orphan.h 17.5 KB
Newer Older
zhaoyunfei's avatar
zhaoyunfei committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

#ifndef CAPNP_ORPHAN_H_
#define CAPNP_ORPHAN_H_

#if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS)
#pragma GCC system_header
#endif

#include "layout.h"

namespace capnp {

class StructSchema;
class ListSchema;
struct DynamicStruct;
struct DynamicList;
namespace _ { struct OrphanageInternal; }

template <typename T>
class Orphan {
  // Represents an object which is allocated within some message builder but has no pointers
  // pointing at it.  An Orphan can later be "adopted" by some other object as one of that object's
  // fields, without having to copy the orphan.  For a field `foo` of pointer type, the generated
  // code will define builder methods `void adoptFoo(Orphan<T>)` and `Orphan<T> disownFoo()`.
  // Orphans can also be created independently of any parent using an Orphanage.
  //
  // `Orphan<T>` can be moved but not copied, like `Own<T>`, so that it is impossible for one
  // orphan to be adopted multiple times.  If an orphan is destroyed without being adopted, its
  // contents are zero'd out (and possibly reused, if we ever implement the ability to reuse space
  // in a message arena).

public:
  Orphan() = default;
  KJ_DISALLOW_COPY(Orphan);
  Orphan(Orphan&&) = default;
  Orphan& operator=(Orphan&&) = default;
  inline Orphan(_::OrphanBuilder&& builder): builder(kj::mv(builder)) {}

  inline BuilderFor<T> get();
  // Get the underlying builder.  If the orphan is null, this will allocate and return a default
  // object rather than crash.  This is done for security -- otherwise, you might enable a DoS
  // attack any time you disown a field and fail to check if it is null.  In the case of structs,
  // this means that the orphan is no longer null after get() returns.  In the case of lists,
  // no actual object is allocated since a simple empty ListBuilder can be returned.

  inline ReaderFor<T> getReader() const;

  inline bool operator==(decltype(nullptr)) const { return builder == nullptr; }
  inline bool operator!=(decltype(nullptr)) const { return builder != nullptr; }

  inline void truncate(uint size);
  // Resize an object (which must be a list or a blob) to the given size.
  //
  // If the new size is less than the original, the remaining elements will be discarded. The
  // list is never moved in this case. If the list happens to be located at the end of its segment
  // (which is always true if the list was the last thing allocated), the removed memory will be
  // reclaimed (reducing the messag size), otherwise it is simply zeroed. The reclaiming behavior
  // is particularly useful for allocating buffer space when you aren't sure how much space you
  // actually need: you can pre-allocate, say, a 4k byte array, read() from a file into it, and
  // then truncate it back to the amount of space actually used.
  //
  // If the new size is greater than the original, the list is extended with default values. If
  // the list is the last object in its segment *and* there is enough space left in the segment to
  // extend it to cover the new values, then the list is extended in-place. Otherwise, it must be
  // moved to a new location, leaving a zero'd hole in the previous space that won't be filled.
  // This copy is shallow; sub-objects will simply be reparented, not copied.
  //
  // Any existing readers or builders pointing at the object are invalidated by this call (even if
  // it doesn't move). You must call `get()` or `getReader()` again to get the new, valid pointer.

private:
  _::OrphanBuilder builder;

  template <typename, Kind>
  friend struct _::PointerHelpers;
  template <typename, Kind>
  friend struct List;
  template <typename U>
  friend class Orphan;
  friend class Orphanage;
  friend class MessageBuilder;
};

class Orphanage: private kj::DisallowConstCopy {
  // Use to directly allocate Orphan objects, without having a parent object allocate and then
  // disown the object.

public:
  inline Orphanage(): arena(nullptr) {}

  template <typename BuilderType>
  static Orphanage getForMessageContaining(BuilderType builder);
  // Construct an Orphanage that allocates within the message containing the given Builder.  This
  // allows the constructed Orphans to be adopted by objects within said message.
  //
  // This constructor takes the builder rather than having the builder have a getOrphanage() method
  // because this is an advanced feature and we don't want to pollute the builder APIs with it.
  //
  // Note that if you have a direct pointer to the `MessageBuilder`, you can simply call its
  // `getOrphanage()` method.

  template <typename RootType>
  Orphan<RootType> newOrphan() const;
  // Allocate a new orphaned struct.

  template <typename RootType>
  Orphan<RootType> newOrphan(uint size) const;
  // Allocate a new orphaned list or blob.

  Orphan<DynamicStruct> newOrphan(StructSchema schema) const;
  // Dynamically create an orphan struct with the given schema.  You must
  // #include <capnp/dynamic.h> to use this.

  Orphan<DynamicList> newOrphan(ListSchema schema, uint size) const;
  // Dynamically create an orphan list with the given schema.  You must #include <capnp/dynamic.h>
  // to use this.

  template <typename Reader>
  Orphan<FromReader<Reader>> newOrphanCopy(Reader copyFrom) const;
  // Allocate a new orphaned object (struct, list, or blob) and initialize it as a copy of the
  // given object.

  template <typename T>
  Orphan<List<ListElementType<FromReader<T>>>> newOrphanConcat(kj::ArrayPtr<T> lists) const;
  template <typename T>
  Orphan<List<ListElementType<FromReader<T>>>> newOrphanConcat(kj::ArrayPtr<const T> lists) const;
  // Given an array of List readers, copy and concatenate the lists, creating a new Orphan.
  //
  // Note that compared to allocating the list yourself and using `setWithCaveats()` to set each
  // item, this method avoids the "caveats": the new list will be allocated with the element size
  // being the maximum of that from all the input lists. This is particularly important when
  // concatenating struct lists: if the lists were created using a newer version of the protocol
  // in which some new fields had been added to the struct, using `setWithCaveats()` would
  // truncate off those new fields.

  Orphan<Data> referenceExternalData(Data::Reader data) const;
  // Creates an Orphan<Data> that points at an existing region of memory (e.g. from another message)
  // without copying it.  There are some SEVERE restrictions on how this can be used:
  // - The memory must remain valid until the `MessageBuilder` is destroyed (even if the orphan is
  //   abandoned).
  // - Because the data is const, you will not be allowed to obtain a `Data::Builder`
  //   for this blob.  Any call which would return such a builder will throw an exception.  You
  //   can, however, obtain a Reader, e.g. via orphan.getReader() or from a parent Reader (once
  //   the orphan is adopted).  It is your responsibility to make sure your code can deal with
  //   these problems when using this optimization; if you can't, allocate a copy instead.
  // - `data.begin()` must be aligned to a machine word boundary (32-bit or 64-bit depending on
  //   the CPU).  Any pointer returned by malloc() as well as any data blob obtained from another
  //   Cap'n Proto message satisfies this.
  // - If `data.size()` is not a multiple of 8, extra bytes past data.end() up until the next 8-byte
  //   boundary will be visible in the raw message when it is written out.  Thus, there must be no
  //   secrets in these bytes.  Data blobs obtained from other Cap'n Proto messages should be safe
  //   as these bytes should be zero (unless the sender had the same problem).
  //
  // The array will actually become one of the message's segments.  The data can thus be adopted
  // into the message tree without copying it.  This is particularly useful when referencing very
  // large blobs, such as whole mmap'd files.

private:
  _::BuilderArena* arena;
  _::CapTableBuilder* capTable;

  inline explicit Orphanage(_::BuilderArena* arena, _::CapTableBuilder* capTable)
      : arena(arena), capTable(capTable) {}

  template <typename T, Kind = CAPNP_KIND(T)>
  struct GetInnerBuilder;
  template <typename T, Kind = CAPNP_KIND(T)>
  struct GetInnerReader;
  template <typename T>
  struct NewOrphanListImpl;

  friend class MessageBuilder;
  friend struct _::OrphanageInternal;
};

// =======================================================================================
// Inline implementation details.

namespace _ {  // private

template <typename T, Kind = CAPNP_KIND(T)>
struct OrphanGetImpl;

template <typename T>
struct OrphanGetImpl<T, Kind::PRIMITIVE> {
  static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
    builder.truncate(size, _::elementSizeForType<T>());
  }
};

template <typename T>
struct OrphanGetImpl<T, Kind::STRUCT> {
  static inline typename T::Builder apply(_::OrphanBuilder& builder) {
    return typename T::Builder(builder.asStruct(_::structSize<T>()));
  }
  static inline typename T::Reader applyReader(const _::OrphanBuilder& builder) {
    return typename T::Reader(builder.asStructReader(_::structSize<T>()));
  }
  static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
    builder.truncate(size, _::structSize<T>());
  }
};

#if !CAPNP_LITE
template <typename T>
struct OrphanGetImpl<T, Kind::INTERFACE> {
  static inline typename T::Client apply(_::OrphanBuilder& builder) {
    return typename T::Client(builder.asCapability());
  }
  static inline typename T::Client applyReader(const _::OrphanBuilder& builder) {
    return typename T::Client(builder.asCapability());
  }
  static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
    builder.truncate(size, ElementSize::POINTER);
  }
};
#endif  // !CAPNP_LITE

template <typename T, Kind k>
struct OrphanGetImpl<List<T, k>, Kind::LIST> {
  static inline typename List<T>::Builder apply(_::OrphanBuilder& builder) {
    return typename List<T>::Builder(builder.asList(_::ElementSizeForType<T>::value));
  }
  static inline typename List<T>::Reader applyReader(const _::OrphanBuilder& builder) {
    return typename List<T>::Reader(builder.asListReader(_::ElementSizeForType<T>::value));
  }
  static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
    builder.truncate(size, ElementSize::POINTER);
  }
};

template <typename T>
struct OrphanGetImpl<List<T, Kind::STRUCT>, Kind::LIST> {
  static inline typename List<T>::Builder apply(_::OrphanBuilder& builder) {
    return typename List<T>::Builder(builder.asStructList(_::structSize<T>()));
  }
  static inline typename List<T>::Reader applyReader(const _::OrphanBuilder& builder) {
    return typename List<T>::Reader(builder.asListReader(_::ElementSizeForType<T>::value));
  }
  static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
    builder.truncate(size, ElementSize::POINTER);
  }
};

template <>
struct OrphanGetImpl<Text, Kind::BLOB> {
  static inline Text::Builder apply(_::OrphanBuilder& builder) {
    return Text::Builder(builder.asText());
  }
  static inline Text::Reader applyReader(const _::OrphanBuilder& builder) {
    return Text::Reader(builder.asTextReader());
  }
  static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
    builder.truncate(size, ElementSize::POINTER);
  }
};

template <>
struct OrphanGetImpl<Data, Kind::BLOB> {
  static inline Data::Builder apply(_::OrphanBuilder& builder) {
    return Data::Builder(builder.asData());
  }
  static inline Data::Reader applyReader(const _::OrphanBuilder& builder) {
    return Data::Reader(builder.asDataReader());
  }
  static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
    builder.truncate(size, ElementSize::POINTER);
  }
};

struct OrphanageInternal {
  static inline _::BuilderArena* getArena(Orphanage orphanage) { return orphanage.arena; }
  static inline _::CapTableBuilder* getCapTable(Orphanage orphanage) { return orphanage.capTable; }
};

}  // namespace _ (private)

template <typename T>
inline BuilderFor<T> Orphan<T>::get() {
  return _::OrphanGetImpl<T>::apply(builder);
}

template <typename T>
inline ReaderFor<T> Orphan<T>::getReader() const {
  return _::OrphanGetImpl<T>::applyReader(builder);
}

template <typename T>
inline void Orphan<T>::truncate(uint size) {
  _::OrphanGetImpl<ListElementType<T>>::truncateListOf(builder, bounded(size) * ELEMENTS);
}

template <>
inline void Orphan<Text>::truncate(uint size) {
  builder.truncateText(bounded(size) * ELEMENTS);
}

template <>
inline void Orphan<Data>::truncate(uint size) {
  builder.truncate(bounded(size) * ELEMENTS, ElementSize::BYTE);
}

template <typename T>
struct Orphanage::GetInnerBuilder<T, Kind::STRUCT> {
  static inline _::StructBuilder apply(typename T::Builder& t) {
    return t._builder;
  }
};

template <typename T>
struct Orphanage::GetInnerBuilder<T, Kind::LIST> {
  static inline _::ListBuilder apply(typename T::Builder& t) {
    return t.builder;
  }
};

template <typename BuilderType>
Orphanage Orphanage::getForMessageContaining(BuilderType builder) {
  auto inner = GetInnerBuilder<FromBuilder<BuilderType>>::apply(builder);
  return Orphanage(inner.getArena(), inner.getCapTable());
}

template <typename RootType>
Orphan<RootType> Orphanage::newOrphan() const {
  return Orphan<RootType>(_::OrphanBuilder::initStruct(arena, capTable, _::structSize<RootType>()));
}

template <typename T, Kind k>
struct Orphanage::NewOrphanListImpl<List<T, k>> {
  static inline _::OrphanBuilder apply(
      _::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) {
    return _::OrphanBuilder::initList(
        arena, capTable, bounded(size) * ELEMENTS, _::ElementSizeForType<T>::value);
  }
};

template <typename T>
struct Orphanage::NewOrphanListImpl<List<T, Kind::STRUCT>> {
  static inline _::OrphanBuilder apply(
      _::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) {
    return _::OrphanBuilder::initStructList(
        arena, capTable, bounded(size) * ELEMENTS, _::structSize<T>());
  }
};

template <>
struct Orphanage::NewOrphanListImpl<Text> {
  static inline _::OrphanBuilder apply(
      _::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) {
    return _::OrphanBuilder::initText(arena, capTable, bounded(size) * BYTES);
  }
};

template <>
struct Orphanage::NewOrphanListImpl<Data> {
  static inline _::OrphanBuilder apply(
      _::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) {
    return _::OrphanBuilder::initData(arena, capTable, bounded(size) * BYTES);
  }
};

template <typename RootType>
Orphan<RootType> Orphanage::newOrphan(uint size) const {
  return Orphan<RootType>(NewOrphanListImpl<RootType>::apply(arena, capTable, size));
}

template <typename T>
struct Orphanage::GetInnerReader<T, Kind::STRUCT> {
  static inline _::StructReader apply(const typename T::Reader& t) {
    return t._reader;
  }
};

template <typename T>
struct Orphanage::GetInnerReader<T, Kind::LIST> {
  static inline _::ListReader apply(const typename T::Reader& t) {
    return t.reader;
  }
};

template <typename T>
struct Orphanage::GetInnerReader<T, Kind::BLOB> {
  static inline const typename T::Reader& apply(const typename T::Reader& t) {
    return t;
  }
};

template <typename Reader>
inline Orphan<FromReader<Reader>> Orphanage::newOrphanCopy(Reader copyFrom) const {
  return Orphan<FromReader<Reader>>(_::OrphanBuilder::copy(
      arena, capTable, GetInnerReader<FromReader<Reader>>::apply(copyFrom)));
}

template <typename T>
inline Orphan<List<ListElementType<FromReader<T>>>>
Orphanage::newOrphanConcat(kj::ArrayPtr<T> lists) const {
  return newOrphanConcat(kj::implicitCast<kj::ArrayPtr<const T>>(lists));
}
template <typename T>
inline Orphan<List<ListElementType<FromReader<T>>>>
Orphanage::newOrphanConcat(kj::ArrayPtr<const T> lists) const {
  // Optimization / simplification: Rely on List<T>::Reader containing nothing except a
  // _::ListReader.
  static_assert(sizeof(T) == sizeof(_::ListReader), "lists are not bare readers?");
  kj::ArrayPtr<const _::ListReader> raw(
      reinterpret_cast<const _::ListReader*>(lists.begin()), lists.size());
  typedef ListElementType<FromReader<T>> Element;
  return Orphan<List<Element>>(
      _::OrphanBuilder::concat(arena, capTable,
          _::elementSizeForType<Element>(),
          _::minStructSizeForElement<Element>(), raw));
}

inline Orphan<Data> Orphanage::referenceExternalData(Data::Reader data) const {
  return Orphan<Data>(_::OrphanBuilder::referenceExternalData(arena, data));
}

}  // namespace capnp

#endif  // CAPNP_ORPHAN_H_