Commit 3826ac14 authored by gabime's avatar gabime

bumped bundled fmt version to 4.1.0

parent d650fa24
......@@ -72,9 +72,11 @@
// Dummy implementations of strerror_r and strerror_s called if corresponding
// system functions are not available.
FMT_MAYBE_UNUSED
static inline fmt::internal::Null<> strerror_r(int, char *, ...) {
return fmt::internal::Null<>();
}
FMT_MAYBE_UNUSED
static inline fmt::internal::Null<> strerror_s(char *, std::size_t, ...) {
return fmt::internal::Null<>();
}
......@@ -121,7 +123,7 @@ typedef void (*FormatFunc)(Writer &, int, StringRef);
// Buffer should be at least of size 1.
int safe_strerror(
int error_code, char *&buffer, std::size_t buffer_size) FMT_NOEXCEPT {
FMT_ASSERT(buffer != 0 && buffer_size != 0, "invalid buffer");
FMT_ASSERT(buffer != FMT_NULL && buffer_size != 0, "invalid buffer");
class StrError {
private:
......@@ -159,6 +161,11 @@ int safe_strerror(
ERANGE : result;
}
#ifdef __c2__
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
#endif
// Fallback to strerror if strerror_r and strerror_s are not available.
int fallback(internal::Null<>) {
errno = 0;
......@@ -166,13 +173,15 @@ int safe_strerror(
return errno;
}
#ifdef __c2__
# pragma clang diagnostic pop
#endif
public:
StrError(int err_code, char *&buf, std::size_t buf_size)
: error_code_(err_code), buffer_(buf), buffer_size_(buf_size) {}
int run() {
// Suppress a warning about unused strerror_r.
strerror_r(0, FMT_NULL, "");
return handle(strerror_r(error_code_, buffer_, buffer_size_));
}
};
......@@ -396,51 +405,6 @@ FMT_FUNC void format_system_error(
fmt::format_error_code(out, error_code, message); // 'fmt::' is for bcc32.
}
template <typename Char>
void internal::ArgMap<Char>::init(const ArgList &args) {
if (!map_.empty())
return;
typedef internal::NamedArg<Char> NamedArg;
const NamedArg *named_arg = FMT_NULL;
bool use_values =
args.type(ArgList::MAX_PACKED_ARGS - 1) == internal::Arg::NONE;
if (use_values) {
for (unsigned i = 0;/*nothing*/; ++i) {
internal::Arg::Type arg_type = args.type(i);
switch (arg_type) {
case internal::Arg::NONE:
return;
case internal::Arg::NAMED_ARG:
named_arg = static_cast<const NamedArg*>(args.values_[i].pointer);
map_.push_back(Pair(named_arg->name, *named_arg));
break;
default:
/*nothing*/;
}
}
return;
}
for (unsigned i = 0; i != ArgList::MAX_PACKED_ARGS; ++i) {
internal::Arg::Type arg_type = args.type(i);
if (arg_type == internal::Arg::NAMED_ARG) {
named_arg = static_cast<const NamedArg*>(args.args_[i].pointer);
map_.push_back(Pair(named_arg->name, *named_arg));
}
}
for (unsigned i = ArgList::MAX_PACKED_ARGS;/*nothing*/; ++i) {
switch (args.args_[i].type) {
case internal::Arg::NONE:
return;
case internal::Arg::NAMED_ARG:
named_arg = static_cast<const NamedArg*>(args.args_[i].pointer);
map_.push_back(Pair(named_arg->name, *named_arg));
break;
default:
/*nothing*/;
}
}
}
template <typename Char>
void internal::FixedBuffer<Char>::grow(std::size_t) {
FMT_THROW(std::runtime_error("buffer overflow"));
......@@ -502,8 +466,6 @@ template struct internal::BasicData<void>;
template void internal::FixedBuffer<char>::grow(std::size_t);
template void internal::ArgMap<char>::init(const ArgList &args);
template FMT_API int internal::CharTraits<char>::format_float(
char *buffer, std::size_t size, const char *format,
unsigned width, int precision, double value);
......@@ -516,8 +478,6 @@ template FMT_API int internal::CharTraits<char>::format_float(
template void internal::FixedBuffer<wchar_t>::grow(std::size_t);
template void internal::ArgMap<wchar_t>::init(const ArgList &args);
template FMT_API int internal::CharTraits<wchar_t>::format_float(
wchar_t *buffer, std::size_t size, const wchar_t *format,
unsigned width, int precision, double value);
......
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -13,65 +13,59 @@
#include "format.h"
#include <ostream>
namespace fmt
{
namespace fmt {
namespace internal
{
namespace internal {
template <class Char>
class FormatBuf : public std::basic_streambuf<Char>
{
private:
typedef typename std::basic_streambuf<Char>::int_type int_type;
typedef typename std::basic_streambuf<Char>::traits_type traits_type;
Buffer<Char> &buffer_;
public:
FormatBuf(Buffer<Char> &buffer) : buffer_(buffer) {}
protected:
// The put-area is actually always empty. This makes the implementation
// simpler and has the advantage that the streambuf and the buffer are always
// in sync and sputc never writes into uninitialized memory. The obvious
// disadvantage is that each call to sputc always results in a (virtual) call
// to overflow. There is no disadvantage here for sputn since this always
// results in a call to xsputn.
int_type overflow(int_type ch = traits_type::eof()) FMT_OVERRIDE
{
if (!traits_type::eq_int_type(ch, traits_type::eof()))
buffer_.push_back(static_cast<Char>(ch));
return ch;
}
std::streamsize xsputn(const Char *s, std::streamsize count) FMT_OVERRIDE
{
buffer_.append(s, s + count);
return count;
}
class FormatBuf : public std::basic_streambuf<Char> {
private:
typedef typename std::basic_streambuf<Char>::int_type int_type;
typedef typename std::basic_streambuf<Char>::traits_type traits_type;
Buffer<Char> &buffer_;
public:
FormatBuf(Buffer<Char> &buffer) : buffer_(buffer) {}
protected:
// The put-area is actually always empty. This makes the implementation
// simpler and has the advantage that the streambuf and the buffer are always
// in sync and sputc never writes into uninitialized memory. The obvious
// disadvantage is that each call to sputc always results in a (virtual) call
// to overflow. There is no disadvantage here for sputn since this always
// results in a call to xsputn.
int_type overflow(int_type ch = traits_type::eof()) FMT_OVERRIDE {
if (!traits_type::eq_int_type(ch, traits_type::eof()))
buffer_.push_back(static_cast<Char>(ch));
return ch;
}
std::streamsize xsputn(const Char *s, std::streamsize count) FMT_OVERRIDE {
buffer_.append(s, s + count);
return count;
}
};
Yes &convert(std::ostream &);
struct DummyStream : std::ostream
{
DummyStream(); // Suppress a bogus warning in MSVC.
// Hide all operator<< overloads from std::ostream.
void operator<<(Null<>);
struct DummyStream : std::ostream {
DummyStream(); // Suppress a bogus warning in MSVC.
// Hide all operator<< overloads from std::ostream.
template <typename T>
typename EnableIf<sizeof(T) == 0>::type operator<<(const T &);
};
No &operator<<(std::ostream &, int);
template<typename T>
struct ConvertToIntImpl<T, true>
{
// Convert to int only if T doesn't have an overloaded operator<<.
enum
{
value = sizeof(convert(get<DummyStream>() << get<T>())) == sizeof(No)
};
template <typename T>
struct ConvertToIntImpl<T, true> {
// Convert to int only if T doesn't have an overloaded operator<<.
enum {
value = sizeof(convert(get<DummyStream>() << get<T>())) == sizeof(No)
};
};
// Write the content of w to os.
......@@ -81,17 +75,17 @@ FMT_API void write(std::ostream &os, Writer &w);
// Formats a value.
template <typename Char, typename ArgFormatter_, typename T>
void format_arg(BasicFormatter<Char, ArgFormatter_> &f,
const Char *&format_str, const T &value)
{
internal::MemoryBuffer<Char, internal::INLINE_BUFFER_SIZE> buffer;
const Char *&format_str, const T &value) {
internal::MemoryBuffer<Char, internal::INLINE_BUFFER_SIZE> buffer;
internal::FormatBuf<Char> format_buf(buffer);
std::basic_ostream<Char> output(&format_buf);
output << value;
internal::FormatBuf<Char> format_buf(buffer);
std::basic_ostream<Char> output(&format_buf);
output.exceptions(std::ios_base::failbit | std::ios_base::badbit);
output << value;
BasicStringRef<Char> str(&buffer[0], buffer.size());
typedef internal::MakeArg< BasicFormatter<Char> > MakeArg;
format_str = f.format(format_str, MakeArg(str));
BasicStringRef<Char> str(&buffer[0], buffer.size());
typedef internal::MakeArg< BasicFormatter<Char> > MakeArg;
format_str = f.format(format_str, MakeArg(str));
}
/**
......
......@@ -64,134 +64,112 @@
#define FMT_RETRY(result, expression) FMT_RETRY_VAL(result, expression, -1)
namespace fmt
{
namespace fmt {
// An error code.
class ErrorCode
{
private:
int value_;
class ErrorCode {
private:
int value_;
public:
explicit ErrorCode(int value = 0) FMT_NOEXCEPT :
value_(value) {}
public:
explicit ErrorCode(int value = 0) FMT_NOEXCEPT : value_(value) {}
int get() const FMT_NOEXCEPT
{
return value_;
}
int get() const FMT_NOEXCEPT { return value_; }
};
// A buffered file.
class BufferedFile
{
private:
FILE *file_;
class BufferedFile {
private:
FILE *file_;
friend class File;
friend class File;
explicit BufferedFile(FILE *f) : file_(f) {}
explicit BufferedFile(FILE *f) : file_(f) {}
public:
// Constructs a BufferedFile object which doesn't represent any file.
BufferedFile() FMT_NOEXCEPT :
file_(FMT_NULL) {}
public:
// Constructs a BufferedFile object which doesn't represent any file.
BufferedFile() FMT_NOEXCEPT : file_(FMT_NULL) {}
// Destroys the object closing the file it represents if any.
FMT_API ~BufferedFile() FMT_NOEXCEPT;
// Destroys the object closing the file it represents if any.
FMT_API ~BufferedFile() FMT_NOEXCEPT;
#if !FMT_USE_RVALUE_REFERENCES
// Emulate a move constructor and a move assignment operator if rvalue
// references are not supported.
// Emulate a move constructor and a move assignment operator if rvalue
// references are not supported.
private:
// A proxy object to emulate a move constructor.
// It is private to make it impossible call operator Proxy directly.
struct Proxy
{
FILE *file;
};
private:
// A proxy object to emulate a move constructor.
// It is private to make it impossible call operator Proxy directly.
struct Proxy {
FILE *file;
};
public:
// A "move constructor" for moving from a temporary.
BufferedFile(Proxy p) FMT_NOEXCEPT :
file_(p.file) {}
// A "move constructor" for moving from an lvalue.
BufferedFile(BufferedFile &f) FMT_NOEXCEPT :
file_(f.file_)
{
f.file_ = FMT_NULL;
}
// A "move assignment operator" for moving from a temporary.
BufferedFile &operator=(Proxy p)
{
close();
file_ = p.file;
return *this;
}
// A "move assignment operator" for moving from an lvalue.
BufferedFile &operator=(BufferedFile &other)
{
close();
file_ = other.file_;
other.file_ = FMT_NULL;
return *this;
}
// Returns a proxy object for moving from a temporary:
// BufferedFile file = BufferedFile(...);
operator Proxy() FMT_NOEXCEPT
{
Proxy p = {file_};
file_ = FMT_NULL;
return p;
}
// A "move constructor" for moving from a temporary.
BufferedFile(Proxy p) FMT_NOEXCEPT : file_(p.file) {}
// A "move constructor" for moving from an lvalue.
BufferedFile(BufferedFile &f) FMT_NOEXCEPT : file_(f.file_) {
f.file_ = FMT_NULL;
}
// A "move assignment operator" for moving from a temporary.
BufferedFile &operator=(Proxy p) {
close();
file_ = p.file;
return *this;
}
// A "move assignment operator" for moving from an lvalue.
BufferedFile &operator=(BufferedFile &other) {
close();
file_ = other.file_;
other.file_ = FMT_NULL;
return *this;
}
// Returns a proxy object for moving from a temporary:
// BufferedFile file = BufferedFile(...);
operator Proxy() FMT_NOEXCEPT {
Proxy p = {file_};
file_ = FMT_NULL;
return p;
}
#else
private:
FMT_DISALLOW_COPY_AND_ASSIGN(BufferedFile);
public:
BufferedFile(BufferedFile &&other) FMT_NOEXCEPT :
file_(other.file_)
{
other.file_ = FMT_NULL;
}
BufferedFile& operator=(BufferedFile &&other)
{
close();
file_ = other.file_;
other.file_ = FMT_NULL;
return *this;
}
private:
FMT_DISALLOW_COPY_AND_ASSIGN(BufferedFile);
public:
BufferedFile(BufferedFile &&other) FMT_NOEXCEPT : file_(other.file_) {
other.file_ = FMT_NULL;
}
BufferedFile& operator=(BufferedFile &&other) {
close();
file_ = other.file_;
other.file_ = FMT_NULL;
return *this;
}
#endif
// Opens a file.
FMT_API BufferedFile(CStringRef filename, CStringRef mode);
// Opens a file.
FMT_API BufferedFile(CStringRef filename, CStringRef mode);
// Closes the file.
FMT_API void close();
// Closes the file.
FMT_API void close();
// Returns the pointer to a FILE object representing this file.
FILE *get() const FMT_NOEXCEPT
{
return file_;
}
// Returns the pointer to a FILE object representing this file.
FILE *get() const FMT_NOEXCEPT { return file_; }
// We place parentheses around fileno to workaround a bug in some versions
// of MinGW that define fileno as a macro.
FMT_API int (fileno)() const;
// We place parentheses around fileno to workaround a bug in some versions
// of MinGW that define fileno as a macro.
FMT_API int (fileno)() const;
void print(CStringRef format_str, const ArgList &args)
{
fmt::print(file_, format_str, args);
}
FMT_VARIADIC(void, print, CStringRef)
void print(CStringRef format_str, const ArgList &args) {
fmt::print(file_, format_str, args);
}
FMT_VARIADIC(void, print, CStringRef)
};
// A file. Closed file is represented by a File object with descriptor -1.
......@@ -200,141 +178,125 @@ BufferedFile(BufferedFile &&other) FMT_NOEXCEPT :
// closing the file multiple times will cause a crash on Windows rather
// than an exception. You can get standard behavior by overriding the
// invalid parameter handler with _set_invalid_parameter_handler.
class File
{
private:
int fd_; // File descriptor.
class File {
private:
int fd_; // File descriptor.
// Constructs a File object with a given descriptor.
explicit File(int fd) : fd_(fd) {}
// Constructs a File object with a given descriptor.
explicit File(int fd) : fd_(fd) {}
public:
// Possible values for the oflag argument to the constructor.
enum
{
RDONLY = FMT_POSIX(O_RDONLY), // Open for reading only.
WRONLY = FMT_POSIX(O_WRONLY), // Open for writing only.
RDWR = FMT_POSIX(O_RDWR) // Open for reading and writing.
};
public:
// Possible values for the oflag argument to the constructor.
enum {
RDONLY = FMT_POSIX(O_RDONLY), // Open for reading only.
WRONLY = FMT_POSIX(O_WRONLY), // Open for writing only.
RDWR = FMT_POSIX(O_RDWR) // Open for reading and writing.
};
// Constructs a File object which doesn't represent any file.
File() FMT_NOEXCEPT :
fd_(-1) {}
// Constructs a File object which doesn't represent any file.
File() FMT_NOEXCEPT : fd_(-1) {}
// Opens a file and constructs a File object representing this file.
FMT_API File(CStringRef path, int oflag);
// Opens a file and constructs a File object representing this file.
FMT_API File(CStringRef path, int oflag);
#if !FMT_USE_RVALUE_REFERENCES
// Emulate a move constructor and a move assignment operator if rvalue
// references are not supported.
private:
// A proxy object to emulate a move constructor.
// It is private to make it impossible call operator Proxy directly.
struct Proxy
{
int fd;
};
public:
// A "move constructor" for moving from a temporary.
File(Proxy p) FMT_NOEXCEPT :
fd_(p.fd) {}
// A "move constructor" for moving from an lvalue.
File(File &other) FMT_NOEXCEPT :
fd_(other.fd_)
{
other.fd_ = -1;
}
// A "move assignment operator" for moving from a temporary.
File &operator=(Proxy p)
{
close();
fd_ = p.fd;
return *this;
}
// A "move assignment operator" for moving from an lvalue.
File &operator=(File &other)
{
close();
fd_ = other.fd_;
other.fd_ = -1;
return *this;
}
// Returns a proxy object for moving from a temporary:
// File file = File(...);
operator Proxy() FMT_NOEXCEPT
{
Proxy p = {fd_};
fd_ = -1;
return p;
}
// Emulate a move constructor and a move assignment operator if rvalue
// references are not supported.
private:
// A proxy object to emulate a move constructor.
// It is private to make it impossible call operator Proxy directly.
struct Proxy {
int fd;
};
public:
// A "move constructor" for moving from a temporary.
File(Proxy p) FMT_NOEXCEPT : fd_(p.fd) {}
// A "move constructor" for moving from an lvalue.
File(File &other) FMT_NOEXCEPT : fd_(other.fd_) {
other.fd_ = -1;
}
// A "move assignment operator" for moving from a temporary.
File &operator=(Proxy p) {
close();
fd_ = p.fd;
return *this;
}
// A "move assignment operator" for moving from an lvalue.
File &operator=(File &other) {
close();
fd_ = other.fd_;
other.fd_ = -1;
return *this;
}
// Returns a proxy object for moving from a temporary:
// File file = File(...);
operator Proxy() FMT_NOEXCEPT {
Proxy p = {fd_};
fd_ = -1;
return p;
}
#else
private:
FMT_DISALLOW_COPY_AND_ASSIGN(File);
public:
File(File &&other) FMT_NOEXCEPT :
fd_(other.fd_)
{
other.fd_ = -1;
}
File& operator=(File &&other)
{
close();
fd_ = other.fd_;
other.fd_ = -1;
return *this;
}
private:
FMT_DISALLOW_COPY_AND_ASSIGN(File);
public:
File(File &&other) FMT_NOEXCEPT : fd_(other.fd_) {
other.fd_ = -1;
}
File& operator=(File &&other) {
close();
fd_ = other.fd_;
other.fd_ = -1;
return *this;
}
#endif
// Destroys the object closing the file it represents if any.
FMT_API ~File() FMT_NOEXCEPT;
// Destroys the object closing the file it represents if any.
FMT_API ~File() FMT_NOEXCEPT;
// Returns the file descriptor.
int descriptor() const FMT_NOEXCEPT
{
return fd_;
}
// Returns the file descriptor.
int descriptor() const FMT_NOEXCEPT { return fd_; }
// Closes the file.
FMT_API void close();
// Closes the file.
FMT_API void close();
// Returns the file size. The size has signed type for consistency with
// stat::st_size.
FMT_API LongLong size() const;
// Returns the file size. The size has signed type for consistency with
// stat::st_size.
FMT_API LongLong size() const;
// Attempts to read count bytes from the file into the specified buffer.
FMT_API std::size_t read(void *buffer, std::size_t count);
// Attempts to read count bytes from the file into the specified buffer.
FMT_API std::size_t read(void *buffer, std::size_t count);
// Attempts to write count bytes from the specified buffer to the file.
FMT_API std::size_t write(const void *buffer, std::size_t count);
// Attempts to write count bytes from the specified buffer to the file.
FMT_API std::size_t write(const void *buffer, std::size_t count);
// Duplicates a file descriptor with the dup function and returns
// the duplicate as a file object.
FMT_API static File dup(int fd);
// Duplicates a file descriptor with the dup function and returns
// the duplicate as a file object.
FMT_API static File dup(int fd);
// Makes fd be the copy of this file descriptor, closing fd first if
// necessary.
FMT_API void dup2(int fd);
// Makes fd be the copy of this file descriptor, closing fd first if
// necessary.
FMT_API void dup2(int fd);
// Makes fd be the copy of this file descriptor, closing fd first if
// necessary.
FMT_API void dup2(int fd, ErrorCode &ec) FMT_NOEXCEPT;
// Makes fd be the copy of this file descriptor, closing fd first if
// necessary.
FMT_API void dup2(int fd, ErrorCode &ec) FMT_NOEXCEPT;
// Creates a pipe setting up read_end and write_end file objects for reading
// and writing respectively.
FMT_API static void pipe(File &read_end, File &write_end);
// Creates a pipe setting up read_end and write_end file objects for reading
// and writing respectively.
FMT_API static void pipe(File &read_end, File &write_end);
// Creates a BufferedFile object associated with this file and detaches
// this File object from the file.
FMT_API BufferedFile fdopen(const char *mode);
// Creates a BufferedFile object associated with this file and detaches
// this File object from the file.
FMT_API BufferedFile fdopen(const char *mode);
};
// Returns the memory page size.
......@@ -347,77 +309,58 @@ long getpagesize();
#ifdef FMT_LOCALE
// A "C" numeric locale.
class Locale
{
private:
class Locale {
private:
# ifdef _MSC_VER
typedef _locale_t locale_t;
typedef _locale_t locale_t;
enum { LC_NUMERIC_MASK = LC_NUMERIC };
enum { LC_NUMERIC_MASK = LC_NUMERIC };
static locale_t newlocale(int category_mask, const char *locale, locale_t)
{
return _create_locale(category_mask, locale);
}
static locale_t newlocale(int category_mask, const char *locale, locale_t) {
return _create_locale(category_mask, locale);
}
static void freelocale(locale_t locale)
{
_free_locale(locale);
}
static void freelocale(locale_t locale) {
_free_locale(locale);
}
static double strtod_l(const char *nptr, char **endptr, _locale_t locale)
{
return _strtod_l(nptr, endptr, locale);
}
static double strtod_l(const char *nptr, char **endptr, _locale_t locale) {
return _strtod_l(nptr, endptr, locale);
}
# endif
locale_t locale_;
locale_t locale_;
FMT_DISALLOW_COPY_AND_ASSIGN(Locale);
FMT_DISALLOW_COPY_AND_ASSIGN(Locale);
public:
typedef locale_t Type;
Locale() : locale_(newlocale(LC_NUMERIC_MASK, "C", FMT_NULL))
{
if (!locale_)
FMT_THROW(fmt::SystemError(errno, "cannot create locale"));
}
~Locale()
{
freelocale(locale_);
}
Type get() const
{
return locale_;
}
// Converts string to floating-point number and advances str past the end
// of the parsed input.
double strtod(const char *&str) const
{
char *end = FMT_NULL;
double result = strtod_l(str, &end, locale_);
str = end;
return result;
}
public:
typedef locale_t Type;
Locale() : locale_(newlocale(LC_NUMERIC_MASK, "C", FMT_NULL)) {
if (!locale_)
FMT_THROW(fmt::SystemError(errno, "cannot create locale"));
}
~Locale() { freelocale(locale_); }
Type get() const { return locale_; }
// Converts string to floating-point number and advances str past the end
// of the parsed input.
double strtod(const char *&str) const {
char *end = FMT_NULL;
double result = strtod_l(str, &end, locale_);
str = end;
return result;
}
};
#endif // FMT_LOCALE
} // namespace fmt
#if !FMT_USE_RVALUE_REFERENCES
namespace std
{
namespace std {
// For compatibility with C++98.
inline fmt::BufferedFile &move(fmt::BufferedFile &f)
{
return f;
}
inline fmt::File &move(fmt::File &f)
{
return f;
}
inline fmt::BufferedFile &move(fmt::BufferedFile &f) { return f; }
inline fmt::File &move(fmt::File &f) { return f; }
}
#endif
......
......@@ -15,118 +15,78 @@
#include "ostream.h"
namespace fmt
{
namespace internal
{
namespace fmt {
namespace internal {
// Checks if a value fits in int - used to avoid warnings about comparing
// signed and unsigned integers.
template <bool IsSigned>
struct IntChecker
{
template <typename T>
static bool fits_in_int(T value)
{
unsigned max = std::numeric_limits<int>::max();
return value <= max;
}
static bool fits_in_int(bool)
{
return true;
}
struct IntChecker {
template <typename T>
static bool fits_in_int(T value) {
unsigned max = std::numeric_limits<int>::max();
return value <= max;
}
static bool fits_in_int(bool) { return true; }
};
template <>
struct IntChecker<true>
{
template <typename T>
static bool fits_in_int(T value)
{
return value >= std::numeric_limits<int>::min() &&
value <= std::numeric_limits<int>::max();
}
static bool fits_in_int(int)
{
return true;
}
struct IntChecker<true> {
template <typename T>
static bool fits_in_int(T value) {
return value >= std::numeric_limits<int>::min() &&
value <= std::numeric_limits<int>::max();
}
static bool fits_in_int(int) { return true; }
};
class PrecisionHandler : public ArgVisitor<PrecisionHandler, int>
{
public:
void report_unhandled_arg()
{
FMT_THROW(FormatError("precision is not integer"));
}
template <typename T>
int visit_any_int(T value)
{
if (!IntChecker<std::numeric_limits<T>::is_signed>::fits_in_int(value))
FMT_THROW(FormatError("number is too big"));
return static_cast<int>(value);
}
class PrecisionHandler : public ArgVisitor<PrecisionHandler, int> {
public:
void report_unhandled_arg() {
FMT_THROW(FormatError("precision is not integer"));
}
template <typename T>
int visit_any_int(T value) {
if (!IntChecker<std::numeric_limits<T>::is_signed>::fits_in_int(value))
FMT_THROW(FormatError("number is too big"));
return static_cast<int>(value);
}
};
// IsZeroInt::visit(arg) returns true iff arg is a zero integer.
class IsZeroInt : public ArgVisitor<IsZeroInt, bool>
{
public:
template <typename T>
bool visit_any_int(T value)
{
return value == 0;
}
class IsZeroInt : public ArgVisitor<IsZeroInt, bool> {
public:
template <typename T>
bool visit_any_int(T value) { return value == 0; }
};
// returns the default type for format specific "%s"
class DefaultType : public ArgVisitor<DefaultType, char>
{
public:
char visit_char(int)
{
return 'c';
}
class DefaultType : public ArgVisitor<DefaultType, char> {
public:
char visit_char(int) { return 'c'; }
char visit_bool(bool)
{
return 's';
}
char visit_bool(bool) { return 's'; }
char visit_pointer(const void *)
{
return 'p';
}
char visit_pointer(const void *) { return 'p'; }
template <typename T>
char visit_any_int(T)
{
return 'd';
}
template <typename T>
char visit_any_int(T) { return 'd'; }
template <typename T>
char visit_any_double(T)
{
return 'g';
}
template <typename T>
char visit_any_double(T) { return 'g'; }
char visit_unhandled_arg()
{
return 's';
}
char visit_unhandled_arg() { return 's'; }
};
template <typename T, typename U>
struct is_same
{
enum { value = 0 };
struct is_same {
enum { value = 0 };
};
template <typename T>
struct is_same<T, T>
{
enum { value = 1 };
struct is_same<T, T> {
enum { value = 1 };
};
// An argument visitor that converts an integer argument to T for printf,
......@@ -134,128 +94,108 @@ struct is_same<T, T>
// corresponding signed or unsigned type depending on the type specifier:
// 'd' and 'i' - signed, other - unsigned)
template <typename T = void>
class ArgConverter : public ArgVisitor<ArgConverter<T>, void>
{
private:
internal::Arg &arg_;
wchar_t type_;
FMT_DISALLOW_COPY_AND_ASSIGN(ArgConverter);
public:
ArgConverter(internal::Arg &arg, wchar_t type)
: arg_(arg), type_(type) {}
void visit_bool(bool value)
{
if (type_ != 's')
visit_any_int(value);
}
void visit_char(char value)
{
if (type_ != 's')
visit_any_int(value);
class ArgConverter : public ArgVisitor<ArgConverter<T>, void> {
private:
internal::Arg &arg_;
wchar_t type_;
FMT_DISALLOW_COPY_AND_ASSIGN(ArgConverter);
public:
ArgConverter(internal::Arg &arg, wchar_t type)
: arg_(arg), type_(type) {}
void visit_bool(bool value) {
if (type_ != 's')
visit_any_int(value);
}
void visit_char(int value) {
if (type_ != 's')
visit_any_int(value);
}
template <typename U>
void visit_any_int(U value) {
bool is_signed = type_ == 'd' || type_ == 'i';
if (type_ == 's') {
is_signed = std::numeric_limits<U>::is_signed;
}
template <typename U>
void visit_any_int(U value)
{
bool is_signed = type_ == 'd' || type_ == 'i';
if (type_ == 's')
{
is_signed = std::numeric_limits<U>::is_signed;
}
using internal::Arg;
typedef typename internal::Conditional<
using internal::Arg;
typedef typename internal::Conditional<
is_same<T, void>::value, U, T>::type TargetType;
if (sizeof(TargetType) <= sizeof(int))
{
// Extra casts are used to silence warnings.
if (is_signed)
{
arg_.type = Arg::INT;
arg_.int_value = static_cast<int>(static_cast<TargetType>(value));
}
else
{
arg_.type = Arg::UINT;
typedef typename internal::MakeUnsigned<TargetType>::Type Unsigned;
arg_.uint_value = static_cast<unsigned>(static_cast<Unsigned>(value));
}
}
else
{
if (is_signed)
{
arg_.type = Arg::LONG_LONG;
// glibc's printf doesn't sign extend arguments of smaller types:
// std::printf("%lld", -42); // prints "4294967254"
// but we don't have to do the same because it's a UB.
arg_.long_long_value = static_cast<LongLong>(value);
}
else
{
arg_.type = Arg::ULONG_LONG;
arg_.ulong_long_value =
static_cast<typename internal::MakeUnsigned<U>::Type>(value);
}
}
if (const_check(sizeof(TargetType) <= sizeof(int))) {
// Extra casts are used to silence warnings.
if (is_signed) {
arg_.type = Arg::INT;
arg_.int_value = static_cast<int>(static_cast<TargetType>(value));
} else {
arg_.type = Arg::UINT;
typedef typename internal::MakeUnsigned<TargetType>::Type Unsigned;
arg_.uint_value = static_cast<unsigned>(static_cast<Unsigned>(value));
}
} else {
if (is_signed) {
arg_.type = Arg::LONG_LONG;
// glibc's printf doesn't sign extend arguments of smaller types:
// std::printf("%lld", -42); // prints "4294967254"
// but we don't have to do the same because it's a UB.
arg_.long_long_value = static_cast<LongLong>(value);
} else {
arg_.type = Arg::ULONG_LONG;
arg_.ulong_long_value =
static_cast<typename internal::MakeUnsigned<U>::Type>(value);
}
}
}
};
// Converts an integer argument to char for printf.
class CharConverter : public ArgVisitor<CharConverter, void>
{
private:
internal::Arg &arg_;
class CharConverter : public ArgVisitor<CharConverter, void> {
private:
internal::Arg &arg_;
FMT_DISALLOW_COPY_AND_ASSIGN(CharConverter);
FMT_DISALLOW_COPY_AND_ASSIGN(CharConverter);
public:
explicit CharConverter(internal::Arg &arg) : arg_(arg) {}
public:
explicit CharConverter(internal::Arg &arg) : arg_(arg) {}
template <typename T>
void visit_any_int(T value)
{
arg_.type = internal::Arg::CHAR;
arg_.int_value = static_cast<char>(value);
}
template <typename T>
void visit_any_int(T value) {
arg_.type = internal::Arg::CHAR;
arg_.int_value = static_cast<char>(value);
}
};
// Checks if an argument is a valid printf width specifier and sets
// left alignment if it is negative.
class WidthHandler : public ArgVisitor<WidthHandler, unsigned>
{
private:
FormatSpec &spec_;
FMT_DISALLOW_COPY_AND_ASSIGN(WidthHandler);
public:
explicit WidthHandler(FormatSpec &spec) : spec_(spec) {}
void report_unhandled_arg()
{
FMT_THROW(FormatError("width is not integer"));
}
template <typename T>
unsigned visit_any_int(T value)
{
typedef typename internal::IntTraits<T>::MainType UnsignedType;
UnsignedType width = static_cast<UnsignedType>(value);
if (internal::is_negative(value))
{
spec_.align_ = ALIGN_LEFT;
width = 0 - width;
}
unsigned int_max = std::numeric_limits<int>::max();
if (width > int_max)
FMT_THROW(FormatError("number is too big"));
return static_cast<unsigned>(width);
class WidthHandler : public ArgVisitor<WidthHandler, unsigned> {
private:
FormatSpec &spec_;
FMT_DISALLOW_COPY_AND_ASSIGN(WidthHandler);
public:
explicit WidthHandler(FormatSpec &spec) : spec_(spec) {}
void report_unhandled_arg() {
FMT_THROW(FormatError("width is not integer"));
}
template <typename T>
unsigned visit_any_int(T value) {
typedef typename internal::IntTraits<T>::MainType UnsignedType;
UnsignedType width = static_cast<UnsignedType>(value);
if (internal::is_negative(value)) {
spec_.align_ = ALIGN_LEFT;
width = 0 - width;
}
unsigned int_max = std::numeric_limits<int>::max();
if (width > int_max)
FMT_THROW(FormatError("number is too big"));
return static_cast<unsigned>(width);
}
};
} // namespace internal
......@@ -278,359 +218,314 @@ public:
*/
template <typename Impl, typename Char, typename Spec>
class BasicPrintfArgFormatter :
public internal::ArgFormatterBase<Impl, Char, Spec>
{
private:
void write_null_pointer()
{
this->spec().type_ = 0;
this->write("(nil)");
}
typedef internal::ArgFormatterBase<Impl, Char, Spec> Base;
public:
/**
\rst
Constructs an argument formatter object.
*writer* is a reference to the output writer and *spec* contains format
specifier information for standard argument types.
\endrst
*/
BasicPrintfArgFormatter(BasicWriter<Char> &w, Spec &s)
: internal::ArgFormatterBase<Impl, Char, Spec>(w, s) {}
/** Formats an argument of type ``bool``. */
void visit_bool(bool value)
{
Spec &fmt_spec = this->spec();
if (fmt_spec.type_ != 's')
return this->visit_any_int(value);
fmt_spec.type_ = 0;
this->write(value);
}
/** Formats a character. */
void visit_char(int value)
{
const Spec &fmt_spec = this->spec();
BasicWriter<Char> &w = this->writer();
if (fmt_spec.type_ && fmt_spec.type_ != 'c')
w.write_int(value, fmt_spec);
typedef typename BasicWriter<Char>::CharPtr CharPtr;
CharPtr out = CharPtr();
if (fmt_spec.width_ > 1)
{
Char fill = ' ';
out = w.grow_buffer(fmt_spec.width_);
if (fmt_spec.align_ != ALIGN_LEFT)
{
std::fill_n(out, fmt_spec.width_ - 1, fill);
out += fmt_spec.width_ - 1;
}
else
{
std::fill_n(out + 1, fmt_spec.width_ - 1, fill);
}
}
else
{
out = w.grow_buffer(1);
}
*out = static_cast<Char>(value);
}
/** Formats a null-terminated C string. */
void visit_cstring(const char *value)
{
if (value)
Base::visit_cstring(value);
else if (this->spec().type_ == 'p')
write_null_pointer();
else
this->write("(null)");
}
/** Formats a pointer. */
void visit_pointer(const void *value)
{
if (value)
return Base::visit_pointer(value);
this->spec().type_ = 0;
write_null_pointer();
}
/** Formats an argument of a custom (user-defined) type. */
void visit_custom(internal::Arg::CustomValue c)
{
BasicFormatter<Char> formatter(ArgList(), this->writer());
const Char format_str[] = {'}', 0};
const Char *format = format_str;
c.format(&formatter, c.value, &format);
public internal::ArgFormatterBase<Impl, Char, Spec> {
private:
void write_null_pointer() {
this->spec().type_ = 0;
this->write("(nil)");
}
typedef internal::ArgFormatterBase<Impl, Char, Spec> Base;
public:
/**
\rst
Constructs an argument formatter object.
*writer* is a reference to the output writer and *spec* contains format
specifier information for standard argument types.
\endrst
*/
BasicPrintfArgFormatter(BasicWriter<Char> &w, Spec &s)
: internal::ArgFormatterBase<Impl, Char, Spec>(w, s) {}
/** Formats an argument of type ``bool``. */
void visit_bool(bool value) {
Spec &fmt_spec = this->spec();
if (fmt_spec.type_ != 's')
return this->visit_any_int(value);
fmt_spec.type_ = 0;
this->write(value);
}
/** Formats a character. */
void visit_char(int value) {
const Spec &fmt_spec = this->spec();
BasicWriter<Char> &w = this->writer();
if (fmt_spec.type_ && fmt_spec.type_ != 'c')
w.write_int(value, fmt_spec);
typedef typename BasicWriter<Char>::CharPtr CharPtr;
CharPtr out = CharPtr();
if (fmt_spec.width_ > 1) {
Char fill = ' ';
out = w.grow_buffer(fmt_spec.width_);
if (fmt_spec.align_ != ALIGN_LEFT) {
std::fill_n(out, fmt_spec.width_ - 1, fill);
out += fmt_spec.width_ - 1;
} else {
std::fill_n(out + 1, fmt_spec.width_ - 1, fill);
}
} else {
out = w.grow_buffer(1);
}
*out = static_cast<Char>(value);
}
/** Formats a null-terminated C string. */
void visit_cstring(const char *value) {
if (value)
Base::visit_cstring(value);
else if (this->spec().type_ == 'p')
write_null_pointer();
else
this->write("(null)");
}
/** Formats a pointer. */
void visit_pointer(const void *value) {
if (value)
return Base::visit_pointer(value);
this->spec().type_ = 0;
write_null_pointer();
}
/** Formats an argument of a custom (user-defined) type. */
void visit_custom(internal::Arg::CustomValue c) {
BasicFormatter<Char> formatter(ArgList(), this->writer());
const Char format_str[] = {'}', 0};
const Char *format = format_str;
c.format(&formatter, c.value, &format);
}
};
/** The default printf argument formatter. */
template <typename Char>
class PrintfArgFormatter :
public BasicPrintfArgFormatter<PrintfArgFormatter<Char>, Char, FormatSpec>
{
public:
/** Constructs an argument formatter object. */
PrintfArgFormatter(BasicWriter<Char> &w, FormatSpec &s)
: BasicPrintfArgFormatter<PrintfArgFormatter<Char>, Char, FormatSpec>(w, s) {}
public BasicPrintfArgFormatter<PrintfArgFormatter<Char>, Char, FormatSpec> {
public:
/** Constructs an argument formatter object. */
PrintfArgFormatter(BasicWriter<Char> &w, FormatSpec &s)
: BasicPrintfArgFormatter<PrintfArgFormatter<Char>, Char, FormatSpec>(w, s) {}
};
/** This template formats data and writes the output to a writer. */
template <typename Char, typename ArgFormatter = PrintfArgFormatter<Char> >
class PrintfFormatter : private internal::FormatterBase
{
private:
BasicWriter<Char> &writer_;
void parse_flags(FormatSpec &spec, const Char *&s);
// Returns the argument with specified index or, if arg_index is equal
// to the maximum unsigned value, the next argument.
internal::Arg get_arg(
const Char *s,
unsigned arg_index = (std::numeric_limits<unsigned>::max)());
// Parses argument index, flags and width and returns the argument index.
unsigned parse_header(const Char *&s, FormatSpec &spec);
public:
/**
\rst
Constructs a ``PrintfFormatter`` object. References to the arguments and
the writer are stored in the formatter object so make sure they have
appropriate lifetimes.
\endrst
*/
explicit PrintfFormatter(const ArgList &al, BasicWriter<Char> &w)
: FormatterBase(al), writer_(w) {}
/** Formats stored arguments and writes the output to the writer. */
void format(BasicCStringRef<Char> format_str);
class PrintfFormatter : private internal::FormatterBase {
private:
BasicWriter<Char> &writer_;
void parse_flags(FormatSpec &spec, const Char *&s);
// Returns the argument with specified index or, if arg_index is equal
// to the maximum unsigned value, the next argument.
internal::Arg get_arg(
const Char *s,
unsigned arg_index = (std::numeric_limits<unsigned>::max)());
// Parses argument index, flags and width and returns the argument index.
unsigned parse_header(const Char *&s, FormatSpec &spec);
public:
/**
\rst
Constructs a ``PrintfFormatter`` object. References to the arguments and
the writer are stored in the formatter object so make sure they have
appropriate lifetimes.
\endrst
*/
explicit PrintfFormatter(const ArgList &al, BasicWriter<Char> &w)
: FormatterBase(al), writer_(w) {}
/** Formats stored arguments and writes the output to the writer. */
void format(BasicCStringRef<Char> format_str);
};
template <typename Char, typename AF>
void PrintfFormatter<Char, AF>::parse_flags(FormatSpec &spec, const Char *&s)
{
for (;;)
{
switch (*s++)
{
case '-':
spec.align_ = ALIGN_LEFT;
break;
case '+':
spec.flags_ |= SIGN_FLAG | PLUS_FLAG;
break;
case '0':
spec.fill_ = '0';
break;
case ' ':
spec.flags_ |= SIGN_FLAG;
break;
case '#':
spec.flags_ |= HASH_FLAG;
break;
default:
--s;
return;
}
void PrintfFormatter<Char, AF>::parse_flags(FormatSpec &spec, const Char *&s) {
for (;;) {
switch (*s++) {
case '-':
spec.align_ = ALIGN_LEFT;
break;
case '+':
spec.flags_ |= SIGN_FLAG | PLUS_FLAG;
break;
case '0':
spec.fill_ = '0';
break;
case ' ':
spec.flags_ |= SIGN_FLAG;
break;
case '#':
spec.flags_ |= HASH_FLAG;
break;
default:
--s;
return;
}
}
}
template <typename Char, typename AF>
internal::Arg PrintfFormatter<Char, AF>::get_arg(const Char *s,
unsigned arg_index)
{
(void)s;
const char *error = FMT_NULL;
internal::Arg arg = arg_index == std::numeric_limits<unsigned>::max() ?
next_arg(error) : FormatterBase::get_arg(arg_index - 1, error);
if (error)
FMT_THROW(FormatError(!*s ? "invalid format string" : error));
return arg;
unsigned arg_index) {
(void)s;
const char *error = FMT_NULL;
internal::Arg arg = arg_index == std::numeric_limits<unsigned>::max() ?
next_arg(error) : FormatterBase::get_arg(arg_index - 1, error);
if (error)
FMT_THROW(FormatError(!*s ? "invalid format string" : error));
return arg;
}
template <typename Char, typename AF>
unsigned PrintfFormatter<Char, AF>::parse_header(
const Char *&s, FormatSpec &spec)
{
unsigned arg_index = std::numeric_limits<unsigned>::max();
Char c = *s;
if (c >= '0' && c <= '9')
{
// Parse an argument index (if followed by '$') or a width possibly
// preceded with '0' flag(s).
unsigned value = internal::parse_nonnegative_int(s);
if (*s == '$') // value is an argument index
{
++s;
arg_index = value;
}
else
{
if (c == '0')
spec.fill_ = '0';
if (value != 0)
{
// Nonzero value means that we parsed width and don't need to
// parse it or flags again, so return now.
spec.width_ = value;
return arg_index;
}
}
const Char *&s, FormatSpec &spec) {
unsigned arg_index = std::numeric_limits<unsigned>::max();
Char c = *s;
if (c >= '0' && c <= '9') {
// Parse an argument index (if followed by '$') or a width possibly
// preceded with '0' flag(s).
unsigned value = internal::parse_nonnegative_int(s);
if (*s == '$') { // value is an argument index
++s;
arg_index = value;
} else {
if (c == '0')
spec.fill_ = '0';
if (value != 0) {
// Nonzero value means that we parsed width and don't need to
// parse it or flags again, so return now.
spec.width_ = value;
return arg_index;
}
}
parse_flags(spec, s);
// Parse width.
if (*s >= '0' && *s <= '9')
{
spec.width_ = internal::parse_nonnegative_int(s);
}
parse_flags(spec, s);
// Parse width.
if (*s >= '0' && *s <= '9') {
spec.width_ = internal::parse_nonnegative_int(s);
} else if (*s == '*') {
++s;
spec.width_ = internal::WidthHandler(spec).visit(get_arg(s));
}
return arg_index;
}
template <typename Char, typename AF>
void PrintfFormatter<Char, AF>::format(BasicCStringRef<Char> format_str) {
const Char *start = format_str.c_str();
const Char *s = start;
while (*s) {
Char c = *s++;
if (c != '%') continue;
if (*s == c) {
write(writer_, start, s);
start = ++s;
continue;
}
else if (*s == '*')
{
write(writer_, start, s - 1);
FormatSpec spec;
spec.align_ = ALIGN_RIGHT;
// Parse argument index, flags and width.
unsigned arg_index = parse_header(s, spec);
// Parse precision.
if (*s == '.') {
++s;
if ('0' <= *s && *s <= '9') {
spec.precision_ = static_cast<int>(internal::parse_nonnegative_int(s));
} else if (*s == '*') {
++s;
spec.width_ = internal::WidthHandler(spec).visit(get_arg(s));
spec.precision_ = internal::PrecisionHandler().visit(get_arg(s));
} else {
spec.precision_ = 0;
}
}
return arg_index;
}
template <typename Char, typename AF>
void PrintfFormatter<Char, AF>::format(BasicCStringRef<Char> format_str)
{
const Char *start = format_str.c_str();
const Char *s = start;
while (*s)
{
Char c = *s++;
if (c != '%') continue;
if (*s == c)
{
write(writer_, start, s);
start = ++s;
continue;
}
write(writer_, start, s - 1);
FormatSpec spec;
spec.align_ = ALIGN_RIGHT;
// Parse argument index, flags and width.
unsigned arg_index = parse_header(s, spec);
// Parse precision.
if (*s == '.')
{
++s;
if ('0' <= *s && *s <= '9')
{
spec.precision_ = static_cast<int>(internal::parse_nonnegative_int(s));
}
else if (*s == '*')
{
++s;
spec.precision_ = internal::PrecisionHandler().visit(get_arg(s));
}
else
{
spec.precision_ = 0;
}
}
using internal::Arg;
Arg arg = get_arg(s, arg_index);
if (spec.flag(HASH_FLAG) && internal::IsZeroInt().visit(arg))
spec.flags_ &= ~internal::to_unsigned<int>(HASH_FLAG);
if (spec.fill_ == '0')
{
if (arg.type <= Arg::LAST_NUMERIC_TYPE)
spec.align_ = ALIGN_NUMERIC;
else
spec.fill_ = ' '; // Ignore '0' flag for non-numeric types.
}
// Parse length and convert the argument to the required type.
using internal::ArgConverter;
switch (*s++)
{
case 'h':
if (*s == 'h')
ArgConverter<signed char>(arg, *++s).visit(arg);
else
ArgConverter<short>(arg, *s).visit(arg);
break;
case 'l':
if (*s == 'l')
ArgConverter<fmt::LongLong>(arg, *++s).visit(arg);
else
ArgConverter<long>(arg, *s).visit(arg);
break;
case 'j':
ArgConverter<intmax_t>(arg, *s).visit(arg);
break;
case 'z':
ArgConverter<std::size_t>(arg, *s).visit(arg);
break;
case 't':
ArgConverter<std::ptrdiff_t>(arg, *s).visit(arg);
break;
case 'L':
// printf produces garbage when 'L' is omitted for long double, no
// need to do the same.
break;
default:
--s;
ArgConverter<void>(arg, *s).visit(arg);
}
// Parse type.
if (!*s)
FMT_THROW(FormatError("invalid format string"));
spec.type_ = static_cast<char>(*s++);
if (spec.type_ == 's')
{
// set the format type to the default if 's' is specified
spec.type_ = internal::DefaultType().visit(arg);
}
if (arg.type <= Arg::LAST_INTEGER_TYPE)
{
// Normalize type.
switch (spec.type_)
{
case 'i':
case 'u':
spec.type_ = 'd';
break;
case 'c':
// TODO: handle wchar_t
internal::CharConverter(arg).visit(arg);
break;
}
}
start = s;
// Format argument.
AF(writer_, spec).visit(arg);
using internal::Arg;
Arg arg = get_arg(s, arg_index);
if (spec.flag(HASH_FLAG) && internal::IsZeroInt().visit(arg))
spec.flags_ &= ~internal::to_unsigned<int>(HASH_FLAG);
if (spec.fill_ == '0') {
if (arg.type <= Arg::LAST_NUMERIC_TYPE)
spec.align_ = ALIGN_NUMERIC;
else
spec.fill_ = ' '; // Ignore '0' flag for non-numeric types.
}
// Parse length and convert the argument to the required type.
using internal::ArgConverter;
switch (*s++) {
case 'h':
if (*s == 'h')
ArgConverter<signed char>(arg, *++s).visit(arg);
else
ArgConverter<short>(arg, *s).visit(arg);
break;
case 'l':
if (*s == 'l')
ArgConverter<fmt::LongLong>(arg, *++s).visit(arg);
else
ArgConverter<long>(arg, *s).visit(arg);
break;
case 'j':
ArgConverter<intmax_t>(arg, *s).visit(arg);
break;
case 'z':
ArgConverter<std::size_t>(arg, *s).visit(arg);
break;
case 't':
ArgConverter<std::ptrdiff_t>(arg, *s).visit(arg);
break;
case 'L':
// printf produces garbage when 'L' is omitted for long double, no
// need to do the same.
break;
default:
--s;
ArgConverter<void>(arg, *s).visit(arg);
}
// Parse type.
if (!*s)
FMT_THROW(FormatError("invalid format string"));
spec.type_ = static_cast<char>(*s++);
if (spec.type_ == 's') {
// set the format type to the default if 's' is specified
spec.type_ = internal::DefaultType().visit(arg);
}
if (arg.type <= Arg::LAST_INTEGER_TYPE) {
// Normalize type.
switch (spec.type_) {
case 'i': case 'u':
spec.type_ = 'd';
break;
case 'c':
// TODO: handle wchar_t
internal::CharConverter(arg).visit(arg);
break;
}
}
write(writer_, start, s);
start = s;
// Format argument.
AF(writer_, spec).visit(arg);
}
write(writer_, start, s);
}
inline void printf(Writer &w, CStringRef format, ArgList args)
{
PrintfFormatter<char>(args, w).format(format);
inline void printf(Writer &w, CStringRef format, ArgList args) {
PrintfFormatter<char>(args, w).format(format);
}
FMT_VARIADIC(void, printf, Writer &, CStringRef)
inline void printf(WWriter &w, WCStringRef format, ArgList args)
{
PrintfFormatter<wchar_t>(args, w).format(format);
inline void printf(WWriter &w, WCStringRef format, ArgList args) {
PrintfFormatter<wchar_t>(args, w).format(format);
}
FMT_VARIADIC(void, printf, WWriter &, WCStringRef)
......@@ -643,19 +538,17 @@ FMT_VARIADIC(void, printf, WWriter &, WCStringRef)
std::string message = fmt::sprintf("The answer is %d", 42);
\endrst
*/
inline std::string sprintf(CStringRef format, ArgList args)
{
MemoryWriter w;
printf(w, format, args);
return w.str();
inline std::string sprintf(CStringRef format, ArgList args) {
MemoryWriter w;
printf(w, format, args);
return w.str();
}
FMT_VARIADIC(std::string, sprintf, CStringRef)
inline std::wstring sprintf(WCStringRef format, ArgList args)
{
WMemoryWriter w;
printf(w, format, args);
return w.str();
inline std::wstring sprintf(WCStringRef format, ArgList args) {
WMemoryWriter w;
printf(w, format, args);
return w.str();
}
FMT_VARIADIC_W(std::wstring, sprintf, WCStringRef)
......@@ -680,9 +573,8 @@ FMT_VARIADIC(int, fprintf, std::FILE *, CStringRef)
fmt::printf("Elapsed time: %.2f seconds", 1.23);
\endrst
*/
inline int printf(CStringRef format, ArgList args)
{
return fprintf(stdout, format, args);
inline int printf(CStringRef format, ArgList args) {
return fprintf(stdout, format, args);
}
FMT_VARIADIC(int, printf, CStringRef)
......@@ -695,12 +587,11 @@ FMT_VARIADIC(int, printf, CStringRef)
fprintf(cerr, "Don't %s!", "panic");
\endrst
*/
inline int fprintf(std::ostream &os, CStringRef format_str, ArgList args)
{
MemoryWriter w;
printf(w, format_str, args);
internal::write(os, w);
return static_cast<int>(w.size());
inline int fprintf(std::ostream &os, CStringRef format_str, ArgList args) {
MemoryWriter w;
printf(w, format_str, args);
internal::write(os, w);
return static_cast<int>(w.size());
}
FMT_VARIADIC(int, fprintf, std::ostream &, CStringRef)
} // namespace fmt
......
......@@ -19,160 +19,120 @@
# pragma warning(disable: 4996) // "deprecated" functions
#endif
namespace fmt
{
namespace fmt {
template <typename ArgFormatter>
void format_arg(BasicFormatter<char, ArgFormatter> &f,
const char *&format_str, const std::tm &tm)
{
if (*format_str == ':')
++format_str;
const char *end = format_str;
while (*end && *end != '}')
++end;
if (*end != '}')
FMT_THROW(FormatError("missing '}' in format string"));
internal::MemoryBuffer<char, internal::INLINE_BUFFER_SIZE> format;
format.append(format_str, end + 1);
format[format.size() - 1] = '\0';
Buffer<char> &buffer = f.writer().buffer();
std::size_t start = buffer.size();
for (;;)
{
std::size_t size = buffer.capacity() - start;
std::size_t count = std::strftime(&buffer[start], size, &format[0], &tm);
if (count != 0)
{
buffer.resize(start + count);
break;
}
if (size >= format.size() * 256)
{
// If the buffer is 256 times larger than the format string, assume
// that `strftime` gives an empty result. There doesn't seem to be a
// better way to distinguish the two cases:
// https://github.com/fmtlib/fmt/issues/367
break;
}
const std::size_t MIN_GROWTH = 10;
buffer.reserve(buffer.capacity() + (size > MIN_GROWTH ? size : MIN_GROWTH));
const char *&format_str, const std::tm &tm) {
if (*format_str == ':')
++format_str;
const char *end = format_str;
while (*end && *end != '}')
++end;
if (*end != '}')
FMT_THROW(FormatError("missing '}' in format string"));
internal::MemoryBuffer<char, internal::INLINE_BUFFER_SIZE> format;
format.append(format_str, end + 1);
format[format.size() - 1] = '\0';
Buffer<char> &buffer = f.writer().buffer();
std::size_t start = buffer.size();
for (;;) {
std::size_t size = buffer.capacity() - start;
std::size_t count = std::strftime(&buffer[start], size, &format[0], &tm);
if (count != 0) {
buffer.resize(start + count);
break;
}
format_str = end + 1;
if (size >= format.size() * 256) {
// If the buffer is 256 times larger than the format string, assume
// that `strftime` gives an empty result. There doesn't seem to be a
// better way to distinguish the two cases:
// https://github.com/fmtlib/fmt/issues/367
break;
}
const std::size_t MIN_GROWTH = 10;
buffer.reserve(buffer.capacity() + (size > MIN_GROWTH ? size : MIN_GROWTH));
}
format_str = end + 1;
}
namespace internal
{
inline Null<> localtime_r(...)
{
return Null<>();
}
inline Null<> localtime_s(...)
{
return Null<>();
}
inline Null<> gmtime_r(...)
{
return Null<>();
}
inline Null<> gmtime_s(...)
{
return Null<>();
}
namespace internal{
inline Null<> localtime_r(...) { return Null<>(); }
inline Null<> localtime_s(...) { return Null<>(); }
inline Null<> gmtime_r(...) { return Null<>(); }
inline Null<> gmtime_s(...) { return Null<>(); }
}
// Thread-safe replacement for std::localtime
inline std::tm localtime(std::time_t time)
{
struct LocalTime
{
std::time_t time_;
std::tm tm_;
LocalTime(std::time_t t): time_(t) {}
bool run()
{
using namespace fmt::internal;
return handle(localtime_r(&time_, &tm_));
}
bool handle(std::tm *tm)
{
return tm != FMT_NULL;
}
bool handle(internal::Null<>)
{
using namespace fmt::internal;
return fallback(localtime_s(&tm_, &time_));
}
bool fallback(int res)
{
return res == 0;
}
bool fallback(internal::Null<>)
{
using namespace fmt::internal;
std::tm *tm = std::localtime(&time_);
if (tm) tm_ = *tm;
return tm != FMT_NULL;
}
};
LocalTime lt(time);
if (lt.run())
return lt.tm_;
// Too big time values may be unsupported.
FMT_THROW(fmt::FormatError("time_t value out of range"));
return std::tm();
inline std::tm localtime(std::time_t time) {
struct LocalTime {
std::time_t time_;
std::tm tm_;
LocalTime(std::time_t t): time_(t) {}
bool run() {
using namespace fmt::internal;
return handle(localtime_r(&time_, &tm_));
}
bool handle(std::tm *tm) { return tm != FMT_NULL; }
bool handle(internal::Null<>) {
using namespace fmt::internal;
return fallback(localtime_s(&tm_, &time_));
}
bool fallback(int res) { return res == 0; }
bool fallback(internal::Null<>) {
using namespace fmt::internal;
std::tm *tm = std::localtime(&time_);
if (tm) tm_ = *tm;
return tm != FMT_NULL;
}
};
LocalTime lt(time);
if (lt.run())
return lt.tm_;
// Too big time values may be unsupported.
FMT_THROW(fmt::FormatError("time_t value out of range"));
return std::tm();
}
// Thread-safe replacement for std::gmtime
inline std::tm gmtime(std::time_t time)
{
struct GMTime
{
std::time_t time_;
std::tm tm_;
GMTime(std::time_t t): time_(t) {}
bool run()
{
using namespace fmt::internal;
return handle(gmtime_r(&time_, &tm_));
}
bool handle(std::tm *tm)
{
return tm != FMT_NULL;
}
bool handle(internal::Null<>)
{
using namespace fmt::internal;
return fallback(gmtime_s(&tm_, &time_));
}
bool fallback(int res)
{
return res == 0;
}
bool fallback(internal::Null<>)
{
std::tm *tm = std::gmtime(&time_);
if (tm != FMT_NULL) tm_ = *tm;
return tm != FMT_NULL;
}
};
GMTime gt(time);
if (gt.run())
return gt.tm_;
// Too big time values may be unsupported.
FMT_THROW(fmt::FormatError("time_t value out of range"));
return std::tm();
inline std::tm gmtime(std::time_t time) {
struct GMTime {
std::time_t time_;
std::tm tm_;
GMTime(std::time_t t): time_(t) {}
bool run() {
using namespace fmt::internal;
return handle(gmtime_r(&time_, &tm_));
}
bool handle(std::tm *tm) { return tm != FMT_NULL; }
bool handle(internal::Null<>) {
using namespace fmt::internal;
return fallback(gmtime_s(&tm_, &time_));
}
bool fallback(int res) { return res == 0; }
bool fallback(internal::Null<>) {
std::tm *tm = std::gmtime(&time_);
if (tm != FMT_NULL) tm_ = *tm;
return tm != FMT_NULL;
}
};
GMTime gt(time);
if (gt.run())
return gt.tm_;
// Too big time values may be unsupported.
FMT_THROW(fmt::FormatError("time_t value out of range"));
return std::tm();
}
} //namespace fmt
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment