Commit 3f438a80 authored by gabime's avatar gabime

added bundled fmt 5.x

parent f2a88479
// Formatting library for C++ - the core API
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
//
// Copyright (c) 2018 - present, Remotion (Igor Schulz)
// All Rights Reserved
// {fmt} support for rgb color output.
#ifndef FMT_COLORS_H_
#define FMT_COLORS_H_
#include "format.h"
FMT_BEGIN_NAMESPACE
// rgb is a struct for red, green and blue colors.
// We use rgb as name because some editors will show it as color direct in the
// editor.
struct rgb
{
FMT_CONSTEXPR_DECL rgb()
: r(0)
, g(0)
, b(0)
{
}
FMT_CONSTEXPR_DECL rgb(uint8_t r_, uint8_t g_, uint8_t b_)
: r(r_)
, g(g_)
, b(b_)
{
}
FMT_CONSTEXPR_DECL rgb(uint32_t hex)
: r((hex >> 16) & 0xFF)
, g((hex >> 8) & 0xFF)
, b((hex)&0xFF)
{
}
uint8_t r;
uint8_t g;
uint8_t b;
};
namespace internal {
FMT_CONSTEXPR inline void to_esc(uint8_t c, char out[], int offset)
{
out[offset + 0] = static_cast<char>('0' + c / 100);
out[offset + 1] = static_cast<char>('0' + c / 10 % 10);
out[offset + 2] = static_cast<char>('0' + c % 10);
}
} // namespace internal
FMT_FUNC void vprint_rgb(rgb fd, string_view format, format_args args)
{
char escape_fd[] = "\x1b[38;2;000;000;000m";
static FMT_CONSTEXPR_DECL const char RESET_COLOR[] = "\x1b[0m";
internal::to_esc(fd.r, escape_fd, 7);
internal::to_esc(fd.g, escape_fd, 11);
internal::to_esc(fd.b, escape_fd, 15);
std::fputs(escape_fd, stdout);
vprint(format, args);
std::fputs(RESET_COLOR, stdout);
}
FMT_FUNC void vprint_rgb(rgb fd, rgb bg, string_view format, format_args args)
{
char escape_fd[] = "\x1b[38;2;000;000;000m"; // foreground color
char escape_bg[] = "\x1b[48;2;000;000;000m"; // background color
static FMT_CONSTEXPR_DECL const char RESET_COLOR[] = "\x1b[0m";
internal::to_esc(fd.r, escape_fd, 7);
internal::to_esc(fd.g, escape_fd, 11);
internal::to_esc(fd.b, escape_fd, 15);
internal::to_esc(bg.r, escape_bg, 7);
internal::to_esc(bg.g, escape_bg, 11);
internal::to_esc(bg.b, escape_bg, 15);
std::fputs(escape_fd, stdout);
std::fputs(escape_bg, stdout);
vprint(format, args);
std::fputs(RESET_COLOR, stdout);
}
template<typename... Args>
inline void print_rgb(rgb fd, string_view format_str, const Args &... args)
{
vprint_rgb(fd, format_str, make_format_args(args...));
}
// rgb foreground color
template<typename... Args>
inline void print(rgb fd, string_view format_str, const Args &... args)
{
vprint_rgb(fd, format_str, make_format_args(args...));
}
// rgb foreground color and background color
template<typename... Args>
inline void print(rgb fd, rgb bg, string_view format_str, const Args &... args)
{
vprint_rgb(fd, bg, format_str, make_format_args(args...));
}
enum class color : uint32_t
{
alice_blue = 0xF0F8FF, // rgb(240,248,255)
antique_white = 0xFAEBD7, // rgb(250,235,215)
aqua = 0x00FFFF, // rgb(0,255,255)
aquamarine = 0x7FFFD4, // rgb(127,255,212)
azure = 0xF0FFFF, // rgb(240,255,255)
beige = 0xF5F5DC, // rgb(245,245,220)
bisque = 0xFFE4C4, // rgb(255,228,196)
black = 0x000000, // rgb(0,0,0)
blanched_almond = 0xFFEBCD, // rgb(255,235,205)
blue = 0x0000FF, // rgb(0,0,255)
blue_violet = 0x8A2BE2, // rgb(138,43,226)
brown = 0xA52A2A, // rgb(165,42,42)
burly_wood = 0xDEB887, // rgb(222,184,135)
cadet_blue = 0x5F9EA0, // rgb(95,158,160)
chartreuse = 0x7FFF00, // rgb(127,255,0)
chocolate = 0xD2691E, // rgb(210,105,30)
coral = 0xFF7F50, // rgb(255,127,80)
cornflower_blue = 0x6495ED, // rgb(100,149,237)
cornsilk = 0xFFF8DC, // rgb(255,248,220)
crimson = 0xDC143C, // rgb(220,20,60)
cyan = 0x00FFFF, // rgb(0,255,255)
dark_blue = 0x00008B, // rgb(0,0,139)
dark_cyan = 0x008B8B, // rgb(0,139,139)
dark_golden_rod = 0xB8860B, // rgb(184,134,11)
dark_gray = 0xA9A9A9, // rgb(169,169,169)
dark_green = 0x006400, // rgb(0,100,0)
dark_khaki = 0xBDB76B, // rgb(189,183,107)
dark_magenta = 0x8B008B, // rgb(139,0,139)
dark_olive_green = 0x556B2F, // rgb(85,107,47)
dark_orange = 0xFF8C00, // rgb(255,140,0)
dark_orchid = 0x9932CC, // rgb(153,50,204)
dark_red = 0x8B0000, // rgb(139,0,0)
dark_salmon = 0xE9967A, // rgb(233,150,122)
dark_sea_green = 0x8FBC8F, // rgb(143,188,143)
dark_slate_blue = 0x483D8B, // rgb(72,61,139)
dark_slate_gray = 0x2F4F4F, // rgb(47,79,79)
dark_turquoise = 0x00CED1, // rgb(0,206,209)
dark_violet = 0x9400D3, // rgb(148,0,211)
deep_pink = 0xFF1493, // rgb(255,20,147)
deep_sky_blue = 0x00BFFF, // rgb(0,191,255)
dim_gray = 0x696969, // rgb(105,105,105)
dodger_blue = 0x1E90FF, // rgb(30,144,255)
fire_brick = 0xB22222, // rgb(178,34,34)
floral_white = 0xFFFAF0, // rgb(255,250,240)
forest_green = 0x228B22, // rgb(34,139,34)
fuchsia = 0xFF00FF, // rgb(255,0,255)
gainsboro = 0xDCDCDC, // rgb(220,220,220)
ghost_white = 0xF8F8FF, // rgb(248,248,255)
gold = 0xFFD700, // rgb(255,215,0)
golden_rod = 0xDAA520, // rgb(218,165,32)
gray = 0x808080, // rgb(128,128,128)
green = 0x008000, // rgb(0,128,0)
green_yellow = 0xADFF2F, // rgb(173,255,47)
honey_dew = 0xF0FFF0, // rgb(240,255,240)
hot_pink = 0xFF69B4, // rgb(255,105,180)
indian_red = 0xCD5C5C, // rgb(205,92,92)
indigo = 0x4B0082, // rgb(75,0,130)
ivory = 0xFFFFF0, // rgb(255,255,240)
khaki = 0xF0E68C, // rgb(240,230,140)
lavender = 0xE6E6FA, // rgb(230,230,250)
lavender_blush = 0xFFF0F5, // rgb(255,240,245)
lawn_green = 0x7CFC00, // rgb(124,252,0)
lemon_chiffon = 0xFFFACD, // rgb(255,250,205)
light_blue = 0xADD8E6, // rgb(173,216,230)
light_coral = 0xF08080, // rgb(240,128,128)
light_cyan = 0xE0FFFF, // rgb(224,255,255)
light_golden_rod_yellow = 0xFAFAD2, // rgb(250,250,210)
light_gray = 0xD3D3D3, // rgb(211,211,211)
light_green = 0x90EE90, // rgb(144,238,144)
light_pink = 0xFFB6C1, // rgb(255,182,193)
light_salmon = 0xFFA07A, // rgb(255,160,122)
light_sea_green = 0x20B2AA, // rgb(32,178,170)
light_sky_blue = 0x87CEFA, // rgb(135,206,250)
light_slate_gray = 0x778899, // rgb(119,136,153)
light_steel_blue = 0xB0C4DE, // rgb(176,196,222)
light_yellow = 0xFFFFE0, // rgb(255,255,224)
lime = 0x00FF00, // rgb(0,255,0)
lime_green = 0x32CD32, // rgb(50,205,50)
linen = 0xFAF0E6, // rgb(250,240,230)
magenta = 0xFF00FF, // rgb(255,0,255)
maroon = 0x800000, // rgb(128,0,0)
medium_aqua_marine = 0x66CDAA, // rgb(102,205,170)
medium_blue = 0x0000CD, // rgb(0,0,205)
medium_orchid = 0xBA55D3, // rgb(186,85,211)
medium_purple = 0x9370DB, // rgb(147,112,219)
medium_sea_green = 0x3CB371, // rgb(60,179,113)
medium_slate_blue = 0x7B68EE, // rgb(123,104,238)
medium_spring_green = 0x00FA9A, // rgb(0,250,154)
medium_turquoise = 0x48D1CC, // rgb(72,209,204)
medium_violet_red = 0xC71585, // rgb(199,21,133)
midnight_blue = 0x191970, // rgb(25,25,112)
mint_cream = 0xF5FFFA, // rgb(245,255,250)
misty_rose = 0xFFE4E1, // rgb(255,228,225)
moccasin = 0xFFE4B5, // rgb(255,228,181)
navajo_white = 0xFFDEAD, // rgb(255,222,173)
navy = 0x000080, // rgb(0,0,128)
old_lace = 0xFDF5E6, // rgb(253,245,230)
olive = 0x808000, // rgb(128,128,0)
olive_drab = 0x6B8E23, // rgb(107,142,35)
orange = 0xFFA500, // rgb(255,165,0)
orange_red = 0xFF4500, // rgb(255,69,0)
orchid = 0xDA70D6, // rgb(218,112,214)
pale_golden_rod = 0xEEE8AA, // rgb(238,232,170)
pale_green = 0x98FB98, // rgb(152,251,152)
pale_turquoise = 0xAFEEEE, // rgb(175,238,238)
pale_violet_red = 0xDB7093, // rgb(219,112,147)
papaya_whip = 0xFFEFD5, // rgb(255,239,213)
peach_puff = 0xFFDAB9, // rgb(255,218,185)
peru = 0xCD853F, // rgb(205,133,63)
pink = 0xFFC0CB, // rgb(255,192,203)
plum = 0xDDA0DD, // rgb(221,160,221)
powder_blue = 0xB0E0E6, // rgb(176,224,230)
purple = 0x800080, // rgb(128,0,128)
rebecca_purple = 0x663399, // rgb(102,51,153)
red = 0xFF0000, // rgb(255,0,0)
rosy_brown = 0xBC8F8F, // rgb(188,143,143)
royal_blue = 0x4169E1, // rgb(65,105,225)
saddle_brown = 0x8B4513, // rgb(139,69,19)
salmon = 0xFA8072, // rgb(250,128,114)
sandy_brown = 0xF4A460, // rgb(244,164,96)
sea_green = 0x2E8B57, // rgb(46,139,87)
sea_shell = 0xFFF5EE, // rgb(255,245,238)
sienna = 0xA0522D, // rgb(160,82,45)
silver = 0xC0C0C0, // rgb(192,192,192)
sky_blue = 0x87CEEB, // rgb(135,206,235)
slate_blue = 0x6A5ACD, // rgb(106,90,205)
slate_gray = 0x708090, // rgb(112,128,144)
snow = 0xFFFAFA, // rgb(255,250,250)
spring_green = 0x00FF7F, // rgb(0,255,127)
steel_blue = 0x4682B4, // rgb(70,130,180)
tan = 0xD2B48C, // rgb(210,180,140)
teal = 0x008080, // rgb(0,128,128)
thistle = 0xD8BFD8, // rgb(216,191,216)
tomato = 0xFF6347, // rgb(255,99,71)
turquoise = 0x40E0D0, // rgb(64,224,208)
violet = 0xEE82EE, // rgb(238,130,238)
wheat = 0xF5DEB3, // rgb(245,222,179)
white = 0xFFFFFF, // rgb(255,255,255)
white_smoke = 0xF5F5F5, // rgb(245,245,245)
yellow = 0xFFFF00, // rgb(255,255,0)
yellow_green = 0x9ACD32, // rgb(154,205,50)
}; // enum class colors
FMT_END_NAMESPACE
#endif // FMT_COLORS_H_
// Formatting library for C++ - the core API
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_CORE_H_
#define FMT_CORE_H_
#include <cassert>
#include <cstdio>
#include <cstring>
#include <iterator>
#include <string>
#include <type_traits>
// The fmt library version in the form major * 10000 + minor * 100 + patch.
#define FMT_VERSION 50100
#ifdef __has_feature
#define FMT_HAS_FEATURE(x) __has_feature(x)
#else
#define FMT_HAS_FEATURE(x) 0
#endif
#ifdef __has_include
#define FMT_HAS_INCLUDE(x) __has_include(x)
#else
#define FMT_HAS_INCLUDE(x) 0
#endif
#ifdef __has_cpp_attribute
#define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
#else
#define FMT_HAS_CPP_ATTRIBUTE(x) 0
#endif
#if defined(__GNUC__) && !defined(__clang__)
#define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
#else
#define FMT_GCC_VERSION 0
#endif
#if __cplusplus >= 201103L || defined(__GXX_EXPERIMENTAL_CXX0X__)
#define FMT_HAS_GXX_CXX11 FMT_GCC_VERSION
#else
#define FMT_HAS_GXX_CXX11 0
#endif
#ifdef _MSC_VER
#define FMT_MSC_VER _MSC_VER
#else
#define FMT_MSC_VER 0
#endif
// Check if relaxed c++14 constexpr is supported.
// GCC doesn't allow throw in constexpr until version 6 (bug 67371).
#ifndef FMT_USE_CONSTEXPR
#define FMT_USE_CONSTEXPR \
(FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VER >= 1910 || (FMT_GCC_VERSION >= 600 && __cplusplus >= 201402L))
#endif
#if FMT_USE_CONSTEXPR
#define FMT_CONSTEXPR constexpr
#define FMT_CONSTEXPR_DECL constexpr
#else
#define FMT_CONSTEXPR inline
#define FMT_CONSTEXPR_DECL
#endif
#ifndef FMT_OVERRIDE
#if FMT_HAS_FEATURE(cxx_override) || (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900
#define FMT_OVERRIDE override
#else
#define FMT_OVERRIDE
#endif
#endif
#if FMT_HAS_FEATURE(cxx_explicit_conversions) || FMT_MSC_VER >= 1800
#define FMT_EXPLICIT explicit
#else
#define FMT_EXPLICIT
#endif
#ifndef FMT_NULL
#if FMT_HAS_FEATURE(cxx_nullptr) || (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1600
#define FMT_NULL nullptr
#define FMT_USE_NULLPTR 1
#else
#define FMT_NULL NULL
#endif
#endif
#ifndef FMT_USE_NULLPTR
#define FMT_USE_NULLPTR 0
#endif
#if FMT_HAS_CPP_ATTRIBUTE(noreturn)
#define FMT_NORETURN [[noreturn]]
#else
#define FMT_NORETURN
#endif
// Check if exceptions are disabled.
#if defined(__GNUC__) && !defined(__EXCEPTIONS)
#define FMT_EXCEPTIONS 0
#elif FMT_MSC_VER && !_HAS_EXCEPTIONS
#define FMT_EXCEPTIONS 0
#endif
#ifndef FMT_EXCEPTIONS
#define FMT_EXCEPTIONS 1
#endif
// Define FMT_USE_NOEXCEPT to make fmt use noexcept (C++11 feature).
#ifndef FMT_USE_NOEXCEPT
#define FMT_USE_NOEXCEPT 0
#endif
#if FMT_USE_NOEXCEPT || FMT_HAS_FEATURE(cxx_noexcept) || (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900
#define FMT_DETECTED_NOEXCEPT noexcept
#else
#define FMT_DETECTED_NOEXCEPT throw()
#endif
#ifndef FMT_NOEXCEPT
#if FMT_EXCEPTIONS
#define FMT_NOEXCEPT FMT_DETECTED_NOEXCEPT
#else
#define FMT_NOEXCEPT
#endif
#endif
// This is needed because GCC still uses throw() in its headers when exceptions
// are disabled.
#if FMT_GCC_VERSION
#define FMT_DTOR_NOEXCEPT FMT_DETECTED_NOEXCEPT
#else
#define FMT_DTOR_NOEXCEPT FMT_NOEXCEPT
#endif
#ifndef FMT_BEGIN_NAMESPACE
#if FMT_HAS_FEATURE(cxx_inline_namespaces) || FMT_GCC_VERSION >= 404 || FMT_MSC_VER >= 1900
#define FMT_INLINE_NAMESPACE inline namespace
#define FMT_END_NAMESPACE \
} \
}
#else
#define FMT_INLINE_NAMESPACE namespace
#define FMT_END_NAMESPACE \
} \
using namespace v5; \
}
#endif
#define FMT_BEGIN_NAMESPACE \
namespace fmt { \
FMT_INLINE_NAMESPACE v5 \
{
#endif
#if !defined(FMT_HEADER_ONLY) && defined(_WIN32)
#ifdef FMT_EXPORT
#define FMT_API __declspec(dllexport)
#elif defined(FMT_SHARED)
#define FMT_API __declspec(dllimport)
#endif
#endif
#ifndef FMT_API
#define FMT_API
#endif
#ifndef FMT_ASSERT
#define FMT_ASSERT(condition, message) assert((condition) && message)
#endif
#define FMT_DELETED = delete
// A macro to disallow the copy construction and assignment.
#define FMT_DISALLOW_COPY_AND_ASSIGN(Type) \
Type(const Type &) FMT_DELETED; \
void operator=(const Type &) FMT_DELETED
// libc++ supports string_view in pre-c++17.
#if (FMT_HAS_INCLUDE(<string_view>) && (__cplusplus > 201402L || defined(_LIBCPP_VERSION))) || \
(defined(_MSVC_LANG) && _MSVC_LANG > 201402L && _MSC_VER >= 1910)
#include <string_view>
#define FMT_USE_STD_STRING_VIEW
#elif (FMT_HAS_INCLUDE(<experimental / string_view>) && __cplusplus >= 201402L)
#include <experimental/string_view>
#define FMT_USE_EXPERIMENTAL_STRING_VIEW
#endif
// std::result_of is defined in <functional> in gcc 4.4.
#if FMT_GCC_VERSION && FMT_GCC_VERSION <= 404
#include <functional>
#endif
FMT_BEGIN_NAMESPACE
// An implementation of declval for pre-C++11 compilers such as gcc 4.
namespace internal {
template<typename T>
typename std::add_rvalue_reference<T>::type declval() FMT_NOEXCEPT;
}
/**
An implementation of ``std::basic_string_view`` for pre-C++17. It provides a
subset of the API. ``fmt::basic_string_view`` is used for format strings even
if ``std::string_view`` is available to prevent issues when a library is
compiled with a different ``-std`` option than the client code (which is not
recommended).
*/
template<typename Char>
class basic_string_view
{
private:
const Char *data_;
size_t size_;
public:
typedef Char char_type;
typedef const Char *iterator;
// Standard basic_string_view type.
#if defined(FMT_USE_STD_STRING_VIEW)
typedef std::basic_string_view<Char> type;
#elif defined(FMT_USE_EXPERIMENTAL_STRING_VIEW)
typedef std::experimental::basic_string_view<Char> type;
#else
struct type
{
const char *data() const
{
return FMT_NULL;
}
size_t size() const
{
return 0;
}
};
#endif
FMT_CONSTEXPR basic_string_view() FMT_NOEXCEPT : data_(FMT_NULL), size_(0) {}
/** Constructs a string reference object from a C string and a size. */
FMT_CONSTEXPR basic_string_view(const Char *s, size_t str_size) FMT_NOEXCEPT : data_(s), size_(str_size) {}
/**
\rst
Constructs a string reference object from a C string computing
the size with ``std::char_traits<Char>::length``.
\endrst
*/
basic_string_view(const Char *s)
: data_(s)
, size_(std::char_traits<Char>::length(s))
{
}
/** Constructs a string reference from a ``std::basic_string`` object. */
template<typename Alloc>
FMT_CONSTEXPR basic_string_view(const std::basic_string<Char, Alloc> &s) FMT_NOEXCEPT : data_(s.c_str()), size_(s.size())
{
}
FMT_CONSTEXPR basic_string_view(type s) FMT_NOEXCEPT : data_(s.data()), size_(s.size()) {}
/** Returns a pointer to the string data. */
const Char *data() const
{
return data_;
}
/** Returns the string size. */
FMT_CONSTEXPR size_t size() const
{
return size_;
}
FMT_CONSTEXPR iterator begin() const
{
return data_;
}
FMT_CONSTEXPR iterator end() const
{
return data_ + size_;
}
FMT_CONSTEXPR void remove_prefix(size_t n)
{
data_ += n;
size_ -= n;
}
// Lexicographically compare this string reference to other.
int compare(basic_string_view other) const
{
size_t str_size = size_ < other.size_ ? size_ : other.size_;
int result = std::char_traits<Char>::compare(data_, other.data_, str_size);
if (result == 0)
result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1);
return result;
}
friend bool operator==(basic_string_view lhs, basic_string_view rhs)
{
return lhs.compare(rhs) == 0;
}
friend bool operator!=(basic_string_view lhs, basic_string_view rhs)
{
return lhs.compare(rhs) != 0;
}
friend bool operator<(basic_string_view lhs, basic_string_view rhs)
{
return lhs.compare(rhs) < 0;
}
friend bool operator<=(basic_string_view lhs, basic_string_view rhs)
{
return lhs.compare(rhs) <= 0;
}
friend bool operator>(basic_string_view lhs, basic_string_view rhs)
{
return lhs.compare(rhs) > 0;
}
friend bool operator>=(basic_string_view lhs, basic_string_view rhs)
{
return lhs.compare(rhs) >= 0;
}
};
typedef basic_string_view<char> string_view;
typedef basic_string_view<wchar_t> wstring_view;
template<typename Context>
class basic_format_arg;
template<typename Context>
class basic_format_args;
// A formatter for objects of type T.
template<typename T, typename Char = char, typename Enable = void>
struct formatter;
namespace internal {
/** A contiguous memory buffer with an optional growing ability. */
template<typename T>
class basic_buffer
{
private:
FMT_DISALLOW_COPY_AND_ASSIGN(basic_buffer);
T *ptr_;
std::size_t size_;
std::size_t capacity_;
protected:
basic_buffer(T *p = FMT_NULL, std::size_t buf_size = 0, std::size_t buf_capacity = 0) FMT_NOEXCEPT : ptr_(p),
size_(buf_size),
capacity_(buf_capacity)
{
}
/** Sets the buffer data and capacity. */
void set(T *buf_data, std::size_t buf_capacity) FMT_NOEXCEPT
{
ptr_ = buf_data;
capacity_ = buf_capacity;
}
/** Increases the buffer capacity to hold at least *capacity* elements. */
virtual void grow(std::size_t capacity) = 0;
public:
typedef T value_type;
typedef const T &const_reference;
virtual ~basic_buffer() {}
T *begin() FMT_NOEXCEPT
{
return ptr_;
}
T *end() FMT_NOEXCEPT
{
return ptr_ + size_;
}
/** Returns the size of this buffer. */
std::size_t size() const FMT_NOEXCEPT
{
return size_;
}
/** Returns the capacity of this buffer. */
std::size_t capacity() const FMT_NOEXCEPT
{
return capacity_;
}
/** Returns a pointer to the buffer data. */
T *data() FMT_NOEXCEPT
{
return ptr_;
}
/** Returns a pointer to the buffer data. */
const T *data() const FMT_NOEXCEPT
{
return ptr_;
}
/**
Resizes the buffer. If T is a POD type new elements may not be initialized.
*/
void resize(std::size_t new_size)
{
reserve(new_size);
size_ = new_size;
}
/** Reserves space to store at least *buf_capacity* elements. */
void reserve(std::size_t buf_capacity)
{
if (buf_capacity > capacity_)
grow(buf_capacity);
}
void push_back(const T &value)
{
reserve(size_ + 1);
ptr_[size_++] = value;
}
/** Appends data to the end of the buffer. */
template<typename U>
void append(const U *begin, const U *end);
T &operator[](std::size_t index)
{
return ptr_[index];
}
const T &operator[](std::size_t index) const
{
return ptr_[index];
}
};
typedef basic_buffer<char> buffer;
typedef basic_buffer<wchar_t> wbuffer;
// A container-backed buffer.
template<typename Container>
class container_buffer : public basic_buffer<typename Container::value_type>
{
private:
Container &container_;
protected:
void grow(std::size_t capacity) FMT_OVERRIDE
{
container_.resize(capacity);
this->set(&container_[0], capacity);
}
public:
explicit container_buffer(Container &c)
: basic_buffer<typename Container::value_type>(&c[0], c.size(), c.size())
, container_(c)
{
}
};
struct error_handler
{
FMT_CONSTEXPR error_handler() {}
FMT_CONSTEXPR error_handler(const error_handler &) {}
// This function is intentionally not constexpr to give a compile-time error.
FMT_API void on_error(const char *message);
};
// Formatting of wide characters and strings into a narrow output is disallowed:
// fmt::format("{}", L"test"); // error
// To fix this, use a wide format string:
// fmt::format(L"{}", L"test");
template<typename Char>
inline void require_wchar()
{
static_assert(std::is_same<wchar_t, Char>::value, "formatting of wide characters into a narrow output is disallowed");
}
template<typename Char>
struct named_arg_base;
template<typename T, typename Char>
struct named_arg;
template<typename T>
struct is_named_arg : std::false_type
{
};
template<typename T, typename Char>
struct is_named_arg<named_arg<T, Char>> : std::true_type
{
};
enum type
{
none_type,
named_arg_type,
// Integer types should go first,
int_type,
uint_type,
long_long_type,
ulong_long_type,
bool_type,
char_type,
last_integer_type = char_type,
// followed by floating-point types.
double_type,
long_double_type,
last_numeric_type = long_double_type,
cstring_type,
string_type,
pointer_type,
custom_type
};
FMT_CONSTEXPR bool is_integral(type t)
{
FMT_ASSERT(t != internal::named_arg_type, "invalid argument type");
return t > internal::none_type && t <= internal::last_integer_type;
}
FMT_CONSTEXPR bool is_arithmetic(type t)
{
FMT_ASSERT(t != internal::named_arg_type, "invalid argument type");
return t > internal::none_type && t <= internal::last_numeric_type;
}
template<typename T, typename Char, bool ENABLE = true>
struct convert_to_int
{
enum
{
value = !std::is_arithmetic<T>::value && std::is_convertible<T, int>::value
};
};
template<typename Char>
struct string_value
{
const Char *value;
std::size_t size;
};
template<typename Context>
struct custom_value
{
const void *value;
void (*format)(const void *arg, Context &ctx);
};
// A formatting argument value.
template<typename Context>
class value
{
public:
typedef typename Context::char_type char_type;
union
{
int int_value;
unsigned uint_value;
long long long_long_value;
unsigned long long ulong_long_value;
double double_value;
long double long_double_value;
const void *pointer;
string_value<char_type> string;
string_value<signed char> sstring;
string_value<unsigned char> ustring;
custom_value<Context> custom;
};
FMT_CONSTEXPR value(int val = 0)
: int_value(val)
{
}
value(unsigned val)
{
uint_value = val;
}
value(long long val)
{
long_long_value = val;
}
value(unsigned long long val)
{
ulong_long_value = val;
}
value(double val)
{
double_value = val;
}
value(long double val)
{
long_double_value = val;
}
value(const char_type *val)
{
string.value = val;
}
value(const signed char *val)
{
static_assert(std::is_same<char, char_type>::value, "incompatible string types");
sstring.value = val;
}
value(const unsigned char *val)
{
static_assert(std::is_same<char, char_type>::value, "incompatible string types");
ustring.value = val;
}
value(basic_string_view<char_type> val)
{
string.value = val.data();
string.size = val.size();
}
value(const void *val)
{
pointer = val;
}
template<typename T>
explicit value(const T &val)
{
custom.value = &val;
custom.format = &format_custom_arg<T>;
}
const named_arg_base<char_type> &as_named_arg()
{
return *static_cast<const named_arg_base<char_type> *>(pointer);
}
private:
// Formats an argument of a custom type, such as a user-defined class.
template<typename T>
static void format_custom_arg(const void *arg, Context &ctx)
{
// Get the formatter type through the context to allow different contexts
// have different extension points, e.g. `formatter<T>` for `format` and
// `printf_formatter<T>` for `printf`.
typename Context::template formatter_type<T>::type f;
auto &&parse_ctx = ctx.parse_context();
parse_ctx.advance_to(f.parse(parse_ctx));
ctx.advance_to(f.format(*static_cast<const T *>(arg), ctx));
}
};
template<typename Context, type TYPE>
struct typed_value : value<Context>
{
static const type type_tag = TYPE;
template<typename T>
FMT_CONSTEXPR typed_value(const T &val)
: value<Context>(val)
{
}
};
template<typename Context, typename T>
FMT_CONSTEXPR basic_format_arg<Context> make_arg(const T &value);
#define FMT_MAKE_VALUE(TAG, ArgType, ValueType) \
template<typename C> \
FMT_CONSTEXPR typed_value<C, TAG> make_value(ArgType val) \
{ \
return static_cast<ValueType>(val); \
}
#define FMT_MAKE_VALUE_SAME(TAG, Type) \
template<typename C> \
FMT_CONSTEXPR typed_value<C, TAG> make_value(Type val) \
{ \
return val; \
}
FMT_MAKE_VALUE(bool_type, bool, int)
FMT_MAKE_VALUE(int_type, short, int)
FMT_MAKE_VALUE(uint_type, unsigned short, unsigned)
FMT_MAKE_VALUE_SAME(int_type, int)
FMT_MAKE_VALUE_SAME(uint_type, unsigned)
// To minimize the number of types we need to deal with, long is translated
// either to int or to long long depending on its size.
typedef std::conditional<sizeof(long) == sizeof(int), int, long long>::type long_type;
FMT_MAKE_VALUE((sizeof(long) == sizeof(int) ? int_type : long_long_type), long, long_type)
typedef std::conditional<sizeof(unsigned long) == sizeof(unsigned), unsigned, unsigned long long>::type ulong_type;
FMT_MAKE_VALUE((sizeof(unsigned long) == sizeof(unsigned) ? uint_type : ulong_long_type), unsigned long, ulong_type)
FMT_MAKE_VALUE_SAME(long_long_type, long long)
FMT_MAKE_VALUE_SAME(ulong_long_type, unsigned long long)
FMT_MAKE_VALUE(int_type, signed char, int)
FMT_MAKE_VALUE(uint_type, unsigned char, unsigned)
FMT_MAKE_VALUE(char_type, char, int)
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
template<typename C>
inline typed_value<C, char_type> make_value(wchar_t val)
{
require_wchar<typename C::char_type>();
return static_cast<int>(val);
}
#endif
FMT_MAKE_VALUE(double_type, float, double)
FMT_MAKE_VALUE_SAME(double_type, double)
FMT_MAKE_VALUE_SAME(long_double_type, long double)
// Formatting of wide strings into a narrow buffer and multibyte strings
// into a wide buffer is disallowed (https://github.com/fmtlib/fmt/pull/606).
FMT_MAKE_VALUE(cstring_type, typename C::char_type *, const typename C::char_type *)
FMT_MAKE_VALUE(cstring_type, const typename C::char_type *, const typename C::char_type *)
FMT_MAKE_VALUE(cstring_type, signed char *, const signed char *)
FMT_MAKE_VALUE_SAME(cstring_type, const signed char *)
FMT_MAKE_VALUE(cstring_type, unsigned char *, const unsigned char *)
FMT_MAKE_VALUE_SAME(cstring_type, const unsigned char *)
FMT_MAKE_VALUE_SAME(string_type, basic_string_view<typename C::char_type>)
FMT_MAKE_VALUE(string_type, typename basic_string_view<typename C::char_type>::type, basic_string_view<typename C::char_type>)
FMT_MAKE_VALUE(string_type, const std::basic_string<typename C::char_type> &, basic_string_view<typename C::char_type>)
FMT_MAKE_VALUE(pointer_type, void *, const void *)
FMT_MAKE_VALUE_SAME(pointer_type, const void *)
#if FMT_USE_NULLPTR
FMT_MAKE_VALUE(pointer_type, std::nullptr_t, const void *)
#endif
// Formatting of arbitrary pointers is disallowed. If you want to output a
// pointer cast it to "void *" or "const void *". In particular, this forbids
// formatting of "[const] volatile char *" which is printed as bool by
// iostreams.
template<typename C, typename T>
typename std::enable_if<!std::is_same<T, typename C::char_type>::value>::type make_value(const T *)
{
static_assert(!sizeof(T), "formatting of non-void pointers is disallowed");
}
template<typename C, typename T>
inline typename std::enable_if<std::is_enum<T>::value && convert_to_int<T, typename C::char_type>::value, typed_value<C, int_type>>::type
make_value(const T &val)
{
return static_cast<int>(val);
}
template<typename C, typename T, typename Char = typename C::char_type>
inline typename std::enable_if<!convert_to_int<T, Char>::value && !std::is_convertible<T, basic_string_view<Char>>::value,
// Implicit conversion to std::string is not handled here because it's
// unsafe: https://github.com/fmtlib/fmt/issues/729
typed_value<C, custom_type>>::type
make_value(const T &val)
{
return val;
}
template<typename C, typename T>
typed_value<C, named_arg_type> make_value(const named_arg<T, typename C::char_type> &val)
{
basic_format_arg<C> arg = make_arg<C>(val.value);
std::memcpy(val.data, &arg, sizeof(arg));
return static_cast<const void *>(&val);
}
// Maximum number of arguments with packed types.
enum
{
max_packed_args = 15
};
template<typename Context>
class arg_map;
template<typename>
struct result_of;
template<typename F, typename... Args>
struct result_of<F(Args...)>
{
// A workaround for gcc 4.4 that doesn't allow F to be a reference.
typedef typename std::result_of<typename std::remove_reference<F>::type(Args...)>::type type;
};
} // namespace internal
// A formatting argument. It is a trivially copyable/constructible type to
// allow storage in basic_memory_buffer.
template<typename Context>
class basic_format_arg
{
private:
internal::value<Context> value_;
internal::type type_;
template<typename ContextType, typename T>
friend FMT_CONSTEXPR basic_format_arg<ContextType> internal::make_arg(const T &value);
template<typename Visitor, typename Ctx>
friend FMT_CONSTEXPR typename internal::result_of<Visitor(int)>::type visit(Visitor &&vis, basic_format_arg<Ctx> arg);
friend class basic_format_args<Context>;
friend class internal::arg_map<Context>;
typedef typename Context::char_type char_type;
public:
class handle
{
public:
explicit handle(internal::custom_value<Context> custom)
: custom_(custom)
{
}
void format(Context &ctx) const
{
custom_.format(custom_.value, ctx);
}
private:
internal::custom_value<Context> custom_;
};
FMT_CONSTEXPR basic_format_arg()
: type_(internal::none_type)
{
}
FMT_EXPLICIT operator bool() const FMT_NOEXCEPT
{
return type_ != internal::none_type;
}
internal::type type() const
{
return type_;
}
bool is_integral() const
{
return internal::is_integral(type_);
}
bool is_arithmetic() const
{
return internal::is_arithmetic(type_);
}
};
// Parsing context consisting of a format string range being parsed and an
// argument counter for automatic indexing.
template<typename Char, typename ErrorHandler = internal::error_handler>
class basic_parse_context : private ErrorHandler
{
private:
basic_string_view<Char> format_str_;
int next_arg_id_;
public:
typedef Char char_type;
typedef typename basic_string_view<Char>::iterator iterator;
explicit FMT_CONSTEXPR basic_parse_context(basic_string_view<Char> format_str, ErrorHandler eh = ErrorHandler())
: ErrorHandler(eh)
, format_str_(format_str)
, next_arg_id_(0)
{
}
// Returns an iterator to the beginning of the format string range being
// parsed.
FMT_CONSTEXPR iterator begin() const FMT_NOEXCEPT
{
return format_str_.begin();
}
// Returns an iterator past the end of the format string range being parsed.
FMT_CONSTEXPR iterator end() const FMT_NOEXCEPT
{
return format_str_.end();
}
// Advances the begin iterator to ``it``.
FMT_CONSTEXPR void advance_to(iterator it)
{
format_str_.remove_prefix(it - begin());
}
// Returns the next argument index.
FMT_CONSTEXPR unsigned next_arg_id();
FMT_CONSTEXPR bool check_arg_id(unsigned)
{
if (next_arg_id_ > 0)
{
on_error("cannot switch from automatic to manual argument indexing");
return false;
}
next_arg_id_ = -1;
return true;
}
void check_arg_id(basic_string_view<Char>) {}
FMT_CONSTEXPR void on_error(const char *message)
{
ErrorHandler::on_error(message);
}
FMT_CONSTEXPR ErrorHandler error_handler() const
{
return *this;
}
};
typedef basic_parse_context<char> parse_context;
typedef basic_parse_context<wchar_t> wparse_context;
namespace internal {
// A map from argument names to their values for named arguments.
template<typename Context>
class arg_map
{
private:
FMT_DISALLOW_COPY_AND_ASSIGN(arg_map);
typedef typename Context::char_type char_type;
struct entry
{
basic_string_view<char_type> name;
basic_format_arg<Context> arg;
};
entry *map_;
unsigned size_;
void push_back(value<Context> val)
{
const internal::named_arg_base<char_type> &named = val.as_named_arg();
map_[size_] = entry{named.name, named.template deserialize<Context>()};
++size_;
}
public:
arg_map()
: map_(FMT_NULL)
, size_(0)
{
}
void init(const basic_format_args<Context> &args);
~arg_map()
{
delete[] map_;
}
basic_format_arg<Context> find(basic_string_view<char_type> name) const
{
// The list is unsorted, so just return the first matching name.
for (entry *it = map_, *end = map_ + size_; it != end; ++it)
{
if (it->name == name)
return it->arg;
}
return basic_format_arg<Context>();
}
};
template<typename OutputIt, typename Context, typename Char>
class context_base
{
public:
typedef OutputIt iterator;
private:
basic_parse_context<Char> parse_context_;
iterator out_;
basic_format_args<Context> args_;
protected:
typedef Char char_type;
typedef basic_format_arg<Context> format_arg;
context_base(OutputIt out, basic_string_view<char_type> format_str, basic_format_args<Context> ctx_args)
: parse_context_(format_str)
, out_(out)
, args_(ctx_args)
{
}
// Returns the argument with specified index.
format_arg do_get_arg(unsigned arg_id)
{
format_arg arg = args_.get(arg_id);
if (!arg)
parse_context_.on_error("argument index out of range");
return arg;
}
// Checks if manual indexing is used and returns the argument with
// specified index.
format_arg get_arg(unsigned arg_id)
{
return this->parse_context().check_arg_id(arg_id) ? this->do_get_arg(arg_id) : format_arg();
}
public:
basic_parse_context<char_type> &parse_context()
{
return parse_context_;
}
internal::error_handler error_handler()
{
return parse_context_.error_handler();
}
void on_error(const char *message)
{
parse_context_.on_error(message);
}
// Returns an iterator to the beginning of the output range.
iterator out()
{
return out_;
}
iterator begin()
{
return out_;
} // deprecated
// Advances the begin iterator to ``it``.
void advance_to(iterator it)
{
out_ = it;
}
basic_format_args<Context> args() const
{
return args_;
}
};
// Extracts a reference to the container from back_insert_iterator.
template<typename Container>
inline Container &get_container(std::back_insert_iterator<Container> it)
{
typedef std::back_insert_iterator<Container> bi_iterator;
struct accessor : bi_iterator
{
accessor(bi_iterator iter)
: bi_iterator(iter)
{
}
using bi_iterator::container;
};
return *accessor(it).container;
}
} // namespace internal
// Formatting context.
template<typename OutputIt, typename Char>
class basic_format_context : public internal::context_base<OutputIt, basic_format_context<OutputIt, Char>, Char>
{
public:
/** The character type for the output. */
typedef Char char_type;
// using formatter_type = formatter<T, char_type>;
template<typename T>
struct formatter_type
{
typedef formatter<T, char_type> type;
};
private:
internal::arg_map<basic_format_context> map_;
FMT_DISALLOW_COPY_AND_ASSIGN(basic_format_context);
typedef internal::context_base<OutputIt, basic_format_context, Char> base;
typedef typename base::format_arg format_arg;
using base::get_arg;
public:
using typename base::iterator;
/**
Constructs a ``basic_format_context`` object. References to the arguments are
stored in the object so make sure they have appropriate lifetimes.
*/
basic_format_context(OutputIt out, basic_string_view<char_type> format_str, basic_format_args<basic_format_context> ctx_args)
: base(out, format_str, ctx_args)
{
}
format_arg next_arg()
{
return this->do_get_arg(this->parse_context().next_arg_id());
}
format_arg get_arg(unsigned arg_id)
{
return this->do_get_arg(arg_id);
}
// Checks if manual indexing is used and returns the argument with the
// specified name.
format_arg get_arg(basic_string_view<char_type> name);
};
template<typename Char>
struct buffer_context
{
typedef basic_format_context<std::back_insert_iterator<internal::basic_buffer<Char>>, Char> type;
};
typedef buffer_context<char>::type format_context;
typedef buffer_context<wchar_t>::type wformat_context;
namespace internal {
template<typename Context, typename T>
struct get_type
{
typedef decltype(make_value<Context>(declval<typename std::decay<T>::type &>())) value_type;
static const type value = value_type::type_tag;
};
template<typename Context>
FMT_CONSTEXPR uint64_t get_types()
{
return 0;
}
template<typename Context, typename Arg, typename... Args>
FMT_CONSTEXPR uint64_t get_types()
{
return get_type<Context, Arg>::value | (get_types<Context, Args...>() << 4);
}
template<typename Context, typename T>
FMT_CONSTEXPR basic_format_arg<Context> make_arg(const T &value)
{
basic_format_arg<Context> arg;
arg.type_ = get_type<Context, T>::value;
arg.value_ = make_value<Context>(value);
return arg;
}
template<bool IS_PACKED, typename Context, typename T>
inline typename std::enable_if<IS_PACKED, value<Context>>::type make_arg(const T &value)
{
return make_value<Context>(value);
}
template<bool IS_PACKED, typename Context, typename T>
inline typename std::enable_if<!IS_PACKED, basic_format_arg<Context>>::type make_arg(const T &value)
{
return make_arg<Context>(value);
}
} // namespace internal
/**
\rst
An array of references to arguments. It can be implicitly converted into
`~fmt::basic_format_args` for passing into type-erased formatting functions
such as `~fmt::vformat`.
\endrst
*/
template<typename Context, typename... Args>
class format_arg_store
{
private:
static const size_t NUM_ARGS = sizeof...(Args);
// Packed is a macro on MinGW so use IS_PACKED instead.
static const bool IS_PACKED = NUM_ARGS < internal::max_packed_args;
typedef typename std::conditional<IS_PACKED, internal::value<Context>, basic_format_arg<Context>>::type value_type;
// If the arguments are not packed, add one more element to mark the end.
value_type data_[NUM_ARGS + (IS_PACKED && NUM_ARGS != 0 ? 0 : 1)];
friend class basic_format_args<Context>;
static FMT_CONSTEXPR int64_t get_types()
{
return IS_PACKED ? static_cast<int64_t>(internal::get_types<Context, Args...>()) : -static_cast<int64_t>(NUM_ARGS);
}
public:
#if FMT_USE_CONSTEXPR
static constexpr int64_t TYPES = get_types();
#else
static const int64_t TYPES;
#endif
#if FMT_GCC_VERSION && FMT_GCC_VERSION <= 405
// Workaround an array initialization bug in gcc 4.5 and earlier.
format_arg_store(const Args &... args)
{
data_ = {internal::make_arg<IS_PACKED, Context>(args)...};
}
#else
format_arg_store(const Args &... args)
: data_{internal::make_arg<IS_PACKED, Context>(args)...}
{
}
#endif
};
#if !FMT_USE_CONSTEXPR
template<typename Context, typename... Args>
const int64_t format_arg_store<Context, Args...>::TYPES = get_types();
#endif
/**
\rst
Constructs an `~fmt::format_arg_store` object that contains references to
arguments and can be implicitly converted to `~fmt::format_args`. `Context` can
be omitted in which case it defaults to `~fmt::context`.
\endrst
*/
template<typename Context, typename... Args>
inline format_arg_store<Context, Args...> make_format_args(const Args &... args)
{
return format_arg_store<Context, Args...>(args...);
}
template<typename... Args>
inline format_arg_store<format_context, Args...> make_format_args(const Args &... args)
{
return format_arg_store<format_context, Args...>(args...);
}
/** Formatting arguments. */
template<typename Context>
class basic_format_args
{
public:
typedef unsigned size_type;
typedef basic_format_arg<Context> format_arg;
private:
// To reduce compiled code size per formatting function call, types of first
// max_packed_args arguments are passed in the types_ field.
uint64_t types_;
union
{
// If the number of arguments is less than max_packed_args, the argument
// values are stored in values_, otherwise they are stored in args_.
// This is done to reduce compiled code size as storing larger objects
// may require more code (at least on x86-64) even if the same amount of
// data is actually copied to stack. It saves ~10% on the bloat test.
const internal::value<Context> *values_;
const format_arg *args_;
};
typename internal::type type(unsigned index) const
{
unsigned shift = index * 4;
uint64_t mask = 0xf;
return static_cast<typename internal::type>((types_ & (mask << shift)) >> shift);
}
friend class internal::arg_map<Context>;
void set_data(const internal::value<Context> *values)
{
values_ = values;
}
void set_data(const format_arg *args)
{
args_ = args;
}
format_arg do_get(size_type index) const
{
int64_t signed_types = static_cast<int64_t>(types_);
if (signed_types < 0)
{
uint64_t num_args = -signed_types;
return index < num_args ? args_[index] : format_arg();
}
format_arg arg;
if (index > internal::max_packed_args)
return arg;
arg.type_ = type(index);
if (arg.type_ == internal::none_type)
return arg;
internal::value<Context> &val = arg.value_;
val = values_[index];
return arg;
}
public:
basic_format_args()
: types_(0)
{
}
/**
\rst
Constructs a `basic_format_args` object from `~fmt::format_arg_store`.
\endrst
*/
template<typename... Args>
basic_format_args(const format_arg_store<Context, Args...> &store)
: types_(store.TYPES)
{
set_data(store.data_);
}
/** Returns the argument at specified index. */
format_arg get(size_type index) const
{
format_arg arg = do_get(index);
return arg.type_ == internal::named_arg_type ? arg.value_.as_named_arg().template deserialize<Context>() : arg;
}
unsigned max_size() const
{
int64_t signed_types = static_cast<int64_t>(types_);
return static_cast<unsigned>(signed_types < 0 ? -signed_types : static_cast<int64_t>(internal::max_packed_args));
}
};
/** An alias to ``basic_format_args<context>``. */
// It is a separate type rather than a typedef to make symbols readable.
struct format_args : basic_format_args<format_context>
{
template<typename... Args>
format_args(Args &&... arg)
: basic_format_args<format_context>(std::forward<Args>(arg)...)
{
}
};
struct wformat_args : basic_format_args<wformat_context>
{
template<typename... Args>
wformat_args(Args &&... arg)
: basic_format_args<wformat_context>(std::forward<Args>(arg)...)
{
}
};
namespace internal {
template<typename Char>
struct named_arg_base
{
basic_string_view<Char> name;
// Serialized value<context>.
mutable char data[sizeof(basic_format_arg<format_context>)];
named_arg_base(basic_string_view<Char> nm)
: name(nm)
{
}
template<typename Context>
basic_format_arg<Context> deserialize() const
{
basic_format_arg<Context> arg;
std::memcpy(&arg, data, sizeof(basic_format_arg<Context>));
return arg;
}
};
template<typename T, typename Char>
struct named_arg : named_arg_base<Char>
{
const T &value;
named_arg(basic_string_view<Char> name, const T &val)
: named_arg_base<Char>(name)
, value(val)
{
}
};
} // namespace internal
/**
\rst
Returns a named argument to be used in a formatting function.
**Example**::
fmt::print("Elapsed time: {s:.2f} seconds", fmt::arg("s", 1.23));
\endrst
*/
template<typename T>
inline internal::named_arg<T, char> arg(string_view name, const T &arg)
{
return internal::named_arg<T, char>(name, arg);
}
template<typename T>
inline internal::named_arg<T, wchar_t> arg(wstring_view name, const T &arg)
{
return internal::named_arg<T, wchar_t>(name, arg);
}
// This function template is deleted intentionally to disable nested named
// arguments as in ``format("{}", arg("a", arg("b", 42)))``.
template<typename S, typename T, typename Char>
void arg(S, internal::named_arg<T, Char>) FMT_DELETED;
enum color
{
black,
red,
green,
yellow,
blue,
magenta,
cyan,
white
};
FMT_API void vprint_colored(color c, string_view format, format_args args);
FMT_API void vprint_colored(color c, wstring_view format, wformat_args args);
/**
Formats a string and prints it to stdout using ANSI escape sequences to
specify color (experimental).
Example:
fmt::print_colored(fmt::RED, "Elapsed time: {0:.2f} seconds", 1.23);
*/
template<typename... Args>
inline void print_colored(color c, string_view format_str, const Args &... args)
{
vprint_colored(c, format_str, make_format_args(args...));
}
template<typename... Args>
inline void print_colored(color c, wstring_view format_str, const Args &... args)
{
vprint_colored(c, format_str, make_format_args<wformat_context>(args...));
}
format_context::iterator vformat_to(internal::buffer &buf, string_view format_str, format_args args);
wformat_context::iterator vformat_to(internal::wbuffer &buf, wstring_view format_str, wformat_args args);
template<typename Container>
struct is_contiguous : std::false_type
{
};
template<typename Char>
struct is_contiguous<std::basic_string<Char>> : std::true_type
{
};
template<typename Char>
struct is_contiguous<internal::basic_buffer<Char>> : std::true_type
{
};
/** Formats a string and writes the output to ``out``. */
template<typename Container>
typename std::enable_if<is_contiguous<Container>::value, std::back_insert_iterator<Container>>::type vformat_to(
std::back_insert_iterator<Container> out, string_view format_str, format_args args)
{
auto &container = internal::get_container(out);
internal::container_buffer<Container> buf(container);
vformat_to(buf, format_str, args);
return std::back_inserter(container);
}
template<typename Container>
typename std::enable_if<is_contiguous<Container>::value, std::back_insert_iterator<Container>>::type vformat_to(
std::back_insert_iterator<Container> out, wstring_view format_str, wformat_args args)
{
auto &container = internal::get_container(out);
internal::container_buffer<Container> buf(container);
vformat_to(buf, format_str, args);
return std::back_inserter(container);
}
std::string vformat(string_view format_str, format_args args);
std::wstring vformat(wstring_view format_str, wformat_args args);
/**
\rst
Formats arguments and returns the result as a string.
**Example**::
#include <fmt/core.h>
std::string message = fmt::format("The answer is {}", 42);
\endrst
*/
template<typename... Args>
inline std::string format(string_view format_str, const Args &... args)
{
// This should be just
// return vformat(format_str, make_format_args(args...));
// but gcc has trouble optimizing the latter, so break it down.
format_arg_store<format_context, Args...> as{args...};
return vformat(format_str, as);
}
template<typename... Args>
inline std::wstring format(wstring_view format_str, const Args &... args)
{
format_arg_store<wformat_context, Args...> as{args...};
return vformat(format_str, as);
}
FMT_API void vprint(std::FILE *f, string_view format_str, format_args args);
FMT_API void vprint(std::FILE *f, wstring_view format_str, wformat_args args);
/**
\rst
Prints formatted data to the file *f*.
**Example**::
fmt::print(stderr, "Don't {}!", "panic");
\endrst
*/
template<typename... Args>
inline void print(std::FILE *f, string_view format_str, const Args &... args)
{
format_arg_store<format_context, Args...> as(args...);
vprint(f, format_str, as);
}
/**
Prints formatted data to the file *f* which should be in wide-oriented mode set
via ``fwide(f, 1)`` or ``_setmode(_fileno(f), _O_U8TEXT)`` on Windows.
*/
template<typename... Args>
inline void print(std::FILE *f, wstring_view format_str, const Args &... args)
{
format_arg_store<wformat_context, Args...> as(args...);
vprint(f, format_str, as);
}
FMT_API void vprint(string_view format_str, format_args args);
FMT_API void vprint(wstring_view format_str, wformat_args args);
/**
\rst
Prints formatted data to ``stdout``.
**Example**::
fmt::print("Elapsed time: {0:.2f} seconds", 1.23);
\endrst
*/
template<typename... Args>
inline void print(string_view format_str, const Args &... args)
{
format_arg_store<format_context, Args...> as{args...};
vprint(format_str, as);
}
template<typename... Args>
inline void print(wstring_view format_str, const Args &... args)
{
format_arg_store<wformat_context, Args...> as(args...);
vprint(format_str, as);
}
FMT_END_NAMESPACE
#endif // FMT_CORE_H_
// Formatting library for C++
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_FORMAT_INL_H_
#define FMT_FORMAT_INL_H_
#include "format.h"
#include <string.h>
#include <cctype>
#include <cerrno>
#include <climits>
#include <cmath>
#include <cstdarg>
#include <cstddef> // for std::ptrdiff_t
#include <locale>
#if defined(_WIN32) && defined(__MINGW32__)
#include <cstring>
#endif
#if FMT_USE_WINDOWS_H
#if !defined(FMT_HEADER_ONLY) && !defined(WIN32_LEAN_AND_MEAN)
#define WIN32_LEAN_AND_MEAN
#endif
#if defined(NOMINMAX) || defined(FMT_WIN_MINMAX)
#include <windows.h>
#else
#define NOMINMAX
#include <windows.h>
#undef NOMINMAX
#endif
#endif
#if FMT_EXCEPTIONS
#define FMT_TRY try
#define FMT_CATCH(x) catch (x)
#else
#define FMT_TRY if (true)
#define FMT_CATCH(x) if (false)
#endif
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4127) // conditional expression is constant
#pragma warning(disable : 4702) // unreachable code
// Disable deprecation warning for strerror. The latter is not called but
// MSVC fails to detect it.
#pragma warning(disable : 4996)
#endif
// Dummy implementations of strerror_r and strerror_s called if corresponding
// system functions are not available.
inline fmt::internal::null<> strerror_r(int, char *, ...)
{
return fmt::internal::null<>();
}
inline fmt::internal::null<> strerror_s(char *, std::size_t, ...)
{
return fmt::internal::null<>();
}
FMT_BEGIN_NAMESPACE
namespace {
#ifndef _MSC_VER
#define FMT_SNPRINTF snprintf
#else // _MSC_VER
inline int fmt_snprintf(char *buffer, size_t size, const char *format, ...)
{
va_list args;
va_start(args, format);
int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args);
va_end(args);
return result;
}
#define FMT_SNPRINTF fmt_snprintf
#endif // _MSC_VER
#if defined(_WIN32) && defined(__MINGW32__) && !defined(__NO_ISOCEXT)
#define FMT_SWPRINTF snwprintf
#else
#define FMT_SWPRINTF swprintf
#endif // defined(_WIN32) && defined(__MINGW32__) && !defined(__NO_ISOCEXT)
const char RESET_COLOR[] = "\x1b[0m";
const wchar_t WRESET_COLOR[] = L"\x1b[0m";
typedef void (*FormatFunc)(internal::buffer &, int, string_view);
// Portable thread-safe version of strerror.
// Sets buffer to point to a string describing the error code.
// This can be either a pointer to a string stored in buffer,
// or a pointer to some static immutable string.
// Returns one of the following values:
// 0 - success
// ERANGE - buffer is not large enough to store the error message
// other - failure
// Buffer should be at least of size 1.
int safe_strerror(int error_code, char *&buffer, std::size_t buffer_size) FMT_NOEXCEPT
{
FMT_ASSERT(buffer != FMT_NULL && buffer_size != 0, "invalid buffer");
class dispatcher
{
private:
int error_code_;
char *&buffer_;
std::size_t buffer_size_;
// A noop assignment operator to avoid bogus warnings.
void operator=(const dispatcher &) {}
// Handle the result of XSI-compliant version of strerror_r.
int handle(int result)
{
// glibc versions before 2.13 return result in errno.
return result == -1 ? errno : result;
}
// Handle the result of GNU-specific version of strerror_r.
int handle(char *message)
{
// If the buffer is full then the message is probably truncated.
if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1)
return ERANGE;
buffer_ = message;
return 0;
}
// Handle the case when strerror_r is not available.
int handle(internal::null<>)
{
return fallback(strerror_s(buffer_, buffer_size_, error_code_));
}
// Fallback to strerror_s when strerror_r is not available.
int fallback(int result)
{
// If the buffer is full then the message is probably truncated.
return result == 0 && strlen(buffer_) == buffer_size_ - 1 ? ERANGE : result;
}
// Fallback to strerror if strerror_r and strerror_s are not available.
int fallback(internal::null<>)
{
errno = 0;
buffer_ = strerror(error_code_);
return errno;
}
public:
dispatcher(int err_code, char *&buf, std::size_t buf_size)
: error_code_(err_code)
, buffer_(buf)
, buffer_size_(buf_size)
{
}
int run()
{
return handle(strerror_r(error_code_, buffer_, buffer_size_));
}
};
return dispatcher(error_code, buffer, buffer_size).run();
}
void format_error_code(internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT
{
// Report error code making sure that the output fits into
// inline_buffer_size to avoid dynamic memory allocation and potential
// bad_alloc.
out.resize(0);
static const char SEP[] = ": ";
static const char ERROR_STR[] = "error ";
// Subtract 2 to account for terminating null characters in SEP and ERROR_STR.
std::size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2;
typedef internal::int_traits<int>::main_type main_type;
main_type abs_value = static_cast<main_type>(error_code);
if (internal::is_negative(error_code))
{
abs_value = 0 - abs_value;
++error_code_size;
}
error_code_size += internal::count_digits(abs_value);
writer w(out);
if (message.size() <= inline_buffer_size - error_code_size)
{
w.write(message);
w.write(SEP);
}
w.write(ERROR_STR);
w.write(error_code);
assert(out.size() <= inline_buffer_size);
}
void report_error(FormatFunc func, int error_code, string_view message) FMT_NOEXCEPT
{
memory_buffer full_message;
func(full_message, error_code, message);
// Use Writer::data instead of Writer::c_str to avoid potential memory
// allocation.
std::fwrite(full_message.data(), full_message.size(), 1, stderr);
std::fputc('\n', stderr);
}
} // namespace
class locale
{
private:
std::locale locale_;
public:
explicit locale(std::locale loc = std::locale())
: locale_(loc)
{
}
std::locale get()
{
return locale_;
}
};
template<typename Char>
FMT_FUNC Char internal::thousands_sep(locale_provider *lp)
{
std::locale loc = lp ? lp->locale().get() : std::locale();
return std::use_facet<std::numpunct<Char>>(loc).thousands_sep();
}
FMT_FUNC void system_error::init(int err_code, string_view format_str, format_args args)
{
error_code_ = err_code;
memory_buffer buffer;
format_system_error(buffer, err_code, vformat(format_str, args));
std::runtime_error &base = *this;
base = std::runtime_error(to_string(buffer));
}
namespace internal {
template<typename T>
int char_traits<char>::format_float(char *buffer, std::size_t size, const char *format, int precision, T value)
{
return precision < 0 ? FMT_SNPRINTF(buffer, size, format, value) : FMT_SNPRINTF(buffer, size, format, precision, value);
}
template<typename T>
int char_traits<wchar_t>::format_float(wchar_t *buffer, std::size_t size, const wchar_t *format, int precision, T value)
{
return precision < 0 ? FMT_SWPRINTF(buffer, size, format, value) : FMT_SWPRINTF(buffer, size, format, precision, value);
}
template<typename T>
const char basic_data<T>::DIGITS[] = "0001020304050607080910111213141516171819"
"2021222324252627282930313233343536373839"
"4041424344454647484950515253545556575859"
"6061626364656667686970717273747576777879"
"8081828384858687888990919293949596979899";
#define FMT_POWERS_OF_10(factor) \
factor * 10, factor * 100, factor * 1000, factor * 10000, factor * 100000, factor * 1000000, factor * 10000000, factor * 100000000, \
factor * 1000000000
template<typename T>
const uint32_t basic_data<T>::POWERS_OF_10_32[] = {0, FMT_POWERS_OF_10(1)};
template<typename T>
const uint64_t basic_data<T>::POWERS_OF_10_64[] = {0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ull), 10000000000000000000ull};
// Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
// These are generated by support/compute-powers.py.
template<typename T>
const uint64_t basic_data<T>::POW10_SIGNIFICANDS[] = {0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76, 0xcf42894a5dce35ea,
0x9a6bb0aa55653b2d, 0xe61acf033d1a45df, 0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c, 0x8dd01fad907ffc3c,
0xd3515c2831559a83, 0x9d71ac8fada6c9b5, 0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57, 0xc21094364dfb5637,
0x9096ea6f3848984f, 0xd77485cb25823ac7, 0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e, 0x84c8d4dfd2c63f3b,
0xc5dd44271ad3cdba, 0x936b9fcebb25c996, 0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126, 0xb5b5ada8aaff80b8,
0x87625f056c7c4a8b, 0xc9bcff6034c13053, 0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f, 0xf8a95fcf88747d94,
0xb94470938fa89bcf, 0x8a08f0f8bf0f156b, 0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06, 0xaa242499697392d3,
0xfd87b5f28300ca0e, 0xbce5086492111aeb, 0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000, 0xe8d4a51000000000,
0xad78ebc5ac620000, 0x813f3978f8940984, 0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068, 0x9f4f2726179a2245,
0xed63a231d4c4fb27, 0xb0de65388cc8ada8, 0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758, 0xda01ee641a708dea,
0xa26da3999aef774a, 0xf209787bb47d6b85, 0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d, 0x952ab45cfa97a0b3,
0xde469fbd99a05fe3, 0xa59bc234db398c25, 0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2, 0xcc20ce9bd35c78a5,
0x98165af37b2153df, 0xe2a0b5dc971f303a, 0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410, 0x8bab8eefb6409c1a,
0xd01fef10a657842c, 0x9b10a4e5e9913129, 0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85, 0xbf21e44003acdd2d,
0x8e679c2f5e44ff8f, 0xd433179d9c8cb841, 0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b};
// Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
// to significands above.
template<typename T>
const int16_t basic_data<T>::POW10_EXPONENTS[] = {-1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954, -927, -901,
-874, -847, -821, -794, -768, -741, -715, -688, -661, -635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369, -343, -316,
-289, -263, -236, -210, -183, -157, -130, -103, -77, -50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216, 242, 269, 295, 322, 348, 375,
402, 428, 455, 481, 508, 534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800, 827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066};
FMT_FUNC fp operator*(fp x, fp y)
{
// Multiply 32-bit parts of significands.
uint64_t mask = (1ULL << 32) - 1;
uint64_t a = x.f >> 32, b = x.f & mask;
uint64_t c = y.f >> 32, d = y.f & mask;
uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
// Compute mid 64-bit of result and round.
uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
return fp(ac + (ad >> 32) + (bc >> 32) + (mid >> 32), x.e + y.e + 64);
}
FMT_FUNC fp get_cached_power(int min_exponent, int &pow10_exponent)
{
const double one_over_log2_10 = 0.30102999566398114; // 1 / log2(10)
int index = static_cast<int>(std::ceil((min_exponent + fp::significand_size - 1) * one_over_log2_10));
// Decimal exponent of the first (smallest) cached power of 10.
const int first_dec_exp = -348;
// Difference between two consecutive decimal exponents in cached powers of 10.
const int dec_exp_step = 8;
index = (index - first_dec_exp - 1) / dec_exp_step + 1;
pow10_exponent = first_dec_exp + index * dec_exp_step;
return fp(data::POW10_SIGNIFICANDS[index], data::POW10_EXPONENTS[index]);
}
} // namespace internal
#if FMT_USE_WINDOWS_H
FMT_FUNC internal::utf8_to_utf16::utf8_to_utf16(string_view s)
{
static const char ERROR_MSG[] = "cannot convert string from UTF-8 to UTF-16";
if (s.size() > INT_MAX)
FMT_THROW(windows_error(ERROR_INVALID_PARAMETER, ERROR_MSG));
int s_size = static_cast<int>(s.size());
if (s_size == 0)
{
// MultiByteToWideChar does not support zero length, handle separately.
buffer_.resize(1);
buffer_[0] = 0;
return;
}
int length = MultiByteToWideChar(CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, FMT_NULL, 0);
if (length == 0)
FMT_THROW(windows_error(GetLastError(), ERROR_MSG));
buffer_.resize(length + 1);
length = MultiByteToWideChar(CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, &buffer_[0], length);
if (length == 0)
FMT_THROW(windows_error(GetLastError(), ERROR_MSG));
buffer_[length] = 0;
}
FMT_FUNC internal::utf16_to_utf8::utf16_to_utf8(wstring_view s)
{
if (int error_code = convert(s))
{
FMT_THROW(windows_error(error_code, "cannot convert string from UTF-16 to UTF-8"));
}
}
FMT_FUNC int internal::utf16_to_utf8::convert(wstring_view s)
{
if (s.size() > INT_MAX)
return ERROR_INVALID_PARAMETER;
int s_size = static_cast<int>(s.size());
if (s_size == 0)
{
// WideCharToMultiByte does not support zero length, handle separately.
buffer_.resize(1);
buffer_[0] = 0;
return 0;
}
int length = WideCharToMultiByte(CP_UTF8, 0, s.data(), s_size, FMT_NULL, 0, FMT_NULL, FMT_NULL);
if (length == 0)
return GetLastError();
buffer_.resize(length + 1);
length = WideCharToMultiByte(CP_UTF8, 0, s.data(), s_size, &buffer_[0], length, FMT_NULL, FMT_NULL);
if (length == 0)
return GetLastError();
buffer_[length] = 0;
return 0;
}
FMT_FUNC void windows_error::init(int err_code, string_view format_str, format_args args)
{
error_code_ = err_code;
memory_buffer buffer;
internal::format_windows_error(buffer, err_code, vformat(format_str, args));
std::runtime_error &base = *this;
base = std::runtime_error(to_string(buffer));
}
FMT_FUNC void internal::format_windows_error(internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT
{
FMT_TRY
{
wmemory_buffer buf;
buf.resize(inline_buffer_size);
for (;;)
{
wchar_t *system_message = &buf[0];
int result = FormatMessageW(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, FMT_NULL, error_code,
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), system_message, static_cast<uint32_t>(buf.size()), FMT_NULL);
if (result != 0)
{
utf16_to_utf8 utf8_message;
if (utf8_message.convert(system_message) == ERROR_SUCCESS)
{
writer w(out);
w.write(message);
w.write(": ");
w.write(utf8_message);
return;
}
break;
}
if (GetLastError() != ERROR_INSUFFICIENT_BUFFER)
break; // Can't get error message, report error code instead.
buf.resize(buf.size() * 2);
}
}
FMT_CATCH(...) {}
format_error_code(out, error_code, message);
}
#endif // FMT_USE_WINDOWS_H
FMT_FUNC void format_system_error(internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT
{
FMT_TRY
{
memory_buffer buf;
buf.resize(inline_buffer_size);
for (;;)
{
char *system_message = &buf[0];
int result = safe_strerror(error_code, system_message, buf.size());
if (result == 0)
{
writer w(out);
w.write(message);
w.write(": ");
w.write(system_message);
return;
}
if (result != ERANGE)
break; // Can't get error message, report error code instead.
buf.resize(buf.size() * 2);
}
}
FMT_CATCH(...) {}
format_error_code(out, error_code, message);
}
template<typename Char>
void basic_fixed_buffer<Char>::grow(std::size_t)
{
FMT_THROW(std::runtime_error("buffer overflow"));
}
FMT_FUNC void internal::error_handler::on_error(const char *message)
{
FMT_THROW(format_error(message));
}
FMT_FUNC void report_system_error(int error_code, fmt::string_view message) FMT_NOEXCEPT
{
report_error(format_system_error, error_code, message);
}
#if FMT_USE_WINDOWS_H
FMT_FUNC void report_windows_error(int error_code, fmt::string_view message) FMT_NOEXCEPT
{
report_error(internal::format_windows_error, error_code, message);
}
#endif
FMT_FUNC void vprint(std::FILE *f, string_view format_str, format_args args)
{
memory_buffer buffer;
vformat_to(buffer, format_str, args);
std::fwrite(buffer.data(), 1, buffer.size(), f);
}
FMT_FUNC void vprint(std::FILE *f, wstring_view format_str, wformat_args args)
{
wmemory_buffer buffer;
vformat_to(buffer, format_str, args);
std::fwrite(buffer.data(), sizeof(wchar_t), buffer.size(), f);
}
FMT_FUNC void vprint(string_view format_str, format_args args)
{
vprint(stdout, format_str, args);
}
FMT_FUNC void vprint(wstring_view format_str, wformat_args args)
{
vprint(stdout, format_str, args);
}
FMT_FUNC void vprint_colored(color c, string_view format, format_args args)
{
char escape[] = "\x1b[30m";
escape[3] = static_cast<char>('0' + c);
std::fputs(escape, stdout);
vprint(format, args);
std::fputs(RESET_COLOR, stdout);
}
FMT_FUNC void vprint_colored(color c, wstring_view format, wformat_args args)
{
wchar_t escape[] = L"\x1b[30m";
escape[3] = static_cast<wchar_t>('0' + c);
std::fputws(escape, stdout);
vprint(format, args);
std::fputws(WRESET_COLOR, stdout);
}
FMT_FUNC locale locale_provider::locale()
{
return fmt::locale();
}
FMT_END_NAMESPACE
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif // FMT_FORMAT_INL_H_
// Formatting library for C++
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#include "fmt/format-inl.h"
namespace fmt {
template struct internal::basic_data<void>;
// Explicit instantiations for char.
template FMT_API char internal::thousands_sep(locale_provider *lp);
template void basic_fixed_buffer<char>::grow(std::size_t);
template void internal::arg_map<format_context>::init(
const basic_format_args<format_context> &args);
template FMT_API int internal::char_traits<char>::format_float(
char *buffer, std::size_t size, const char *format,
unsigned width, int precision, double value);
template FMT_API int internal::char_traits<char>::format_float(
char *buffer, std::size_t size, const char *format,
unsigned width, int precision, long double value);
// Explicit instantiations for wchar_t.
template FMT_API wchar_t internal::thousands_sep(locale_provider *lp);
template void basic_fixed_buffer<wchar_t>::grow(std::size_t);
template void internal::arg_map<wformat_context>::init(const wformat_args &args);
template FMT_API int internal::char_traits<wchar_t>::format_float(
wchar_t *buffer, std::size_t size, const wchar_t *format,
unsigned width, int precision, double value);
template FMT_API int internal::char_traits<wchar_t>::format_float(
wchar_t *buffer, std::size_t size, const wchar_t *format,
unsigned width, int precision, long double value);
} // namespace fmt
This source diff could not be displayed because it is too large. You can view the blob instead.
// Formatting library for C++ - locale support
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#include "format.h"
#include <locale>
namespace fmt {
class locale
{
private:
std::locale locale_;
public:
explicit locale(std::locale loc = std::locale())
: locale_(loc)
{
}
std::locale get()
{
return locale_;
}
};
} // namespace fmt
// Formatting library for C++ - std::ostream support
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_OSTREAM_H_
#define FMT_OSTREAM_H_
#include "format.h"
#include <ostream>
FMT_BEGIN_NAMESPACE
namespace internal {
template<class Char>
class formatbuf : public std::basic_streambuf<Char>
{
private:
typedef typename std::basic_streambuf<Char>::int_type int_type;
typedef typename std::basic_streambuf<Char>::traits_type traits_type;
basic_buffer<Char> &buffer_;
public:
formatbuf(basic_buffer<Char> &buffer)
: buffer_(buffer)
{
}
protected:
// The put-area is actually always empty. This makes the implementation
// simpler and has the advantage that the streambuf and the buffer are always
// in sync and sputc never writes into uninitialized memory. The obvious
// disadvantage is that each call to sputc always results in a (virtual) call
// to overflow. There is no disadvantage here for sputn since this always
// results in a call to xsputn.
int_type overflow(int_type ch = traits_type::eof()) FMT_OVERRIDE
{
if (!traits_type::eq_int_type(ch, traits_type::eof()))
buffer_.push_back(static_cast<Char>(ch));
return ch;
}
std::streamsize xsputn(const Char *s, std::streamsize count) FMT_OVERRIDE
{
buffer_.append(s, s + count);
return count;
}
};
template<typename Char>
struct test_stream : std::basic_ostream<Char>
{
private:
struct null;
// Hide all operator<< from std::basic_ostream<Char>.
void operator<<(null);
};
// Checks if T has a user-defined operator<< (e.g. not a member of std::ostream).
template<typename T, typename Char>
class is_streamable
{
private:
template<typename U>
static decltype(internal::declval<test_stream<Char> &>() << internal::declval<U>(), std::true_type()) test(int);
template<typename>
static std::false_type test(...);
typedef decltype(test<T>(0)) result;
public:
// std::string operator<< is not considered user-defined because we handle strings
// specially.
static const bool value = result::value && !std::is_same<T, std::string>::value;
};
// Disable conversion to int if T has an overloaded operator<< which is a free
// function (not a member of std::ostream).
template<typename T, typename Char>
class convert_to_int<T, Char, true>
{
public:
static const bool value = convert_to_int<T, Char, false>::value && !is_streamable<T, Char>::value;
};
// Write the content of buf to os.
template<typename Char>
void write(std::basic_ostream<Char> &os, basic_buffer<Char> &buf)
{
const Char *data = buf.data();
typedef std::make_unsigned<std::streamsize>::type UnsignedStreamSize;
UnsignedStreamSize size = buf.size();
UnsignedStreamSize max_size = internal::to_unsigned((std::numeric_limits<std::streamsize>::max)());
do
{
UnsignedStreamSize n = size <= max_size ? size : max_size;
os.write(data, static_cast<std::streamsize>(n));
data += n;
size -= n;
} while (size != 0);
}
template<typename Char, typename T>
void format_value(basic_buffer<Char> &buffer, const T &value)
{
internal::formatbuf<Char> format_buf(buffer);
std::basic_ostream<Char> output(&format_buf);
output.exceptions(std::ios_base::failbit | std::ios_base::badbit);
output << value;
buffer.resize(buffer.size());
}
// Disable builtin formatting of enums and use operator<< instead.
template<typename T>
struct format_enum<T, typename std::enable_if<std::is_enum<T>::value>::type> : std::false_type
{
};
} // namespace internal
// Formats an object of type T that has an overloaded ostream operator<<.
template<typename T, typename Char>
struct formatter<T, Char, typename std::enable_if<internal::is_streamable<T, Char>::value>::type> : formatter<basic_string_view<Char>, Char>
{
template<typename Context>
auto format(const T &value, Context &ctx) -> decltype(ctx.out())
{
basic_memory_buffer<Char> buffer;
internal::format_value(buffer, value);
basic_string_view<Char> str(buffer.data(), buffer.size());
formatter<basic_string_view<Char>, Char>::format(str, ctx);
return ctx.out();
}
};
template<typename Char>
inline void vprint(
std::basic_ostream<Char> &os, basic_string_view<Char> format_str, basic_format_args<typename buffer_context<Char>::type> args)
{
basic_memory_buffer<Char> buffer;
vformat_to(buffer, format_str, args);
internal::write(os, buffer);
}
/**
\rst
Prints formatted data to the stream *os*.
**Example**::
fmt::print(cerr, "Don't {}!", "panic");
\endrst
*/
template<typename... Args>
inline void print(std::ostream &os, string_view format_str, const Args &... args)
{
vprint<char>(os, format_str, make_format_args<format_context>(args...));
}
template<typename... Args>
inline void print(std::wostream &os, wstring_view format_str, const Args &... args)
{
vprint<wchar_t>(os, format_str, make_format_args<wformat_context>(args...));
}
FMT_END_NAMESPACE
#endif // FMT_OSTREAM_H_
// A C++ interface to POSIX functions.
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_POSIX_H_
#define FMT_POSIX_H_
#if defined(__MINGW32__) || defined(__CYGWIN__)
// Workaround MinGW bug https://sourceforge.net/p/mingw/bugs/2024/.
#undef __STRICT_ANSI__
#endif
#include <errno.h>
#include <fcntl.h> // for O_RDONLY
#include <locale.h> // for locale_t
#include <stdio.h>
#include <stdlib.h> // for strtod_l
#include <cstddef>
#if defined __APPLE__ || defined(__FreeBSD__)
#include <xlocale.h> // for LC_NUMERIC_MASK on OS X
#endif
#include "format.h"
#ifndef FMT_POSIX
#if defined(_WIN32) && !defined(__MINGW32__)
// Fix warnings about deprecated symbols.
#define FMT_POSIX(call) _##call
#else
#define FMT_POSIX(call) call
#endif
#endif
// Calls to system functions are wrapped in FMT_SYSTEM for testability.
#ifdef FMT_SYSTEM
#define FMT_POSIX_CALL(call) FMT_SYSTEM(call)
#else
#define FMT_SYSTEM(call) call
#ifdef _WIN32
// Fix warnings about deprecated symbols.
#define FMT_POSIX_CALL(call) ::_##call
#else
#define FMT_POSIX_CALL(call) ::call
#endif
#endif
// Retries the expression while it evaluates to error_result and errno
// equals to EINTR.
#ifndef _WIN32
#define FMT_RETRY_VAL(result, expression, error_result) \
do \
{ \
result = (expression); \
} while (result == error_result && errno == EINTR)
#else
#define FMT_RETRY_VAL(result, expression, error_result) result = (expression)
#endif
#define FMT_RETRY(result, expression) FMT_RETRY_VAL(result, expression, -1)
FMT_BEGIN_NAMESPACE
/**
\rst
A reference to a null-terminated string. It can be constructed from a C
string or ``std::string``.
You can use one of the following typedefs for common character types:
+---------------+-----------------------------+
| Type | Definition |
+===============+=============================+
| cstring_view | basic_cstring_view<char> |
+---------------+-----------------------------+
| wcstring_view | basic_cstring_view<wchar_t> |
+---------------+-----------------------------+
This class is most useful as a parameter type to allow passing
different types of strings to a function, for example::
template <typename... Args>
std::string format(cstring_view format_str, const Args & ... args);
format("{}", 42);
format(std::string("{}"), 42);
\endrst
*/
template<typename Char>
class basic_cstring_view
{
private:
const Char *data_;
public:
/** Constructs a string reference object from a C string. */
basic_cstring_view(const Char *s)
: data_(s)
{
}
/**
\rst
Constructs a string reference from an ``std::string`` object.
\endrst
*/
basic_cstring_view(const std::basic_string<Char> &s)
: data_(s.c_str())
{
}
/** Returns the pointer to a C string. */
const Char *c_str() const
{
return data_;
}
};
typedef basic_cstring_view<char> cstring_view;
typedef basic_cstring_view<wchar_t> wcstring_view;
// An error code.
class error_code
{
private:
int value_;
public:
explicit error_code(int value = 0) FMT_NOEXCEPT : value_(value) {}
int get() const FMT_NOEXCEPT
{
return value_;
}
};
// A buffered file.
class buffered_file
{
private:
FILE *file_;
friend class file;
explicit buffered_file(FILE *f)
: file_(f)
{
}
public:
// Constructs a buffered_file object which doesn't represent any file.
buffered_file() FMT_NOEXCEPT : file_(FMT_NULL) {}
// Destroys the object closing the file it represents if any.
FMT_API ~buffered_file() FMT_DTOR_NOEXCEPT;
#if !FMT_USE_RVALUE_REFERENCES
// Emulate a move constructor and a move assignment operator if rvalue
// references are not supported.
private:
// A proxy object to emulate a move constructor.
// It is private to make it impossible call operator Proxy directly.
struct Proxy
{
FILE *file;
};
public:
// A "move constructor" for moving from a temporary.
buffered_file(Proxy p) FMT_NOEXCEPT : file_(p.file) {}
// A "move constructor" for moving from an lvalue.
buffered_file(buffered_file &f) FMT_NOEXCEPT : file_(f.file_)
{
f.file_ = FMT_NULL;
}
// A "move assignment operator" for moving from a temporary.
buffered_file &operator=(Proxy p)
{
close();
file_ = p.file;
return *this;
}
// A "move assignment operator" for moving from an lvalue.
buffered_file &operator=(buffered_file &other)
{
close();
file_ = other.file_;
other.file_ = FMT_NULL;
return *this;
}
// Returns a proxy object for moving from a temporary:
// buffered_file file = buffered_file(...);
operator Proxy() FMT_NOEXCEPT
{
Proxy p = {file_};
file_ = FMT_NULL;
return p;
}
#else
private:
FMT_DISALLOW_COPY_AND_ASSIGN(buffered_file);
public:
buffered_file(buffered_file &&other) FMT_NOEXCEPT : file_(other.file_)
{
other.file_ = FMT_NULL;
}
buffered_file &operator=(buffered_file &&other)
{
close();
file_ = other.file_;
other.file_ = FMT_NULL;
return *this;
}
#endif
// Opens a file.
FMT_API buffered_file(cstring_view filename, cstring_view mode);
// Closes the file.
FMT_API void close();
// Returns the pointer to a FILE object representing this file.
FILE *get() const FMT_NOEXCEPT
{
return file_;
}
// We place parentheses around fileno to workaround a bug in some versions
// of MinGW that define fileno as a macro.
FMT_API int(fileno)() const;
void vprint(string_view format_str, format_args args)
{
fmt::vprint(file_, format_str, args);
}
template<typename... Args>
inline void print(string_view format_str, const Args &... args)
{
vprint(format_str, make_format_args(args...));
}
};
// A file. Closed file is represented by a file object with descriptor -1.
// Methods that are not declared with FMT_NOEXCEPT may throw
// fmt::system_error in case of failure. Note that some errors such as
// closing the file multiple times will cause a crash on Windows rather
// than an exception. You can get standard behavior by overriding the
// invalid parameter handler with _set_invalid_parameter_handler.
class file
{
private:
int fd_; // File descriptor.
// Constructs a file object with a given descriptor.
explicit file(int fd)
: fd_(fd)
{
}
public:
// Possible values for the oflag argument to the constructor.
enum
{
RDONLY = FMT_POSIX(O_RDONLY), // Open for reading only.
WRONLY = FMT_POSIX(O_WRONLY), // Open for writing only.
RDWR = FMT_POSIX(O_RDWR) // Open for reading and writing.
};
// Constructs a file object which doesn't represent any file.
file() FMT_NOEXCEPT : fd_(-1) {}
// Opens a file and constructs a file object representing this file.
FMT_API file(cstring_view path, int oflag);
#if !FMT_USE_RVALUE_REFERENCES
// Emulate a move constructor and a move assignment operator if rvalue
// references are not supported.
private:
// A proxy object to emulate a move constructor.
// It is private to make it impossible call operator Proxy directly.
struct Proxy
{
int fd;
};
public:
// A "move constructor" for moving from a temporary.
file(Proxy p) FMT_NOEXCEPT : fd_(p.fd) {}
// A "move constructor" for moving from an lvalue.
file(file &other) FMT_NOEXCEPT : fd_(other.fd_)
{
other.fd_ = -1;
}
// A "move assignment operator" for moving from a temporary.
file &operator=(Proxy p)
{
close();
fd_ = p.fd;
return *this;
}
// A "move assignment operator" for moving from an lvalue.
file &operator=(file &other)
{
close();
fd_ = other.fd_;
other.fd_ = -1;
return *this;
}
// Returns a proxy object for moving from a temporary:
// file f = file(...);
operator Proxy() FMT_NOEXCEPT
{
Proxy p = {fd_};
fd_ = -1;
return p;
}
#else
private:
FMT_DISALLOW_COPY_AND_ASSIGN(file);
public:
file(file &&other) FMT_NOEXCEPT : fd_(other.fd_)
{
other.fd_ = -1;
}
file &operator=(file &&other)
{
close();
fd_ = other.fd_;
other.fd_ = -1;
return *this;
}
#endif
// Destroys the object closing the file it represents if any.
FMT_API ~file() FMT_DTOR_NOEXCEPT;
// Returns the file descriptor.
int descriptor() const FMT_NOEXCEPT
{
return fd_;
}
// Closes the file.
FMT_API void close();
// Returns the file size. The size has signed type for consistency with
// stat::st_size.
FMT_API long long size() const;
// Attempts to read count bytes from the file into the specified buffer.
FMT_API std::size_t read(void *buffer, std::size_t count);
// Attempts to write count bytes from the specified buffer to the file.
FMT_API std::size_t write(const void *buffer, std::size_t count);
// Duplicates a file descriptor with the dup function and returns
// the duplicate as a file object.
FMT_API static file dup(int fd);
// Makes fd be the copy of this file descriptor, closing fd first if
// necessary.
FMT_API void dup2(int fd);
// Makes fd be the copy of this file descriptor, closing fd first if
// necessary.
FMT_API void dup2(int fd, error_code &ec) FMT_NOEXCEPT;
// Creates a pipe setting up read_end and write_end file objects for reading
// and writing respectively.
FMT_API static void pipe(file &read_end, file &write_end);
// Creates a buffered_file object associated with this file and detaches
// this file object from the file.
FMT_API buffered_file fdopen(const char *mode);
};
// Returns the memory page size.
long getpagesize();
#if (defined(LC_NUMERIC_MASK) || defined(_MSC_VER)) && !defined(__ANDROID__) && !defined(__CYGWIN__) && !defined(__OpenBSD__)
#define FMT_LOCALE
#endif
#ifdef FMT_LOCALE
// A "C" numeric locale.
class Locale
{
private:
#ifdef _MSC_VER
typedef _locale_t locale_t;
enum
{
LC_NUMERIC_MASK = LC_NUMERIC
};
static locale_t newlocale(int category_mask, const char *locale, locale_t)
{
return _create_locale(category_mask, locale);
}
static void freelocale(locale_t locale)
{
_free_locale(locale);
}
static double strtod_l(const char *nptr, char **endptr, _locale_t locale)
{
return _strtod_l(nptr, endptr, locale);
}
#endif
locale_t locale_;
FMT_DISALLOW_COPY_AND_ASSIGN(Locale);
public:
typedef locale_t Type;
Locale()
: locale_(newlocale(LC_NUMERIC_MASK, "C", FMT_NULL))
{
if (!locale_)
FMT_THROW(system_error(errno, "cannot create locale"));
}
~Locale()
{
freelocale(locale_);
}
Type get() const
{
return locale_;
}
// Converts string to floating-point number and advances str past the end
// of the parsed input.
double strtod(const char *&str) const
{
char *end = FMT_NULL;
double result = strtod_l(str, &end, locale_);
str = end;
return result;
}
};
#endif // FMT_LOCALE
FMT_END_NAMESPACE
#if !FMT_USE_RVALUE_REFERENCES
namespace std {
// For compatibility with C++98.
inline fmt::buffered_file &move(fmt::buffered_file &f)
{
return f;
}
inline fmt::file &move(fmt::file &f)
{
return f;
}
} // namespace std
#endif
#endif // FMT_POSIX_H_
// Formatting library for C++
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_PRINTF_H_
#define FMT_PRINTF_H_
#include <algorithm> // std::fill_n
#include <limits> // std::numeric_limits
#include "ostream.h"
FMT_BEGIN_NAMESPACE
namespace internal {
// Checks if a value fits in int - used to avoid warnings about comparing
// signed and unsigned integers.
template<bool IsSigned>
struct int_checker
{
template<typename T>
static bool fits_in_int(T value)
{
unsigned max = std::numeric_limits<int>::max();
return value <= max;
}
static bool fits_in_int(bool)
{
return true;
}
};
template<>
struct int_checker<true>
{
template<typename T>
static bool fits_in_int(T value)
{
return value >= std::numeric_limits<int>::min() && value <= std::numeric_limits<int>::max();
}
static bool fits_in_int(int)
{
return true;
}
};
class printf_precision_handler : public function<int>
{
public:
template<typename T>
typename std::enable_if<std::is_integral<T>::value, int>::type operator()(T value)
{
if (!int_checker<std::numeric_limits<T>::is_signed>::fits_in_int(value))
FMT_THROW(format_error("number is too big"));
return static_cast<int>(value);
}
template<typename T>
typename std::enable_if<!std::is_integral<T>::value, int>::type operator()(T)
{
FMT_THROW(format_error("precision is not integer"));
return 0;
}
};
// An argument visitor that returns true iff arg is a zero integer.
class is_zero_int : public function<bool>
{
public:
template<typename T>
typename std::enable_if<std::is_integral<T>::value, bool>::type operator()(T value)
{
return value == 0;
}
template<typename T>
typename std::enable_if<!std::is_integral<T>::value, bool>::type operator()(T)
{
return false;
}
};
template<typename T>
struct make_unsigned_or_bool : std::make_unsigned<T>
{
};
template<>
struct make_unsigned_or_bool<bool>
{
typedef bool type;
};
template<typename T, typename Context>
class arg_converter : public function<void>
{
private:
typedef typename Context::char_type Char;
basic_format_arg<Context> &arg_;
typename Context::char_type type_;
public:
arg_converter(basic_format_arg<Context> &arg, Char type)
: arg_(arg)
, type_(type)
{
}
void operator()(bool value)
{
if (type_ != 's')
operator()<bool>(value);
}
template<typename U>
typename std::enable_if<std::is_integral<U>::value>::type operator()(U value)
{
bool is_signed = type_ == 'd' || type_ == 'i';
typedef typename std::conditional<std::is_same<T, void>::value, U, T>::type TargetType;
if (const_check(sizeof(TargetType) <= sizeof(int)))
{
// Extra casts are used to silence warnings.
if (is_signed)
{
arg_ = internal::make_arg<Context>(static_cast<int>(static_cast<TargetType>(value)));
}
else
{
typedef typename make_unsigned_or_bool<TargetType>::type Unsigned;
arg_ = internal::make_arg<Context>(static_cast<unsigned>(static_cast<Unsigned>(value)));
}
}
else
{
if (is_signed)
{
// glibc's printf doesn't sign extend arguments of smaller types:
// std::printf("%lld", -42); // prints "4294967254"
// but we don't have to do the same because it's a UB.
arg_ = internal::make_arg<Context>(static_cast<long long>(value));
}
else
{
arg_ = internal::make_arg<Context>(static_cast<typename make_unsigned_or_bool<U>::type>(value));
}
}
}
template<typename U>
typename std::enable_if<!std::is_integral<U>::value>::type operator()(U)
{
// No coversion needed for non-integral types.
}
};
// Converts an integer argument to T for printf, if T is an integral type.
// If T is void, the argument is converted to corresponding signed or unsigned
// type depending on the type specifier: 'd' and 'i' - signed, other -
// unsigned).
template<typename T, typename Context, typename Char>
void convert_arg(basic_format_arg<Context> &arg, Char type)
{
visit(arg_converter<T, Context>(arg, type), arg);
}
// Converts an integer argument to char for printf.
template<typename Context>
class char_converter : public function<void>
{
private:
basic_format_arg<Context> &arg_;
FMT_DISALLOW_COPY_AND_ASSIGN(char_converter);
public:
explicit char_converter(basic_format_arg<Context> &arg)
: arg_(arg)
{
}
template<typename T>
typename std::enable_if<std::is_integral<T>::value>::type operator()(T value)
{
typedef typename Context::char_type Char;
arg_ = internal::make_arg<Context>(static_cast<Char>(value));
}
template<typename T>
typename std::enable_if<!std::is_integral<T>::value>::type operator()(T)
{
// No coversion needed for non-integral types.
}
};
// Checks if an argument is a valid printf width specifier and sets
// left alignment if it is negative.
template<typename Char>
class printf_width_handler : public function<unsigned>
{
private:
typedef basic_format_specs<Char> format_specs;
format_specs &spec_;
FMT_DISALLOW_COPY_AND_ASSIGN(printf_width_handler);
public:
explicit printf_width_handler(format_specs &spec)
: spec_(spec)
{
}
template<typename T>
typename std::enable_if<std::is_integral<T>::value, unsigned>::type operator()(T value)
{
typedef typename internal::int_traits<T>::main_type UnsignedType;
UnsignedType width = static_cast<UnsignedType>(value);
if (internal::is_negative(value))
{
spec_.align_ = ALIGN_LEFT;
width = 0 - width;
}
unsigned int_max = std::numeric_limits<int>::max();
if (width > int_max)
FMT_THROW(format_error("number is too big"));
return static_cast<unsigned>(width);
}
template<typename T>
typename std::enable_if<!std::is_integral<T>::value, unsigned>::type operator()(T)
{
FMT_THROW(format_error("width is not integer"));
return 0;
}
};
} // namespace internal
template<typename Range>
class printf_arg_formatter;
template<typename OutputIt, typename Char, typename ArgFormatter = printf_arg_formatter<back_insert_range<internal::basic_buffer<Char>>>>
class basic_printf_context;
/**
\rst
The ``printf`` argument formatter.
\endrst
*/
template<typename Range>
class printf_arg_formatter : public internal::function<typename internal::arg_formatter_base<Range>::iterator>,
public internal::arg_formatter_base<Range>
{
private:
typedef typename Range::value_type char_type;
typedef decltype(internal::declval<Range>().begin()) iterator;
typedef internal::arg_formatter_base<Range> base;
typedef basic_printf_context<iterator, char_type> context_type;
context_type &context_;
void write_null_pointer(char)
{
this->spec().type_ = 0;
this->write("(nil)");
}
void write_null_pointer(wchar_t)
{
this->spec().type_ = 0;
this->write(L"(nil)");
}
public:
typedef typename base::format_specs format_specs;
/**
\rst
Constructs an argument formatter object.
*buffer* is a reference to the output buffer and *spec* contains format
specifier information for standard argument types.
\endrst
*/
printf_arg_formatter(internal::basic_buffer<char_type> &buffer, format_specs &spec, context_type &ctx)
: base(back_insert_range<internal::basic_buffer<char_type>>(buffer), spec)
, context_(ctx)
{
}
using base::operator();
/** Formats an argument of type ``bool``. */
iterator operator()(bool value)
{
format_specs &fmt_spec = this->spec();
if (fmt_spec.type_ != 's')
return (*this)(value ? 1 : 0);
fmt_spec.type_ = 0;
this->write(value);
return this->out();
}
/** Formats a character. */
iterator operator()(char_type value)
{
format_specs &fmt_spec = this->spec();
if (fmt_spec.type_ && fmt_spec.type_ != 'c')
return (*this)(static_cast<int>(value));
fmt_spec.flags_ = 0;
fmt_spec.align_ = ALIGN_RIGHT;
return base::operator()(value);
}
/** Formats a null-terminated C string. */
iterator operator()(const char *value)
{
if (value)
base::operator()(value);
else if (this->spec().type_ == 'p')
write_null_pointer(char_type());
else
this->write("(null)");
return this->out();
}
/** Formats a null-terminated wide C string. */
iterator operator()(const wchar_t *value)
{
if (value)
base::operator()(value);
else if (this->spec().type_ == 'p')
write_null_pointer(char_type());
else
this->write(L"(null)");
return this->out();
}
/** Formats a pointer. */
iterator operator()(const void *value)
{
if (value)
return base::operator()(value);
this->spec().type_ = 0;
write_null_pointer(char_type());
return this->out();
}
/** Formats an argument of a custom (user-defined) type. */
iterator operator()(typename basic_format_arg<context_type>::handle handle)
{
handle.format(context_);
return this->out();
}
};
template<typename T>
struct printf_formatter
{
template<typename ParseContext>
auto parse(ParseContext &ctx) -> decltype(ctx.begin())
{
return ctx.begin();
}
template<typename FormatContext>
auto format(const T &value, FormatContext &ctx) -> decltype(ctx.out())
{
internal::format_value(internal::get_container(ctx.out()), value);
return ctx.out();
}
};
/** This template formats data and writes the output to a writer. */
template<typename OutputIt, typename Char, typename ArgFormatter>
class basic_printf_context : private internal::context_base<OutputIt, basic_printf_context<OutputIt, Char, ArgFormatter>, Char>
{
public:
/** The character type for the output. */
typedef Char char_type;
template<typename T>
struct formatter_type
{
typedef printf_formatter<T> type;
};
private:
typedef internal::context_base<OutputIt, basic_printf_context, Char> base;
typedef typename base::format_arg format_arg;
typedef basic_format_specs<char_type> format_specs;
typedef internal::null_terminating_iterator<char_type> iterator;
void parse_flags(format_specs &spec, iterator &it);
// Returns the argument with specified index or, if arg_index is equal
// to the maximum unsigned value, the next argument.
format_arg get_arg(iterator it, unsigned arg_index = (std::numeric_limits<unsigned>::max)());
// Parses argument index, flags and width and returns the argument index.
unsigned parse_header(iterator &it, format_specs &spec);
public:
/**
\rst
Constructs a ``printf_context`` object. References to the arguments and
the writer are stored in the context object so make sure they have
appropriate lifetimes.
\endrst
*/
basic_printf_context(OutputIt out, basic_string_view<char_type> format_str, basic_format_args<basic_printf_context> args)
: base(out, format_str, args)
{
}
using base::advance_to;
using base::out;
using base::parse_context;
/** Formats stored arguments and writes the output to the range. */
void format();
};
template<typename OutputIt, typename Char, typename AF>
void basic_printf_context<OutputIt, Char, AF>::parse_flags(format_specs &spec, iterator &it)
{
for (;;)
{
switch (*it++)
{
case '-':
spec.align_ = ALIGN_LEFT;
break;
case '+':
spec.flags_ |= SIGN_FLAG | PLUS_FLAG;
break;
case '0':
spec.fill_ = '0';
break;
case ' ':
spec.flags_ |= SIGN_FLAG;
break;
case '#':
spec.flags_ |= HASH_FLAG;
break;
default:
--it;
return;
}
}
}
template<typename OutputIt, typename Char, typename AF>
typename basic_printf_context<OutputIt, Char, AF>::format_arg basic_printf_context<OutputIt, Char, AF>::get_arg(
iterator it, unsigned arg_index)
{
(void)it;
if (arg_index == std::numeric_limits<unsigned>::max())
return this->do_get_arg(this->parse_context().next_arg_id());
return base::get_arg(arg_index - 1);
}
template<typename OutputIt, typename Char, typename AF>
unsigned basic_printf_context<OutputIt, Char, AF>::parse_header(iterator &it, format_specs &spec)
{
unsigned arg_index = std::numeric_limits<unsigned>::max();
char_type c = *it;
if (c >= '0' && c <= '9')
{
// Parse an argument index (if followed by '$') or a width possibly
// preceded with '0' flag(s).
internal::error_handler eh;
unsigned value = parse_nonnegative_int(it, eh);
if (*it == '$')
{ // value is an argument index
++it;
arg_index = value;
}
else
{
if (c == '0')
spec.fill_ = '0';
if (value != 0)
{
// Nonzero value means that we parsed width and don't need to
// parse it or flags again, so return now.
spec.width_ = value;
return arg_index;
}
}
}
parse_flags(spec, it);
// Parse width.
if (*it >= '0' && *it <= '9')
{
internal::error_handler eh;
spec.width_ = parse_nonnegative_int(it, eh);
}
else if (*it == '*')
{
++it;
spec.width_ = visit(internal::printf_width_handler<char_type>(spec), get_arg(it));
}
return arg_index;
}
template<typename OutputIt, typename Char, typename AF>
void basic_printf_context<OutputIt, Char, AF>::format()
{
auto &buffer = internal::get_container(this->out());
auto start = iterator(this->parse_context());
auto it = start;
using internal::pointer_from;
while (*it)
{
char_type c = *it++;
if (c != '%')
continue;
if (*it == c)
{
buffer.append(pointer_from(start), pointer_from(it));
start = ++it;
continue;
}
buffer.append(pointer_from(start), pointer_from(it) - 1);
format_specs spec;
spec.align_ = ALIGN_RIGHT;
// Parse argument index, flags and width.
unsigned arg_index = parse_header(it, spec);
// Parse precision.
if (*it == '.')
{
++it;
if ('0' <= *it && *it <= '9')
{
internal::error_handler eh;
spec.precision_ = static_cast<int>(parse_nonnegative_int(it, eh));
}
else if (*it == '*')
{
++it;
spec.precision_ = visit(internal::printf_precision_handler(), get_arg(it));
}
else
{
spec.precision_ = 0;
}
}
format_arg arg = get_arg(it, arg_index);
if (spec.flag(HASH_FLAG) && visit(internal::is_zero_int(), arg))
spec.flags_ &= ~internal::to_unsigned<int>(HASH_FLAG);
if (spec.fill_ == '0')
{
if (arg.is_arithmetic())
spec.align_ = ALIGN_NUMERIC;
else
spec.fill_ = ' '; // Ignore '0' flag for non-numeric types.
}
// Parse length and convert the argument to the required type.
using internal::convert_arg;
switch (*it++)
{
case 'h':
if (*it == 'h')
convert_arg<signed char>(arg, *++it);
else
convert_arg<short>(arg, *it);
break;
case 'l':
if (*it == 'l')
convert_arg<long long>(arg, *++it);
else
convert_arg<long>(arg, *it);
break;
case 'j':
convert_arg<intmax_t>(arg, *it);
break;
case 'z':
convert_arg<std::size_t>(arg, *it);
break;
case 't':
convert_arg<std::ptrdiff_t>(arg, *it);
break;
case 'L':
// printf produces garbage when 'L' is omitted for long double, no
// need to do the same.
break;
default:
--it;
convert_arg<void>(arg, *it);
}
// Parse type.
if (!*it)
FMT_THROW(format_error("invalid format string"));
spec.type_ = static_cast<char>(*it++);
if (arg.is_integral())
{
// Normalize type.
switch (spec.type_)
{
case 'i':
case 'u':
spec.type_ = 'd';
break;
case 'c':
// TODO: handle wchar_t better?
visit(internal::char_converter<basic_printf_context>(arg), arg);
break;
}
}
start = it;
// Format argument.
visit(AF(buffer, spec, *this), arg);
}
buffer.append(pointer_from(start), pointer_from(it));
}
template<typename Char, typename Context>
void printf(internal::basic_buffer<Char> &buf, basic_string_view<Char> format, basic_format_args<Context> args)
{
Context(std::back_inserter(buf), format, args).format();
}
template<typename Buffer>
struct printf_context
{
typedef basic_printf_context<std::back_insert_iterator<Buffer>, typename Buffer::value_type> type;
};
template<typename... Args>
inline format_arg_store<printf_context<internal::buffer>::type, Args...> make_printf_args(const Args &... args)
{
return format_arg_store<printf_context<internal::buffer>::type, Args...>(args...);
}
typedef basic_format_args<printf_context<internal::buffer>::type> printf_args;
typedef basic_format_args<printf_context<internal::wbuffer>::type> wprintf_args;
inline std::string vsprintf(string_view format, printf_args args)
{
memory_buffer buffer;
printf(buffer, format, args);
return to_string(buffer);
}
/**
\rst
Formats arguments and returns the result as a string.
**Example**::
std::string message = fmt::sprintf("The answer is %d", 42);
\endrst
*/
template<typename... Args>
inline std::string sprintf(string_view format_str, const Args &... args)
{
return vsprintf(format_str, make_format_args<typename printf_context<internal::buffer>::type>(args...));
}
inline std::wstring vsprintf(wstring_view format, wprintf_args args)
{
wmemory_buffer buffer;
printf(buffer, format, args);
return to_string(buffer);
}
template<typename... Args>
inline std::wstring sprintf(wstring_view format_str, const Args &... args)
{
return vsprintf(format_str, make_format_args<typename printf_context<internal::wbuffer>::type>(args...));
}
template<typename Char>
inline int vfprintf(
std::FILE *f, basic_string_view<Char> format, basic_format_args<typename printf_context<internal::basic_buffer<Char>>::type> args)
{
basic_memory_buffer<Char> buffer;
printf(buffer, format, args);
std::size_t size = buffer.size();
return std::fwrite(buffer.data(), sizeof(Char), size, f) < size ? -1 : static_cast<int>(size);
}
/**
\rst
Prints formatted data to the file *f*.
**Example**::
fmt::fprintf(stderr, "Don't %s!", "panic");
\endrst
*/
template<typename... Args>
inline int fprintf(std::FILE *f, string_view format_str, const Args &... args)
{
auto vargs = make_format_args<typename printf_context<internal::buffer>::type>(args...);
return vfprintf<char>(f, format_str, vargs);
}
template<typename... Args>
inline int fprintf(std::FILE *f, wstring_view format_str, const Args &... args)
{
return vfprintf(f, format_str, make_format_args<typename printf_context<internal::wbuffer>::type>(args...));
}
inline int vprintf(string_view format, printf_args args)
{
return vfprintf(stdout, format, args);
}
inline int vprintf(wstring_view format, wprintf_args args)
{
return vfprintf(stdout, format, args);
}
/**
\rst
Prints formatted data to ``stdout``.
**Example**::
fmt::printf("Elapsed time: %.2f seconds", 1.23);
\endrst
*/
template<typename... Args>
inline int printf(string_view format_str, const Args &... args)
{
return vprintf(format_str, make_format_args<typename printf_context<internal::buffer>::type>(args...));
}
template<typename... Args>
inline int printf(wstring_view format_str, const Args &... args)
{
return vprintf(format_str, make_format_args<typename printf_context<internal::wbuffer>::type>(args...));
}
inline int vfprintf(std::ostream &os, string_view format_str, printf_args args)
{
memory_buffer buffer;
printf(buffer, format_str, args);
internal::write(os, buffer);
return static_cast<int>(buffer.size());
}
inline int vfprintf(std::wostream &os, wstring_view format_str, wprintf_args args)
{
wmemory_buffer buffer;
printf(buffer, format_str, args);
internal::write(os, buffer);
return static_cast<int>(buffer.size());
}
/**
\rst
Prints formatted data to the stream *os*.
**Example**::
fmt::fprintf(cerr, "Don't %s!", "panic");
\endrst
*/
template<typename... Args>
inline int fprintf(std::ostream &os, string_view format_str, const Args &... args)
{
auto vargs = make_format_args<typename printf_context<internal::buffer>::type>(args...);
return vfprintf(os, format_str, vargs);
}
template<typename... Args>
inline int fprintf(std::wostream &os, wstring_view format_str, const Args &... args)
{
auto vargs = make_format_args<typename printf_context<internal::buffer>::type>(args...);
return vfprintf(os, format_str, vargs);
}
FMT_END_NAMESPACE
#endif // FMT_PRINTF_H_
// Formatting library for C++ - the core API
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
//
// Copyright (c) 2018 - present, Remotion (Igor Schulz)
// All Rights Reserved
// {fmt} support for ranges, containers and types tuple interface.
#ifndef FMT_RANGES_H_
#define FMT_RANGES_H_
#include "format.h"
#include <type_traits>
// output only up to N items from the range.
#ifndef FMT_RANGE_OUTPUT_LENGTH_LIMIT
#define FMT_RANGE_OUTPUT_LENGTH_LIMIT 256
#endif
FMT_BEGIN_NAMESPACE
template<typename Char>
struct formatting_base
{
template<typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext &ctx) -> decltype(ctx.begin())
{
return ctx.begin();
}
};
template<typename Char, typename Enable = void>
struct formatting_range : formatting_base<Char>
{
static FMT_CONSTEXPR_DECL const std::size_t range_length_limit =
FMT_RANGE_OUTPUT_LENGTH_LIMIT; // output only up to N items from the range.
Char prefix;
Char delimiter;
Char postfix;
formatting_range()
: prefix('{')
, delimiter(',')
, postfix('}')
{
}
static FMT_CONSTEXPR_DECL const bool add_delimiter_spaces = true;
static FMT_CONSTEXPR_DECL const bool add_prepostfix_space = false;
};
template<typename Char, typename Enable = void>
struct formatting_tuple : formatting_base<Char>
{
Char prefix;
Char delimiter;
Char postfix;
formatting_tuple()
: prefix('(')
, delimiter(',')
, postfix(')')
{
}
static FMT_CONSTEXPR_DECL const bool add_delimiter_spaces = true;
static FMT_CONSTEXPR_DECL const bool add_prepostfix_space = false;
};
namespace internal {
template<typename RangeT, typename OutputIterator>
void copy(const RangeT &range, OutputIterator out)
{
for (auto it = range.begin(), end = range.end(); it != end; ++it)
*out++ = *it;
}
template<typename OutputIterator>
void copy(const char *str, OutputIterator out)
{
const char *p_curr = str;
while (*p_curr)
{
*out++ = *p_curr++;
}
}
template<typename OutputIterator>
void copy(char ch, OutputIterator out)
{
*out++ = ch;
}
/// Return true value if T has std::string interface, like std::string_view.
template<typename T>
class is_like_std_string
{
template<typename U>
static auto check(U *p) -> decltype(p->find('a'), p->length(), p->data(), int());
template<typename>
static void check(...);
public:
static FMT_CONSTEXPR_DECL const bool value = !std::is_void<decltype(check<T>(FMT_NULL))>::value;
};
template<typename... Ts>
struct conditional_helper
{
};
template<typename T, typename _ = void>
struct is_range_ : std::false_type
{
};
template<typename T>
struct is_range_<T, typename std::conditional<false,
conditional_helper<decltype(internal::declval<T>().begin()), decltype(internal::declval<T>().end())>, void>::type>
: std::true_type
{
};
/// tuple_size and tuple_element check.
template<typename T>
class is_tuple_like_
{
template<typename U>
static auto check(U *p) -> decltype(std::tuple_size<U>::value, internal::declval<typename std::tuple_element<0, U>::type>(), int());
template<typename>
static void check(...);
public:
static FMT_CONSTEXPR_DECL const bool value = !std::is_void<decltype(check<T>(FMT_NULL))>::value;
};
// Check for integer_sequence
#if defined(__cpp_lib_integer_sequence) || FMT_MSC_VER >= 1900
template<typename T, T... N>
using integer_sequence = std::integer_sequence<T, N...>;
template<std::size_t... N>
using index_sequence = std::index_sequence<N...>;
template<std::size_t N>
using make_index_sequence = std::make_index_sequence<N>;
#else
template<typename T, T... N>
struct integer_sequence
{
typedef T value_type;
static FMT_CONSTEXPR std::size_t size()
{
return sizeof...(N);
}
};
template<std::size_t... N>
using index_sequence = integer_sequence<std::size_t, N...>;
template<typename T, std::size_t N, T... Ns>
struct make_integer_sequence : make_integer_sequence<T, N - 1, N - 1, Ns...>
{
};
template<typename T, T... Ns>
struct make_integer_sequence<T, 0, Ns...> : integer_sequence<T, Ns...>
{
};
template<std::size_t N>
using make_index_sequence = make_integer_sequence<std::size_t, N>;
#endif
template<class Tuple, class F, size_t... Is>
void for_each(index_sequence<Is...>, Tuple &&tup, F &&f) noexcept
{
using std::get;
// using free function get<I>(T) now.
const int _[] = {0, ((void)f(get<Is>(tup)), 0)...};
(void)_; // blocks warnings
}
template<class T>
FMT_CONSTEXPR make_index_sequence<std::tuple_size<T>::value> get_indexes(T const &)
{
return {};
}
template<class Tuple, class F>
void for_each(Tuple &&tup, F &&f)
{
const auto indexes = get_indexes(tup);
for_each(indexes, std::forward<Tuple>(tup), std::forward<F>(f));
}
template<typename Arg>
FMT_CONSTEXPR const char *format_str_quoted(
bool add_space, const Arg &, typename std::enable_if<!is_like_std_string<typename std::decay<Arg>::type>::value>::type * = nullptr)
{
return add_space ? " {}" : "{}";
}
template<typename Arg>
FMT_CONSTEXPR const char *format_str_quoted(
bool add_space, const Arg &, typename std::enable_if<is_like_std_string<typename std::decay<Arg>::type>::value>::type * = nullptr)
{
return add_space ? " \"{}\"" : "\"{}\"";
}
FMT_CONSTEXPR const char *format_str_quoted(bool add_space, const char *)
{
return add_space ? " \"{}\"" : "\"{}\"";
}
FMT_CONSTEXPR const wchar_t *format_str_quoted(bool add_space, const wchar_t *)
{
return add_space ? L" \"{}\"" : L"\"{}\"";
}
FMT_CONSTEXPR const char *format_str_quoted(bool add_space, const char)
{
return add_space ? " '{}'" : "'{}'";
}
FMT_CONSTEXPR const wchar_t *format_str_quoted(bool add_space, const wchar_t)
{
return add_space ? L" '{}'" : L"'{}'";
}
} // namespace internal
template<typename T>
struct is_tuple_like
{
static FMT_CONSTEXPR_DECL const bool value = internal::is_tuple_like_<T>::value && !internal::is_range_<T>::value;
};
template<typename TupleT, typename Char>
struct formatter<TupleT, Char, typename std::enable_if<fmt::is_tuple_like<TupleT>::value>::type>
{
private:
// C++11 generic lambda for format()
template<typename FormatContext>
struct format_each
{
template<typename T>
void operator()(const T &v)
{
if (i > 0)
{
if (formatting.add_prepostfix_space)
{
*out++ = ' ';
}
internal::copy(formatting.delimiter, out);
}
format_to(out, internal::format_str_quoted((formatting.add_delimiter_spaces && i > 0), v), v);
++i;
}
formatting_tuple<Char> &formatting;
std::size_t &i;
typename std::add_lvalue_reference<decltype(std::declval<FormatContext>().out())>::type out;
};
public:
formatting_tuple<Char> formatting;
template<typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext &ctx) -> decltype(ctx.begin())
{
return formatting.parse(ctx);
}
template<typename FormatContext = format_context>
auto format(const TupleT &values, FormatContext &ctx) -> decltype(ctx.out())
{
auto out = ctx.out();
std::size_t i = 0;
internal::copy(formatting.prefix, out);
internal::for_each(values, format_each<FormatContext>{formatting, i, out});
if (formatting.add_prepostfix_space)
{
*out++ = ' ';
}
internal::copy(formatting.postfix, out);
return ctx.out();
}
};
template<typename T>
struct is_range
{
static FMT_CONSTEXPR_DECL const bool value = internal::is_range_<T>::value && !internal::is_like_std_string<T>::value;
};
template<typename RangeT, typename Char>
struct formatter<RangeT, Char, typename std::enable_if<fmt::is_range<RangeT>::value>::type>
{
formatting_range<Char> formatting;
template<typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext &ctx) -> decltype(ctx.begin())
{
return formatting.parse(ctx);
}
template<typename FormatContext>
typename FormatContext::iterator format(const RangeT &values, FormatContext &ctx)
{
auto out = ctx.out();
internal::copy(formatting.prefix, out);
std::size_t i = 0;
for (auto it = values.begin(), end = values.end(); it != end; ++it)
{
if (i > 0)
{
if (formatting.add_prepostfix_space)
{
*out++ = ' ';
}
internal::copy(formatting.delimiter, out);
}
format_to(out, internal::format_str_quoted((formatting.add_delimiter_spaces && i > 0), *it), *it);
if (++i > formatting.range_length_limit)
{
format_to(out, " ... <other elements>");
break;
}
}
if (formatting.add_prepostfix_space)
{
*out++ = ' ';
}
internal::copy(formatting.postfix, out);
return ctx.out();
}
};
FMT_END_NAMESPACE
#endif // FMT_RANGES_H_
// Formatting library for C++ - time formatting
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_TIME_H_
#define FMT_TIME_H_
#include "format.h"
#include <ctime>
FMT_BEGIN_NAMESPACE
namespace internal {
inline null<> localtime_r(...)
{
return null<>();
}
inline null<> localtime_s(...)
{
return null<>();
}
inline null<> gmtime_r(...)
{
return null<>();
}
inline null<> gmtime_s(...)
{
return null<>();
}
} // namespace internal
// Thread-safe replacement for std::localtime
inline std::tm localtime(std::time_t time)
{
struct dispatcher
{
std::time_t time_;
std::tm tm_;
dispatcher(std::time_t t)
: time_(t)
{
}
bool run()
{
using namespace fmt::internal;
return handle(localtime_r(&time_, &tm_));
}
bool handle(std::tm *tm)
{
return tm != FMT_NULL;
}
bool handle(internal::null<>)
{
using namespace fmt::internal;
return fallback(localtime_s(&tm_, &time_));
}
bool fallback(int res)
{
return res == 0;
}
bool fallback(internal::null<>)
{
using namespace fmt::internal;
std::tm *tm = std::localtime(&time_);
if (tm)
tm_ = *tm;
return tm != FMT_NULL;
}
};
dispatcher lt(time);
if (lt.run())
return lt.tm_;
// Too big time values may be unsupported.
FMT_THROW(format_error("time_t value out of range"));
}
// Thread-safe replacement for std::gmtime
inline std::tm gmtime(std::time_t time)
{
struct dispatcher
{
std::time_t time_;
std::tm tm_;
dispatcher(std::time_t t)
: time_(t)
{
}
bool run()
{
using namespace fmt::internal;
return handle(gmtime_r(&time_, &tm_));
}
bool handle(std::tm *tm)
{
return tm != FMT_NULL;
}
bool handle(internal::null<>)
{
using namespace fmt::internal;
return fallback(gmtime_s(&tm_, &time_));
}
bool fallback(int res)
{
return res == 0;
}
bool fallback(internal::null<>)
{
std::tm *tm = std::gmtime(&time_);
if (tm)
tm_ = *tm;
return tm != FMT_NULL;
}
};
dispatcher gt(time);
if (gt.run())
return gt.tm_;
// Too big time values may be unsupported.
FMT_THROW(format_error("time_t value out of range"));
}
namespace internal {
inline std::size_t strftime(char *str, std::size_t count, const char *format, const std::tm *time)
{
return std::strftime(str, count, format, time);
}
inline std::size_t strftime(wchar_t *str, std::size_t count, const wchar_t *format, const std::tm *time)
{
return std::wcsftime(str, count, format, time);
}
} // namespace internal
template<typename Char>
struct formatter<std::tm, Char>
{
template<typename ParseContext>
auto parse(ParseContext &ctx) -> decltype(ctx.begin())
{
auto it = internal::null_terminating_iterator<Char>(ctx);
if (*it == ':')
++it;
auto end = it;
while (*end && *end != '}')
++end;
tm_format.reserve(end - it + 1);
using internal::pointer_from;
tm_format.append(pointer_from(it), pointer_from(end));
tm_format.push_back('\0');
return pointer_from(end);
}
template<typename FormatContext>
auto format(const std::tm &tm, FormatContext &ctx) -> decltype(ctx.out())
{
internal::basic_buffer<Char> &buf = internal::get_container(ctx.out());
std::size_t start = buf.size();
for (;;)
{
std::size_t size = buf.capacity() - start;
std::size_t count = internal::strftime(&buf[start], size, &tm_format[0], &tm);
if (count != 0)
{
buf.resize(start + count);
break;
}
if (size >= tm_format.size() * 256)
{
// If the buffer is 256 times larger than the format string, assume
// that `strftime` gives an empty result. There doesn't seem to be a
// better way to distinguish the two cases:
// https://github.com/fmtlib/fmt/issues/367
break;
}
const std::size_t MIN_GROWTH = 10;
buf.reserve(buf.capacity() + (size > MIN_GROWTH ? size : MIN_GROWTH));
}
return ctx.out();
}
basic_memory_buffer<Char> tm_format;
};
FMT_END_NAMESPACE
#endif // FMT_TIME_H_
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment