647424830844348466353057163395410L },
    { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L,  // degree 8
      0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
      0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
      0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L },
    { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L,  // degree 9
      0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
      0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
      0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
      0.0406371941807872059859460790552618L },
    { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L,  // degree 10
      0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
      0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
      0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
      0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L },
    { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L,  // degree 11
      0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
      0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
      0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
      0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
      0.0278342835580868332413768602212743L } };

  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
  result.setZero(T.rows(), T.rows());
  for (int k = 0; k < degree; ++k) {
    RealScalar weight = weights[degree-minPadeDegree][k];
    RealScalar node = nodes[degree-minPadeDegree][k];
    result += weight * (MatrixType::Identity(T.rows(), T.rows()) + node * TminusI)
                       .template triangularView<Upper>().solve(TminusI);
  }
} 

/** \brief Compute logarithm of triangular matrices with size > 2. 
  * \details This uses a inverse scale-and-square algorithm. */
template <typename MatrixType>
void matrix_log_compute_big(const MatrixType& A, MatrixType& result)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  using std::pow;

  int numberOfSquareRoots = 0;
  int numberOfExtraSquareRoots = 0;
  int degree;
  MatrixType T = A, sqrtT;

  const int maxPadeDegree = matrix_log_max_pade_degree<Scalar>::value;
  const RealScalar maxNormForPade = RealScalar(
                                    maxPadeDegree<= 5? 5.3149729967117310e-1L:                    // single precision
                                    maxPadeDegree<= 7? 2.6429608311114350e-1L:                    // double precision
                                    maxPadeDegree<= 8? 2.32777776523703892094e-1L:                // extended precision
                                    maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L:    // double-double
                                                       1.1880960220216759245467951592883642e-1L); // quadruple precision

  while (true) {
    RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
    if (normTminusI < maxNormForPade) {
      degree = matrix_log_get_pade_degree(normTminusI);
      int degree2 = matrix_log_get_pade_degree(normTminusI / RealScalar(2));
      if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1)) 
        break;
      ++numberOfExtraSquareRoots;
    }
    matrix_sqrt_triangular(T, sqrtT);
    T = sqrtT.template triangularView<Upper>();
    ++numberOfSquareRoots;
  }

  matrix_log_compute_pade(result, T, degree);
  result *= pow(RealScalar(2), RealScalar(numberOfSquareRoots)); // TODO replace by bitshift if possible
}

/** \ingroup MatrixFunctions_Module
  * \class MatrixLogarithmAtomic
  * \brief Helper class for computing matrix logarithm of atomic matrices.
  *
  * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other.
  *
  * \sa class MatrixFunctionAtomic, MatrixBase::log()
  */
template <typename MatrixType>
class MatrixLogarithmAtomic
{
public:
  /** \brief Compute matrix logarithm of atomic matrix
    * \param[in]  A  argument of matrix logarithm, should be upper triangular and atomic
    * \returns  The logarithm of \p A.
    */
  MatrixType compute(const MatrixType& A);
};

template <typename MatrixType>
MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
{
  using std::log;
  MatrixType result(A.rows(), A.rows());
  if (A.rows() == 1)
    result(0,0) = log(A(0,0));
  else if (A.rows() == 2)
    matrix_log_compute_2x2(A, result);
  else
    matrix_log_compute_big(A, result);
  return result;
}

} // end of namespace internal

/** \ingroup MatrixFunctions_Module
  *
  * \brief Proxy for the matrix logarithm of some matrix (expression).
  *
  * \tparam Derived  Type of the argument to the matrix function.
  *
  * This class holds the argument to the matrix function until it is
  * assigned or evaluated for some other reason (so the argument
  * should not be changed in the meantime). It is the return type of
  * MatrixBase::log() and most of the time this is the only way it
  * is used.
  */
template<typename Derived> class MatrixLogarithmReturnValue
: public ReturnByValue<MatrixLogarithmReturnValue<Derived> >
{
public:
  typedef typename Derived::Scalar Scalar;
  typedef typename Derived::Index Index;

protected:
  typedef typename internal::ref_selector<Derived>::type DerivedNested;

public:

  /** \brief Constructor.
    *
    * \param[in]  A  %Matrix (expression) forming the argument of the matrix logarithm.
    */
  explicit MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
  
  /** \brief Compute the matrix logarithm.
    *
    * \param[out]  result  Logarithm of \c A, where \c A is as specified in the constructor.
    */
  template <typename ResultType>
  inline void evalTo(ResultType& result) const
  {
    typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
    typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
    typedef internal::traits<DerivedEvalTypeClean> Traits;
    typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
    typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, Traits::RowsAtCompileTime, Traits::ColsAtCompileTime> DynMatrixType;
    typedef internal::MatrixLogarithmAtomic<DynMatrixType> AtomicType;
    AtomicType atomic;
    
    internal::matrix_function_compute<typename DerivedEvalTypeClean::PlainObject>::run(m_A, atomic, result);
  }

  Index rows() const { return m_A.rows(); }
  Index cols() const { return m_A.cols(); }
  
private:
  const DerivedNested m_A;
};

namespace internal {
  template<typename Derived>
  struct traits<MatrixLogarithmReturnValue<Derived> >
  {
    typedef typename Derived::PlainObject ReturnType;
  };
}


/********** MatrixBase method **********/


template <typename Derived>
const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
{
  eigen_assert(rows() == cols());
  return MatrixLogarithmReturnValue<Derived>(derived());
}

} // end namespace Eigen

#endif // EIGEN_MATRIX_LOGARITHM