Commit 911a2986 authored by gabime's avatar gabime

fixed flush interval in async helper

parent 8321449c
......@@ -7,7 +7,8 @@
// bench.cpp : spdlog benchmarks
//
#include "spdlog/async_logger.h"
#include "spdlog/sinks/test_sink.h"
#include "spdlog/sinks/file_sinks.h"
#include "spdlog/sinks/null_sink.h"
#include "spdlog/spdlog.h"
#include "utils.h"
#include <atomic>
......@@ -29,10 +30,12 @@ void bench_mt(int howmany, std::shared_ptr<spdlog::logger> log, int thread_count
int main(int argc, char *argv[])
{
int queue_size = 1024*1024;
int queue_size = 1048576;
int howmany = 1000000;
int threads = 10;
int file_size = 30 * 1024 * 1024;
int rotating_files = 5;
try
{
......@@ -42,7 +45,7 @@ int main(int argc, char *argv[])
threads = atoi(argv[2]);
if (argc > 3)
queue_size = atoi(argv[3]);
/*
cout << "*******************************************************************************\n";
cout << "Single thread, " << format(howmany) << " iterations" << endl;
cout << "*******************************************************************************\n";
......@@ -64,32 +67,17 @@ int main(int argc, char *argv[])
bench_mt(howmany, daily_mt, threads);
bench(howmany, spdlog::create<null_sink_st>("null_mt"));
*/
cout << "\n*******************************************************************************\n";
cout << "async logging.. " << threads << " threads sharing same logger, " << format(howmany) << " iterations " << endl;
cout << "*******************************************************************************\n";
spdlog::set_async_mode(queue_size);
for (int i = 0; i < 300; ++i)
for (int i = 0; i < 3; ++i)
{
//auto as = spdlog::daily_logger_mt("as", "logs/daily_async.log");
auto test_sink = std::make_shared<spdlog::sinks::test_sink_mt>();
//auto as = spdlog::basic_logger_mt("as", "logs/async.log", true);
auto as = std::make_shared<spdlog::async_logger>("as", test_sink, queue_size, async_overflow_policy::block_retry, nullptr, std::chrono::milliseconds(2000));
bench_mt(howmany, as, threads);
as.reset();
auto as = spdlog::daily_logger_st("as", "logs/daily_async.log");
bench_mt(howmany, as, threads);
spdlog::drop("as");
auto msg_counter = test_sink->msg_counter();
cout << "Count:" << msg_counter << endl;
if (msg_counter != howmany)
{
cout << "ERROR! Expected " << howmany;
exit(0);
}
}
}
catch (std::exception &ex)
......@@ -131,7 +119,6 @@ void bench_mt(int howmany, std::shared_ptr<spdlog::logger> log, int thread_count
if (counter > howmany)
break;
log->info("Hello logger: msg number {}", counter);
//std::this_thread::sleep_for(std::chrono::milliseconds(1000));
}
}));
}
......
......@@ -17,8 +17,10 @@
//
// Create a file logger which creates new files with a specified time step and fixed file size:
//
// std::shared_ptr<logger> step_logger_mt(const std::string &logger_name, const filename_t &filename, unsigned seconds = 60, const filename_t &tmp_ext = ".tmp", unsigned max_file_size = std::numeric_limits<unsigned>::max());
// std::shared_ptr<logger> step_logger_st(const std::string &logger_name, const filename_t &filename, unsigned seconds = 60, const filename_t &tmp_ext = ".tmp", unsigned max_file_size = std::numeric_limits<unsigned>::max());
// std::shared_ptr<logger> step_logger_mt(const std::string &logger_name, const filename_t &filename, unsigned seconds = 60, const
// filename_t &tmp_ext = ".tmp", unsigned max_file_size = std::numeric_limits<unsigned>::max()); std::shared_ptr<logger>
// step_logger_st(const std::string &logger_name, const filename_t &filename, unsigned seconds = 60, const filename_t &tmp_ext = ".tmp",
// unsigned max_file_size = std::numeric_limits<unsigned>::max());
// Example for spdlog_impl.h
// Create a file logger that creates new files with a specified increment
......@@ -76,7 +78,7 @@ public:
{
throw spdlog_ex("step_file_sink: Invalid max log size in ctor");
}
_tp = _next_tp();
std::tie(_current_filename, _ext) = FileNameCalc::calc_filename(_base_filename, _tmp_ext);
......@@ -88,7 +90,7 @@ public:
_file_helper.open(_current_filename);
_current_size = _file_helper.size(); // expensive. called only once
}
~step_file_sink()
{
try
......@@ -96,7 +98,8 @@ public:
close_current_file();
}
catch (...)
{}
{
}
}
protected:
......@@ -130,7 +133,7 @@ private:
{
using details::os::filename_to_str;
filename_t src =_current_filename, target;
filename_t src = _current_filename, target;
std::tie(target, std::ignore) = details::file_helper::split_by_extenstion(src);
target += _ext;
......@@ -149,7 +152,7 @@ private:
filename_t _current_filename;
filename_t _ext;
unsigned _current_size;
details::file_helper _file_helper;
};
......
......@@ -19,341 +19,338 @@
#include "../formatter.h"
#include "../sinks/sink.h"
#include<iostream>
#include <chrono>
#include <condition_variable>
#include <exception>
#include <functional>
#include <iostream>
#include <memory>
#include <string>
#include <thread>
#include <utility>
#include <vector>
#include <condition_variable>
namespace spdlog {
namespace details {
class async_log_helper
{
// Async msg to move to/from the queue
// Movable only. should never be copied
enum class async_msg_type
{
log,
flush,
terminate
};
struct async_msg
{
std::string logger_name;
level::level_enum level;
log_clock::time_point time;
size_t thread_id;
std::string txt;
async_msg_type msg_type;
size_t msg_id;
async_msg() = default;
~async_msg() = default;
explicit async_msg(async_msg_type m_type)
: level(level::info)
, thread_id(0)
, msg_type(m_type)
, msg_id(0)
{
}
async_msg(async_msg &&other) SPDLOG_NOEXCEPT : logger_name(std::move(other.logger_name)),
level(std::move(other.level)),
time(std::move(other.time)),
thread_id(other.thread_id),
txt(std::move(other.txt)),
msg_type(std::move(other.msg_type)),
msg_id(other.msg_id)
{
}
async_msg &operator=(async_msg &&other) SPDLOG_NOEXCEPT
{
logger_name = std::move(other.logger_name);
level = other.level;
time = std::move(other.time);
thread_id = other.thread_id;
txt = std::move(other.txt);
msg_type = other.msg_type;
msg_id = other.msg_id;
return *this;
}
// never copy or assign. should only be moved..
async_msg(const async_msg &) = delete;
async_msg &operator=(const async_msg &other) = delete;
// construct from log_msg
explicit async_msg(const details::log_msg &m)
: level(m.level)
, time(m.time)
, thread_id(m.thread_id)
, txt(m.raw.data(), m.raw.size())
, msg_type(async_msg_type::log)
, msg_id(m.msg_id)
{
namespace details {
class async_log_helper
{
// Async msg to move to/from the queue
// Movable only. should never be copied
enum class async_msg_type
{
log,
flush,
terminate
};
struct async_msg
{
std::string logger_name;
level::level_enum level;
log_clock::time_point time;
size_t thread_id;
std::string txt;
async_msg_type msg_type;
size_t msg_id;
async_msg() = default;
~async_msg() = default;
explicit async_msg(async_msg_type m_type)
: level(level::info)
, thread_id(0)
, msg_type(m_type)
, msg_id(0)
{
}
async_msg(async_msg &&other) SPDLOG_NOEXCEPT : logger_name(std::move(other.logger_name)),
level(std::move(other.level)),
time(std::move(other.time)),
thread_id(other.thread_id),
txt(std::move(other.txt)),
msg_type(std::move(other.msg_type)),
msg_id(other.msg_id)
{
}
async_msg &operator=(async_msg &&other) SPDLOG_NOEXCEPT
{
logger_name = std::move(other.logger_name);
level = other.level;
time = std::move(other.time);
thread_id = other.thread_id;
txt = std::move(other.txt);
msg_type = other.msg_type;
msg_id = other.msg_id;
return *this;
}
// never copy or assign. should only be moved..
async_msg(const async_msg &) = delete;
async_msg &operator=(const async_msg &other) = delete;
// construct from log_msg
explicit async_msg(const details::log_msg &m)
: level(m.level)
, time(m.time)
, thread_id(m.thread_id)
, txt(m.raw.data(), m.raw.size())
, msg_type(async_msg_type::log)
, msg_id(m.msg_id)
{
#ifndef SPDLOG_NO_NAME
logger_name = *m.logger_name;
logger_name = *m.logger_name;
#endif
}
}
// copy into log_msg
void fill_log_msg(log_msg &msg)
{
msg.logger_name = &logger_name;
msg.level = level;
msg.time = time;
msg.thread_id = thread_id;
msg.raw << txt;
msg.msg_id = msg_id;
}
};
// copy into log_msg
void fill_log_msg(log_msg &msg)
{
msg.logger_name = &logger_name;
msg.level = level;
msg.time = time;
msg.thread_id = thread_id;
msg.raw << txt;
msg.msg_id = msg_id;
}
};
public:
using item_type = async_msg;
using q_type = details::mpmc_bounded_queue <item_type>;
public:
using item_type = async_msg;
using q_type = details::mpmc_bounded_queue<item_type>;
using clock = std::chrono::steady_clock;
using clock = std::chrono::steady_clock;
async_log_helper(formatter_ptr formatter, std::vector<sink_ptr> sinks, size_t queue_size, const log_err_handler err_handler,
const async_overflow_policy overflow_policy = async_overflow_policy::block_retry, std::function<void()> worker_warmup_cb = nullptr,
const std::chrono::milliseconds &flush_interval_ms = std::chrono::milliseconds::zero(),
std::function<void()> worker_teardown_cb = nullptr);
async_log_helper(formatter_ptr formatter, std::vector<sink_ptr> sinks, size_t queue_size, const log_err_handler err_handler,
const async_overflow_policy overflow_policy = async_overflow_policy::block_retry, std::function<void()> worker_warmup_cb = nullptr,
const std::chrono::milliseconds &flush_interval_ms = std::chrono::milliseconds::zero(),
std::function<void()> worker_teardown_cb = nullptr);
void log(const details::log_msg &msg);
void log(const details::log_msg &msg);
// stop logging and join the back thread
~async_log_helper();
// stop logging and join the back thread
~async_log_helper();
async_log_helper(const async_log_helper &) = delete;
async_log_helper &operator=(const async_log_helper &) = delete;
async_log_helper(const async_log_helper &) = delete;
async_log_helper &operator=(const async_log_helper &) = delete;
void set_formatter(formatter_ptr msg_formatter);
void set_formatter(formatter_ptr msg_formatter);
void flush();
void flush();
void set_error_handler(spdlog::log_err_handler err_handler);
void set_error_handler(spdlog::log_err_handler err_handler);
private:
formatter_ptr _formatter;
std::vector<std::shared_ptr<sinks::sink>> _sinks;
private:
formatter_ptr _formatter;
std::vector<std::shared_ptr<sinks::sink>> _sinks;
// queue of messages to log
q_type _q;
// queue of messages to log
q_type _q;
log_err_handler _err_handler;
log_err_handler _err_handler;
std::chrono::time_point<log_clock> _last_flush;
std::chrono::time_point<log_clock> _last_flush;
// overflow policy
const async_overflow_policy _overflow_policy;
// overflow policy
const async_overflow_policy _overflow_policy;
// worker thread warmup callback - one can set thread priority, affinity, etc
const std::function<void()> _worker_warmup_cb;
// worker thread warmup callback - one can set thread priority, affinity, etc
const std::function<void()> _worker_warmup_cb;
// auto periodic sink flush parameter
const std::chrono::milliseconds _flush_interval_ms;
// auto periodic sink flush parameter
const std::chrono::milliseconds _flush_interval_ms;
// worker thread teardown callback
const std::function<void()> _worker_teardown_cb;
// worker thread teardown callback
const std::function<void()> _worker_teardown_cb;
std::mutex null_mutex_;
//null_mutex null_mutex_;
std::condition_variable_any not_empty_cv_;
std::condition_variable_any not_full_cv_;
std::mutex null_mutex_;
// null_mutex null_mutex_;
std::condition_variable_any not_empty_cv_;
std::condition_variable_any not_full_cv_;
// worker thread
std::thread _worker_thread;
// worker thread
std::thread _worker_thread;
void enqueue_msg(async_msg &&new_msg, async_overflow_policy policy);
void enqueue_msg(async_msg &&new_msg, async_overflow_policy policy);
// worker thread main loop
void worker_loop();
// worker thread main loop
void worker_loop();
// dequeue next message from the queue and process it.
// return false if termination of the queue is required
bool process_next_msg();
// dequeue next message from the queue and process it.
// return false if termination of the queue is required
bool process_next_msg();
void handle_flush_interval();
void handle_flush_interval();
void flush_sinks();
};
} // namespace details
void flush_sinks();
};
} // namespace details
} // namespace spdlog
///////////////////////////////////////////////////////////////////////////////
// async_sink class implementation
///////////////////////////////////////////////////////////////////////////////
inline spdlog::details::async_log_helper::async_log_helper(formatter_ptr formatter, std::vector<sink_ptr> sinks, size_t queue_size,
log_err_handler err_handler, const async_overflow_policy overflow_policy, std::function<void()> worker_warmup_cb,
const std::chrono::milliseconds &flush_interval_ms, std::function<void()> worker_teardown_cb)
: _formatter(std::move(formatter))
, _sinks(std::move(sinks))
, _q(queue_size)
, _err_handler(std::move(err_handler))
, _last_flush(os::now())
, _overflow_policy(overflow_policy)
, _worker_warmup_cb(std::move(worker_warmup_cb))
, _flush_interval_ms(flush_interval_ms)
, _worker_teardown_cb(std::move(worker_teardown_cb))
log_err_handler err_handler, const async_overflow_policy overflow_policy, std::function<void()> worker_warmup_cb,
const std::chrono::milliseconds &flush_interval_ms, std::function<void()> worker_teardown_cb)
: _formatter(std::move(formatter))
, _sinks(std::move(sinks))
, _q(queue_size)
, _err_handler(std::move(err_handler))
, _last_flush(os::now())
, _overflow_policy(overflow_policy)
, _worker_warmup_cb(std::move(worker_warmup_cb))
, _flush_interval_ms(flush_interval_ms)
, _worker_teardown_cb(std::move(worker_teardown_cb))
{
_worker_thread = std::thread(&async_log_helper::worker_loop, this);
_worker_thread = std::thread(&async_log_helper::worker_loop, this);
}
// Send to the worker thread termination message(level=off)
// and wait for it to finish gracefully
inline spdlog::details::async_log_helper::~async_log_helper()
{
try
{
enqueue_msg(async_msg(async_msg_type::terminate), async_overflow_policy::block_retry);
_worker_thread.join();
}
catch (...) // don't crash in destructor
{
}
try
{
enqueue_msg(async_msg(async_msg_type::terminate), async_overflow_policy::block_retry);
_worker_thread.join();
}
catch (...) // don't crash in destructor
{
}
}
// Try to push and block until succeeded (if the policy is not to discard when the queue is full)
inline void spdlog::details::async_log_helper::log(const details::log_msg &msg)
{
enqueue_msg(async_msg(msg), _overflow_policy);
{
enqueue_msg(async_msg(msg), _overflow_policy);
}
inline void spdlog::details::async_log_helper::enqueue_msg(details::async_log_helper::async_msg &&new_msg, async_overflow_policy policy)
{
// block until succeeded pushing to the queue
if (policy == async_overflow_policy::block_retry)
{
_q.enqueue(std::move(new_msg));
}
else
{
_q.enqueue_nowait(std::move(new_msg));
}
// block until succeeded pushing to the queue
if (policy == async_overflow_policy::block_retry)
{
_q.enqueue(std::move(new_msg));
}
else
{
_q.enqueue_nowait(std::move(new_msg));
}
}
// optionally wait for the queue be empty and request flush from the sinks
inline void spdlog::details::async_log_helper::flush()
{
enqueue_msg(async_msg(async_msg_type::flush), _overflow_policy);
enqueue_msg(async_msg(async_msg_type::flush), _overflow_policy);
}
inline void spdlog::details::async_log_helper::worker_loop()
{
if (_worker_warmup_cb)
{
_worker_warmup_cb();
}
auto active = true;
while (active)
{
try
{
active = process_next_msg();
}
catch (const std::exception &ex)
{
_err_handler(ex.what());
}
catch (...)
{
_err_handler("Unknown exeption in async logger worker loop.");
}
}
if (_worker_teardown_cb)
{
_worker_teardown_cb();
}
if (_worker_warmup_cb)
{
_worker_warmup_cb();
}
auto active = true;
while (active)
{
try
{
active = process_next_msg();
}
catch (const std::exception &ex)
{
_err_handler(ex.what());
}
catch (...)
{
_err_handler("Unknown exeption in async logger worker loop.");
}
}
if (_worker_teardown_cb)
{
_worker_teardown_cb();
}
}
// process next message in the queue
// return true if this thread should still be active (while no terminate msg was received)
inline bool spdlog::details::async_log_helper::process_next_msg()
{
async_msg incoming_async_msg;
bool dequeued = _q.dequeue_for(incoming_async_msg, std::chrono::milliseconds(1000));
if (!dequeued)
{
async_msg incoming_async_msg;
bool dequeued = _q.dequeue_for(incoming_async_msg, std::chrono::seconds(2));
if (!dequeued)
{
handle_flush_interval();
return true;
}
switch (incoming_async_msg.msg_type)
{
case async_msg_type::flush:
flush_sinks();
return true;
case async_msg_type::terminate:
flush_sinks();
return false;
default:
log_msg incoming_log_msg;
incoming_async_msg.fill_log_msg(incoming_log_msg);
_formatter->format(incoming_log_msg);
for (auto &s : _sinks)
{
if (s->should_log(incoming_log_msg.level))
{
s->log(incoming_log_msg);
}
}
handle_flush_interval();
return true;
}
switch (incoming_async_msg.msg_type)
{
case async_msg_type::flush:
flush_sinks();
return true;
case async_msg_type::terminate:
//flush_sinks();
return false;
default:
log_msg incoming_log_msg;
incoming_async_msg.fill_log_msg(incoming_log_msg);
_formatter->format(incoming_log_msg);
for (auto &s : _sinks)
{
if (s->should_log(incoming_log_msg.level))
{
s->log(incoming_log_msg);
}
}
return true;
}
assert(false);
return true; // should not be reached
return true;
}
assert(false);
return true; // should not be reached
}
// flush all sinks if _flush_interval_ms has expired. only called if queue is empty
inline void spdlog::details::async_log_helper::handle_flush_interval()
{
if (_flush_interval_ms == std::chrono::milliseconds::zero())
{
return;
}
auto delta = details::os::now() - _last_flush;;
if (delta >= _flush_interval_ms)
{
flush_sinks();
}
}
inline void spdlog::details::async_log_helper::set_formatter(formatter_ptr msg_formatter)
{
_formatter = std::move(msg_formatter);
_formatter = std::move(msg_formatter);
}
inline void spdlog::details::async_log_helper::set_error_handler(spdlog::log_err_handler err_handler)
{
_err_handler = std::move(err_handler);
_err_handler = std::move(err_handler);
}
// flush all sinks if _flush_interval_ms has expired.
inline void spdlog::details::async_log_helper::handle_flush_interval()
{
if (_flush_interval_ms == std::chrono::milliseconds::zero())
{
return;
}
auto delta = details::os::now() - _last_flush;
;
if (delta >= _flush_interval_ms)
{
flush_sinks();
}
}
// flush all sinks if _flush_interval_ms has expired. only called if queue is empty
inline void spdlog::details::async_log_helper::flush_sinks()
{
for (auto &s : _sinks)
{
s->flush();
}
_last_flush = os::now();
{
for (auto &s : _sinks)
{
s->flush();
}
_last_flush = os::now();
}
......@@ -6,84 +6,79 @@
//
// async log helper :
// multi producer-multi consumer blocking queue
// multi producer-multi consumer blocking queue
// enqueue(..) - will block until room found to put the new message
// enqueue_nowait(..) - will return immediatly with false if no room left in the queue
// dequeue_for(..) - will block until the queue is not empty or timeout passed
#include <condition_variable>
#include <mutex>
#include <queue>
namespace spdlog {
namespace details {
template<typename T>
class mpmc_bounded_queue
{
public:
using item_type = T;
explicit mpmc_bounded_queue(size_t max_items) : max_items_(max_items) {}
// try to enqueue and block if no room left
void enqueue(T &&item)
{
{
std::unique_lock<std::mutex> lock(queue_mutex_);
pop_cv_.wait(lock, [this] {return this->q_.size() <= this->max_items_; });
q_.push(std::forward<T>(item));
}
push_cv_.notify_one();
}
// try to enqueue and return immdeialty false if no room left
bool enqueue_nowait(T &&item)
{
{
std::unique_lock<std::mutex> lock(queue_mutex_);
if (this->q_.size() >= this->max_items_)
{
return false;
}
q_.push(std::forward<T>(item));
}
push_cv_.notify_one();
return true;
}
// try to dequeue item. if no item found. wait upto timeout and try again
// Return true, if succeeded dequeue item, false otherwise
bool dequeue_for(T &popped_item, std::chrono::milliseconds wait_duration)
{
{
std::unique_lock<std::mutex> lock(queue_mutex_);
//push_cv_.wait(lock, [this] {return this->q_.size() > 0; });
bool found_msg = push_cv_.wait_for(lock, wait_duration, [this] {return this->q_.size() > 0; });
if (!found_msg)
{
return false;
}
popped_item = std::move(q_.front());
q_.pop();
}
pop_cv_.notify_one();
return true;
}
private:
size_t max_items_;
std::mutex queue_mutex_;
std::condition_variable push_cv_;
std::condition_variable pop_cv_;
std::queue<T> q_;
};
}
}
namespace details {
template<typename T>
class mpmc_bounded_queue
{
public:
using item_type = T;
explicit mpmc_bounded_queue(size_t max_items)
: max_items_(max_items)
{
}
// try to enqueue and block if no room left
void enqueue(T &&item)
{
{
std::unique_lock<std::mutex> lock(queue_mutex_);
pop_cv_.wait(lock, [this] { return this->q_.size() < this->max_items_; });
q_.push(std::move(item));
}
push_cv_.notify_one();
}
// try to enqueue and return immdeialty false if no room left
bool enqueue_nowait(T &&item)
{
{
std::unique_lock<std::mutex> lock(queue_mutex_);
if (q_.size() == this->max_items_)
{
return false;
}
q_.push(std::forward<T>(item));
}
push_cv_.notify_one();
return true;
}
// try to dequeue item. if no item found. wait upto timeout and try again
// Return true, if succeeded dequeue item, false otherwise
bool dequeue_for(T &popped_item, std::chrono::milliseconds wait_duration)
{
{
std::unique_lock<std::mutex> lock(queue_mutex_);
if (!push_cv_.wait_for(lock, wait_duration, [this] { return this->q_.size() > 0; }))
{
return false;
}
popped_item = std::move(q_.front());
q_.pop();
}
pop_cv_.notify_one();
return true;
}
private:
size_t max_items_;
std::mutex queue_mutex_;
std::condition_variable push_cv_;
std::condition_variable pop_cv_;
std::queue<T> q_;
};
} // namespace details
} // namespace spdlog
......@@ -17,20 +17,19 @@ template<class Mutex>
class test_sink : public base_sink<Mutex>
{
public:
size_t msg_counter()
{
return msg_counter_;
}
size_t msg_counter()
{
return msg_counter_;
}
protected:
void _sink_it(const details::log_msg &) override
{
msg_counter_++;
}
void _sink_it(const details::log_msg &) override
{
msg_counter_++;
}
void _flush() override {}
size_t msg_counter_{ 0 };
size_t msg_counter_{0};
};
using test_sink_mt = test_sink<std::mutex>;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment