Commit 0f76db88 authored by gabime's avatar gabime

astyle

parent 992a4e60
......@@ -249,7 +249,8 @@ inline void spdlog::details::async_log_helper::push_msg(details::async_log_helpe
{
now = details::os::now();
sleep_or_yield(now, last_op_time);
} while (!_q.enqueue(std::move(new_msg)));
}
while (!_q.enqueue(std::move(new_msg)));
}
}
......
......@@ -60,7 +60,8 @@ inline spdlog::async_logger::async_logger(const std::string& logger_name,
const async_overflow_policy overflow_policy,
const std::function<void()>& worker_warmup_cb,
const std::chrono::milliseconds& flush_interval_ms) :
async_logger(logger_name, {
async_logger(logger_name,
{
single_sink
}, queue_size, overflow_policy, worker_warmup_cb, flush_interval_ms) {}
......
......@@ -87,7 +87,8 @@ public:
}
void flush() {
void flush()
{
std::fflush(_fd);
}
......
......@@ -62,10 +62,13 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifdef _MSC_VER
# include <intrin.h> // _BitScanReverse, _BitScanReverse64
namespace fmt {
namespace internal {
namespace fmt
{
namespace internal
{
# pragma intrinsic(_BitScanReverse)
inline uint32_t clz(uint32_t x) {
inline uint32_t clz(uint32_t x)
{
unsigned long r = 0;
_BitScanReverse(&r, x);
return 31 - r;
......@@ -76,7 +79,8 @@ inline uint32_t clz(uint32_t x) {
# pragma intrinsic(_BitScanReverse64)
# endif
inline uint32_t clzll(uint64_t x) {
inline uint32_t clzll(uint64_t x)
{
unsigned long r = 0;
# ifdef _WIN64
_BitScanReverse64(&r, x);
......@@ -217,11 +221,15 @@ inline uint32_t clzll(uint64_t x) {
# define FMT_ASSERT(condition, message) assert((condition) && message)
#endif
namespace fmt {
namespace internal {
struct DummyInt {
namespace fmt
{
namespace internal
{
struct DummyInt
{
int data[2];
operator int() const {
operator int() const
{
return 0;
}
};
......@@ -229,51 +237,62 @@ typedef std::numeric_limits<fmt::internal::DummyInt> FPUtil;
// Dummy implementations of system functions such as signbit and ecvt called
// if the latter are not available.
inline DummyInt signbit(...) {
inline DummyInt signbit(...)
{
return DummyInt();
}
inline DummyInt _ecvt_s(...) {
inline DummyInt _ecvt_s(...)
{
return DummyInt();
}
inline DummyInt isinf(...) {
inline DummyInt isinf(...)
{
return DummyInt();
}
inline DummyInt _finite(...) {
inline DummyInt _finite(...)
{
return DummyInt();
}
inline DummyInt isnan(...) {
inline DummyInt isnan(...)
{
return DummyInt();
}
inline DummyInt _isnan(...) {
inline DummyInt _isnan(...)
{
return DummyInt();
}
// A helper function to suppress bogus "conditional expression is constant"
// warnings.
template <typename T>
inline T check(T value) {
inline T check(T value)
{
return value;
}
}
} // namespace fmt
namespace std {
namespace std
{
// Standard permits specialization of std::numeric_limits. This specialization
// is used to resolve ambiguity between isinf and std::isinf in glibc:
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=48891
// and the same for isnan and signbit.
template <>
class numeric_limits<fmt::internal::DummyInt> :
public std::numeric_limits<int> {
public std::numeric_limits<int>
{
public:
// Portable version of isinf.
template <typename T>
static bool isinfinity(T x) {
static bool isinfinity(T x)
{
using namespace fmt::internal;
// The resolution "priority" is:
// isinf macro > std::isinf > ::isinf > fmt::internal::isinf
if (check(sizeof(isinf(x)) == sizeof(bool) ||
sizeof(isinf(x)) == sizeof(int))) {
sizeof(isinf(x)) == sizeof(int)))
{
return isinf(x);
}
return !_finite(static_cast<double>(x));
......@@ -281,17 +300,20 @@ public:
// Portable version of isnan.
template <typename T>
static bool isnotanumber(T x) {
static bool isnotanumber(T x)
{
using namespace fmt::internal;
if (check(sizeof(isnan(x)) == sizeof(bool) ||
sizeof(isnan(x)) == sizeof(int))) {
sizeof(isnan(x)) == sizeof(int)))
{
return isnan(x);
}
return _isnan(static_cast<double>(x)) != 0;
}
// Portable version of signbit.
static bool isnegative(double x) {
static bool isnegative(double x)
{
using namespace fmt::internal;
if (check(sizeof(signbit(x)) == sizeof(int)))
return signbit(x);
......@@ -305,7 +327,8 @@ public:
};
} // namespace std
namespace fmt {
namespace fmt
{
// Fix the warning about long long on older versions of GCC
// that don't support the diagnostic pragma.
......@@ -353,7 +376,8 @@ format(std::string("{}"), 42);
\endrst
*/
template <typename Char>
class BasicStringRef {
class BasicStringRef
{
private:
const Char *data_;
std::size_t size_;
......@@ -384,22 +408,26 @@ public:
Converts a string reference to an ``std::string`` object.
\endrst
*/
std::basic_string<Char> to_string() const {
std::basic_string<Char> to_string() const
{
return std::basic_string<Char>(data_, size_);
}
/** Returns the pointer to a C string. */
const Char *data() const {
const Char *data() const
{
return data_;
}
/** Returns the string size. */
std::size_t size() const {
std::size_t size() const
{
return size_;
}
// Lexicographically compare this string reference to other.
int compare(BasicStringRef other) const {
int compare(BasicStringRef other) const
{
std::size_t size = std::min(size_, other.size_);
int result = std::char_traits<Char>::compare(data_, other.data_, size);
if (result == 0)
......@@ -407,22 +435,28 @@ public:
return result;
}
friend bool operator==(BasicStringRef lhs, BasicStringRef rhs) {
friend bool operator==(BasicStringRef lhs, BasicStringRef rhs)
{
return lhs.compare(rhs) == 0;
}
friend bool operator!=(BasicStringRef lhs, BasicStringRef rhs) {
friend bool operator!=(BasicStringRef lhs, BasicStringRef rhs)
{
return lhs.compare(rhs) != 0;
}
friend bool operator<(BasicStringRef lhs, BasicStringRef rhs) {
friend bool operator<(BasicStringRef lhs, BasicStringRef rhs)
{
return lhs.compare(rhs) < 0;
}
friend bool operator<=(BasicStringRef lhs, BasicStringRef rhs) {
friend bool operator<=(BasicStringRef lhs, BasicStringRef rhs)
{
return lhs.compare(rhs) <= 0;
}
friend bool operator>(BasicStringRef lhs, BasicStringRef rhs) {
friend bool operator>(BasicStringRef lhs, BasicStringRef rhs)
{
return lhs.compare(rhs) > 0;
}
friend bool operator>=(BasicStringRef lhs, BasicStringRef rhs) {
friend bool operator>=(BasicStringRef lhs, BasicStringRef rhs)
{
return lhs.compare(rhs) >= 0;
}
};
......@@ -456,7 +490,8 @@ format(std::string("{}"), 42);
\endrst
*/
template <typename Char>
class BasicCStringRef {
class BasicCStringRef
{
private:
const Char *data_;
......@@ -472,7 +507,8 @@ public:
BasicCStringRef(const std::basic_string<Char> &s) : data_(s.c_str()) {}
/** Returns the pointer to a C string. */
const Char *c_str() const {
const Char *c_str() const
{
return data_;
}
};
......@@ -483,13 +519,15 @@ typedef BasicCStringRef<wchar_t> WCStringRef;
/**
A formatting error such as invalid format string.
*/
class FormatError : public std::runtime_error {
class FormatError : public std::runtime_error
{
public:
explicit FormatError(CStringRef message)
: std::runtime_error(message.c_str()) {}
};
namespace internal {
namespace internal
{
// The number of characters to store in the MemoryBuffer object itself
// to avoid dynamic memory allocation.
enum { INLINE_BUFFER_SIZE = 500 };
......@@ -497,12 +535,14 @@ enum { INLINE_BUFFER_SIZE = 500 };
#if FMT_SECURE_SCL
// Use checked iterator to avoid warnings on MSVC.
template <typename T>
inline stdext::checked_array_iterator<T*> make_ptr(T *ptr, std::size_t size) {
inline stdext::checked_array_iterator<T*> make_ptr(T *ptr, std::size_t size)
{
return stdext::checked_array_iterator<T*>(ptr, size);
}
#else
template <typename T>
inline T *make_ptr(T *ptr, std::size_t) {
inline T *make_ptr(T *ptr, std::size_t)
{
return ptr;
}
#endif
......@@ -514,7 +554,8 @@ A buffer supporting a subset of ``std::vector``'s operations.
\endrst
*/
template <typename T>
class Buffer {
class Buffer
{
private:
FMT_DISALLOW_COPY_AND_ASSIGN(Buffer);
......@@ -538,19 +579,22 @@ public:
virtual ~Buffer() {}
/** Returns the size of this buffer. */
std::size_t size() const {
std::size_t size() const
{
return size_;
}
/** Returns the capacity of this buffer. */
std::size_t capacity() const {
std::size_t capacity() const
{
return capacity_;
}
/**
Resizes the buffer. If T is a POD type new elements may not be initialized.
*/
void resize(std::size_t new_size) {
void resize(std::size_t new_size)
{
if (new_size > capacity_)
grow(new_size);
size_ = new_size;
......@@ -561,14 +605,16 @@ public:
Reserves space to store at least *capacity* elements.
\endrst
*/
void reserve(std::size_t capacity) {
void reserve(std::size_t capacity)
{
if (capacity > capacity_)
grow(capacity);
}
void clear() FMT_NOEXCEPT{ size_ = 0; }
void clear() FMT_NOEXCEPT { size_ = 0; }
void push_back(const T &value) {
void push_back(const T &value)
{
if (size_ == capacity_)
grow(size_ + 1);
ptr_[size_++] = value;
......@@ -578,17 +624,20 @@ public:
template <typename U>
void append(const U *begin, const U *end);
T &operator[](std::size_t index) {
T &operator[](std::size_t index)
{
return ptr_[index];
}
const T &operator[](std::size_t index) const {
const T &operator[](std::size_t index) const
{
return ptr_[index];
}
};
template <typename T>
template <typename U>
void Buffer<T>::append(const U *begin, const U *end) {
void Buffer<T>::append(const U *begin, const U *end)
{
assert(begin <= end);
std::size_t new_size = size_ + (end - begin);
if (new_size > capacity_)
......@@ -597,17 +646,20 @@ void Buffer<T>::append(const U *begin, const U *end) {
size_ = new_size;
}
namespace internal {
namespace internal
{
// A memory buffer for POD types with the first SIZE elements stored in
// the object itself.
template <typename T, std::size_t SIZE, typename Allocator = std::allocator<T> >
class MemoryBuffer : private Allocator, public Buffer<T> {
class MemoryBuffer : private Allocator, public Buffer<T>
{
private:
T data_[SIZE];
// Deallocate memory allocated by the buffer.
void deallocate() {
void deallocate()
{
if (this->ptr_ != data_) Allocator::deallocate(this->ptr_, this->capacity_);
}
......@@ -617,24 +669,28 @@ protected:
public:
explicit MemoryBuffer(const Allocator &alloc = Allocator())
: Allocator(alloc), Buffer<T>(data_, SIZE) {}
~MemoryBuffer() {
~MemoryBuffer()
{
deallocate();
}
#if FMT_USE_RVALUE_REFERENCES
private:
// Move data from other to this buffer.
void move(MemoryBuffer &other) {
void move(MemoryBuffer &other)
{
Allocator &this_alloc = *this, &other_alloc = other;
this_alloc = std::move(other_alloc);
this->size_ = other.size_;
this->capacity_ = other.capacity_;
if (other.ptr_ == other.data_) {
if (other.ptr_ == other.data_)
{
this->ptr_ = data_;
std::copy(other.data_,
other.data_ + this->size_, make_ptr(data_, this->capacity_));
}
else {
else
{
this->ptr_ = other.ptr_;
// Set pointer to the inline array so that delete is not called
// when deallocating.
......@@ -643,11 +699,13 @@ private:
}
public:
MemoryBuffer(MemoryBuffer &&other) {
MemoryBuffer(MemoryBuffer &&other)
{
move(other);
}
MemoryBuffer &operator=(MemoryBuffer &&other) {
MemoryBuffer &operator=(MemoryBuffer &&other)
{
assert(this != &other);
deallocate();
move(other);
......@@ -656,13 +714,15 @@ public:
#endif
// Returns a copy of the allocator associated with this buffer.
Allocator get_allocator() const {
Allocator get_allocator() const
{
return *this;
}
};
template <typename T, std::size_t SIZE, typename Allocator>
void MemoryBuffer<T, SIZE, Allocator>::grow(std::size_t size) {
void MemoryBuffer<T, SIZE, Allocator>::grow(std::size_t size)
{
std::size_t new_capacity =
(std::max)(size, this->capacity_ + this->capacity_ / 2);
T *new_ptr = this->allocate(new_capacity);
......@@ -682,7 +742,8 @@ void MemoryBuffer<T, SIZE, Allocator>::grow(std::size_t size) {
// A fixed-size buffer.
template <typename Char>
class FixedBuffer : public fmt::Buffer<Char> {
class FixedBuffer : public fmt::Buffer<Char>
{
public:
FixedBuffer(Char *array, std::size_t size) : fmt::Buffer<Char>(array, size) {}
......@@ -691,14 +752,16 @@ protected:
};
template <typename Char>
class BasicCharTraits {
class BasicCharTraits
{
public:
#if FMT_SECURE_SCL
typedef stdext::checked_array_iterator<Char*> CharPtr;
#else
typedef Char *CharPtr;
#endif
static Char cast(wchar_t value) {
static Char cast(wchar_t value)
{
return static_cast<Char>(value);
}
};
......@@ -707,13 +770,15 @@ template <typename Char>
class CharTraits;
template <>
class CharTraits<char> : public BasicCharTraits<char> {
class CharTraits<char> : public BasicCharTraits<char>
{
private:
// Conversion from wchar_t to char is not allowed.
static char convert(wchar_t);
public:
static char convert(char value) {
static char convert(char value)
{
return value;
}
......@@ -724,12 +789,15 @@ public:
};
template <>
class CharTraits<wchar_t> : public BasicCharTraits<wchar_t> {
class CharTraits<wchar_t> : public BasicCharTraits<wchar_t>
{
public:
static wchar_t convert(char value) {
static wchar_t convert(char value)
{
return value;
}
static wchar_t convert(wchar_t value) {
static wchar_t convert(wchar_t value)
{
return value;
}
......@@ -740,17 +808,21 @@ public:
// Checks if a number is negative - used to avoid warnings.
template <bool IsSigned>
struct SignChecker {
struct SignChecker
{
template <typename T>
static bool is_negative(T value) {
static bool is_negative(T value)
{
return value < 0;
}
};
template <>
struct SignChecker<false> {
struct SignChecker<false>
{
template <typename T>
static bool is_negative(T) {
static bool is_negative(T)
{
return false;
}
};
......@@ -758,23 +830,27 @@ struct SignChecker<false> {
// Returns true if value is negative, false otherwise.
// Same as (value < 0) but doesn't produce warnings if T is an unsigned type.
template <typename T>
inline bool is_negative(T value) {
inline bool is_negative(T value)
{
return SignChecker<std::numeric_limits<T>::is_signed>::is_negative(value);
}
// Selects uint32_t if FitsIn32Bits is true, uint64_t otherwise.
template <bool FitsIn32Bits>
struct TypeSelector {
struct TypeSelector
{
typedef uint32_t Type;
};
template <>
struct TypeSelector<false> {
struct TypeSelector<false>
{
typedef uint64_t Type;
};
template <typename T>
struct IntTraits {
struct IntTraits
{
// Smallest of uint32_t and uint64_t that is large enough to represent
// all values of T.
typedef typename
......@@ -783,7 +859,8 @@ struct IntTraits {
// MakeUnsigned<T>::Type gives an unsigned type corresponding to integer type T.
template <typename T>
struct MakeUnsigned {
struct MakeUnsigned
{
typedef T Type;
};
......@@ -803,7 +880,8 @@ void report_unknown_type(char code, const char *type);
// Static data is placed in this class template to allow header-only
// configuration.
template <typename T = void>
struct BasicData {
struct BasicData
{
static const uint32_t POWERS_OF_10_32[];
static const uint64_t POWERS_OF_10_64[];
static const char DIGITS[];
......@@ -822,7 +900,8 @@ typedef BasicData<> Data;
#ifdef FMT_BUILTIN_CLZLL
// Returns the number of decimal digits in n. Leading zeros are not counted
// except for n == 0 in which case count_digits returns 1.
inline unsigned count_digits(uint64_t n) {
inline unsigned count_digits(uint64_t n)
{
// Based on http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
// and the benchmark https://github.com/localvoid/cxx-benchmark-count-digits.
unsigned t = (64 - FMT_BUILTIN_CLZLL(n | 1)) * 1233 >> 12;
......@@ -830,9 +909,11 @@ inline unsigned count_digits(uint64_t n) {
}
#else
// Fallback version of count_digits used when __builtin_clz is not available.
inline unsigned count_digits(uint64_t n) {
inline unsigned count_digits(uint64_t n)
{
unsigned count = 1;
for (;;) {
for (;;)
{
// Integer division is slow so do it for a group of four digits instead
// of for every digit. The idea comes from the talk by Alexandrescu
// "Three Optimization Tips for C++". See speed-test for a comparison.
......@@ -848,7 +929,8 @@ inline unsigned count_digits(uint64_t n) {
#ifdef FMT_BUILTIN_CLZ
// Optional version of count_digits for better performance on 32-bit platforms.
inline unsigned count_digits(uint32_t n) {
inline unsigned count_digits(uint32_t n)
{
uint32_t t = (32 - FMT_BUILTIN_CLZ(n | 1)) * 1233 >> 12;
return t - (n < Data::POWERS_OF_10_32[t]) + 1;
}
......@@ -856,9 +938,11 @@ inline unsigned count_digits(uint32_t n) {
// Formats a decimal unsigned integer value writing into buffer.
template <typename UInt, typename Char>
inline void format_decimal(Char *buffer, UInt value, unsigned num_digits) {
inline void format_decimal(Char *buffer, UInt value, unsigned num_digits)
{
buffer += num_digits;
while (value >= 100) {
while (value >= 100)
{
// Integer division is slow so do it for a group of two digits instead
// of for every digit. The idea comes from the talk by Alexandrescu
// "Three Optimization Tips for C++". See speed-test for a comparison.
......@@ -867,7 +951,8 @@ inline void format_decimal(Char *buffer, UInt value, unsigned num_digits) {
*--buffer = Data::DIGITS[index + 1];
*--buffer = Data::DIGITS[index];
}
if (value < 10) {
if (value < 10)
{
*--buffer = static_cast<char>('0' + value);
return;
}
......@@ -887,45 +972,55 @@ inline void format_decimal(Char *buffer, UInt value, unsigned num_digits) {
#if FMT_USE_WINDOWS_H
// A converter from UTF-8 to UTF-16.
// It is only provided for Windows since other systems support UTF-8 natively.
class UTF8ToUTF16 {
class UTF8ToUTF16
{
private:
MemoryBuffer<wchar_t, INLINE_BUFFER_SIZE> buffer_;
public:
explicit UTF8ToUTF16(StringRef s);
operator WStringRef() const {
operator WStringRef() const
{
return WStringRef(&buffer_[0], size());
}
size_t size() const {
size_t size() const
{
return buffer_.size() - 1;
}
const wchar_t *c_str() const {
const wchar_t *c_str() const
{
return &buffer_[0];
}
std::wstring str() const {
std::wstring str() const
{
return std::wstring(&buffer_[0], size());
}
};
// A converter from UTF-16 to UTF-8.
// It is only provided for Windows since other systems support UTF-8 natively.
class UTF16ToUTF8 {
class UTF16ToUTF8
{
private:
MemoryBuffer<char, INLINE_BUFFER_SIZE> buffer_;
public:
UTF16ToUTF8() {}
explicit UTF16ToUTF8(WStringRef s);
operator StringRef() const {
operator StringRef() const
{
return StringRef(&buffer_[0], size());
}
size_t size() const {
size_t size() const
{
return buffer_.size() - 1;
}
const char *c_str() const {
const char *c_str() const
{
return &buffer_[0];
}
std::string str() const {
std::string str() const
{
return std::string(&buffer_[0], size());
}
......@@ -943,9 +1038,11 @@ void format_system_error(fmt::Writer &out, int error_code,
fmt::StringRef message) FMT_NOEXCEPT;
// A formatting argument value.
struct Value {
struct Value
{
template <typename Char>
struct StringValue {
struct StringValue
{
const Char *value;
std::size_t size;
};
......@@ -953,12 +1050,14 @@ struct Value {
typedef void(*FormatFunc)(
void *formatter, const void *arg, void *format_str_ptr);
struct CustomValue {
struct CustomValue
{
const void *value;
FormatFunc format;
};
union {
union
{
int int_value;
unsigned uint_value;
LongLong long_long_value;
......@@ -973,7 +1072,8 @@ struct Value {
CustomValue custom;
};
enum Type {
enum Type
{
NONE, NAMED_ARG,
// Integer types should go first,
INT, UINT, LONG_LONG, ULONG_LONG, BOOL, CHAR, LAST_INTEGER_TYPE = CHAR,
......@@ -985,7 +1085,8 @@ struct Value {
// A formatting argument. It is a POD type to allow storage in
// internal::MemoryBuffer.
struct Arg : Value {
struct Arg : Value
{
Type type;
};
......@@ -998,13 +1099,15 @@ struct Null {};
// A helper class template to enable or disable overloads taking wide
// characters and strings in MakeValue.
template <typename T, typename Char>
struct WCharHelper {
struct WCharHelper
{
typedef Null<T> Supported;
typedef T Unsupported;
};
template <typename T>
struct WCharHelper<T, wchar_t> {
struct WCharHelper<T, wchar_t>
{
typedef T Supported;
typedef Null<T> Unsupported;
};
......@@ -1020,7 +1123,8 @@ No &convert(...);
template <typename T>
T &get();
struct DummyStream : std::ostream {
struct DummyStream : std::ostream
{
// Hide all operator<< overloads from std::ostream.
void operator<<(Null<>);
};
......@@ -1028,33 +1132,40 @@ struct DummyStream : std::ostream {
No &operator<<(std::ostream &, int);
template<typename T, bool ENABLE_CONVERSION>
struct ConvertToIntImpl {
struct ConvertToIntImpl
{
enum { value = false };
};
template<typename T>
struct ConvertToIntImpl<T, true> {
struct ConvertToIntImpl<T, true>
{
// Convert to int only if T doesn't have an overloaded operator<<.
enum {
enum
{
value = sizeof(convert(get<DummyStream>() << get<T>())) == sizeof(No)
};
};
template<typename T, bool ENABLE_CONVERSION>
struct ConvertToIntImpl2 {
struct ConvertToIntImpl2
{
enum { value = false };
};
template<typename T>
struct ConvertToIntImpl2<T, true> {
enum {
struct ConvertToIntImpl2<T, true>
{
enum
{
// Don't convert numeric types.
value = ConvertToIntImpl<T, !std::numeric_limits<T>::is_specialized>::value
};
};
template<typename T>
struct ConvertToInt {
struct ConvertToInt
{
enum { enable_conversion = sizeof(convert(get<T>())) == sizeof(Yes) };
enum { value = ConvertToIntImpl2<T, enable_conversion>::value };
};
......@@ -1072,34 +1183,40 @@ template<bool B, class T = void>
struct EnableIf {};
template<class T>
struct EnableIf<true, T> {
struct EnableIf<true, T>
{
typedef T type;
};
template<bool B, class T, class F>
struct Conditional {
struct Conditional
{
typedef T type;
};
template<class T, class F>
struct Conditional<false, T, F> {
struct Conditional<false, T, F>
{
typedef F type;
};
// For bcc32 which doesn't understand ! in template arguments.
template<bool>
struct Not {
struct Not
{
enum { value = 0 };
};
template<>
struct Not<false> {
struct Not<false>
{
enum { value = 1 };
};
// Makes an Arg object from any type.
template <typename Char>
class MakeValue : public Arg {
class MakeValue : public Arg
{
private:
// The following two methods are private to disallow formatting of
// arbitrary pointers. If you want to output a pointer cast it to
......@@ -1123,12 +1240,14 @@ private:
MakeValue(typename WCharHelper<const std::wstring &, Char>::Unsupported);
MakeValue(typename WCharHelper<WStringRef, Char>::Unsupported);
void set_string(StringRef str) {
void set_string(StringRef str)
{
string.value = str.data();
string.size = str.size();
}
void set_string(WStringRef str) {
void set_string(WStringRef str)
{
wstring.value = str.data();
wstring.size = str.size();
}
......@@ -1136,7 +1255,8 @@ private:
// Formats an argument of a custom type, such as a user-defined class.
template <typename T>
static void format_custom_arg(
void *formatter, const void *arg, void *format_str_ptr) {
void *formatter, const void *arg, void *format_str_ptr)
{
format(*static_cast<BasicFormatter<Char>*>(formatter),
*static_cast<const Char**>(format_str_ptr),
*static_cast<const T*>(arg));
......@@ -1158,7 +1278,8 @@ public:
FMT_MAKE_VALUE(int, int_value, INT)
FMT_MAKE_VALUE(unsigned, uint_value, UINT)
MakeValue(long value) {
MakeValue(long value)
{
// To minimize the number of types we need to deal with, long is
// translated either to int or to long long depending on its size.
if (check(sizeof(long) == sizeof(int)))
......@@ -1166,17 +1287,20 @@ public:
else
long_long_value = value;
}
static uint64_t type(long) {
static uint64_t type(long)
{
return sizeof(long) == sizeof(int) ? Arg::INT : Arg::LONG_LONG;
}
MakeValue(unsigned long value) {
MakeValue(unsigned long value)
{
if (check(sizeof(unsigned long) == sizeof(unsigned)))
uint_value = static_cast<unsigned>(value);
else
ulong_long_value = value;
}
static uint64_t type(unsigned long) {
static uint64_t type(unsigned long)
{
return sizeof(unsigned long) == sizeof(unsigned) ?
Arg::UINT : Arg::ULONG_LONG;
}
......@@ -1191,10 +1315,12 @@ public:
FMT_MAKE_VALUE(char, int_value, CHAR)
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
MakeValue(typename WCharHelper<wchar_t, Char>::Supported value) {
MakeValue(typename WCharHelper<wchar_t, Char>::Supported value)
{
int_value = value;
}
static uint64_t type(wchar_t) {
static uint64_t type(wchar_t)
{
return Arg::CHAR;
}
#endif
......@@ -1228,42 +1354,49 @@ public:
template <typename T>
MakeValue(const T &value,
typename EnableIf<Not<
ConvertToInt<T>::value>::value, int>::type = 0) {
ConvertToInt<T>::value>::value, int>::type = 0)
{
custom.value = &value;
custom.format = &format_custom_arg<T>;
}
template <typename T>
MakeValue(const T &value,
typename EnableIf<ConvertToInt<T>::value, int>::type = 0) {
typename EnableIf<ConvertToInt<T>::value, int>::type = 0)
{
int_value = value;
}
template <typename T>
static uint64_t type(const T &) {
static uint64_t type(const T &)
{
return ConvertToInt<T>::value ? Arg::INT : Arg::CUSTOM;
}
// Additional template param `Char_` is needed here because make_type always
// uses MakeValue<char>.
template <typename Char_>
MakeValue(const NamedArg<Char_> &value) {
MakeValue(const NamedArg<Char_> &value)
{
pointer = &value;
}
template <typename Char_>
static uint64_t type(const NamedArg<Char_> &) {
static uint64_t type(const NamedArg<Char_> &)
{
return Arg::NAMED_ARG;
}
};
template <typename Char>
struct NamedArg : Arg {
struct NamedArg : Arg
{
BasicStringRef<Char> name;
template <typename T>
NamedArg(BasicStringRef<Char> argname, const T &value)
: Arg(MakeValue<Char>(value)), name(argname) {
: Arg(MakeValue<Char>(value)), name(argname)
{
type = static_cast<internal::Arg::Type>(MakeValue<Char>::type(value));
}
};
......@@ -1291,67 +1424,86 @@ struct NamedArg : Arg {
// ArgVisitor uses the curiously recurring template pattern:
// http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern
template <typename Impl, typename Result>
class ArgVisitor {
class ArgVisitor
{
public:
void report_unhandled_arg() {}
Result visit_unhandled_arg() {
Result visit_unhandled_arg()
{
FMT_DISPATCH(report_unhandled_arg());
return Result();
}
Result visit_int(int value) {
Result visit_int(int value)
{
return FMT_DISPATCH(visit_any_int(value));
}
Result visit_long_long(LongLong value) {
Result visit_long_long(LongLong value)
{
return FMT_DISPATCH(visit_any_int(value));
}
Result visit_uint(unsigned value) {
Result visit_uint(unsigned value)
{
return FMT_DISPATCH(visit_any_int(value));
}
Result visit_ulong_long(ULongLong value) {
Result visit_ulong_long(ULongLong value)
{
return FMT_DISPATCH(visit_any_int(value));
}
Result visit_bool(bool value) {
Result visit_bool(bool value)
{
return FMT_DISPATCH(visit_any_int(value));
}
Result visit_char(int value) {
Result visit_char(int value)
{
return FMT_DISPATCH(visit_any_int(value));
}
template <typename T>
Result visit_any_int(T) {
Result visit_any_int(T)
{
return FMT_DISPATCH(visit_unhandled_arg());
}
Result visit_double(double value) {
Result visit_double(double value)
{
return FMT_DISPATCH(visit_any_double(value));
}
Result visit_long_double(long double value) {
Result visit_long_double(long double value)
{
return FMT_DISPATCH(visit_any_double(value));
}
template <typename T>
Result visit_any_double(T) {
Result visit_any_double(T)
{
return FMT_DISPATCH(visit_unhandled_arg());
}
Result visit_cstring(const char *) {
Result visit_cstring(const char *)
{
return FMT_DISPATCH(visit_unhandled_arg());
}
Result visit_string(Arg::StringValue<char>) {
Result visit_string(Arg::StringValue<char>)
{
return FMT_DISPATCH(visit_unhandled_arg());
}
Result visit_wstring(Arg::StringValue<wchar_t>) {
Result visit_wstring(Arg::StringValue<wchar_t>)
{
return FMT_DISPATCH(visit_unhandled_arg());
}
Result visit_pointer(const void *) {
Result visit_pointer(const void *)
{
return FMT_DISPATCH(visit_unhandled_arg());
}
Result visit_custom(Arg::CustomValue) {
Result visit_custom(Arg::CustomValue)
{
return FMT_DISPATCH(visit_unhandled_arg());
}
Result visit(const Arg &arg) {
switch (arg.type) {
Result visit(const Arg &arg)
{
switch (arg.type)
{
default:
FMT_ASSERT(false, "invalid argument type");
return Result();
......@@ -1385,7 +1537,8 @@ public:
}
};
class RuntimeError : public std::runtime_error {
class RuntimeError : public std::runtime_error
{
protected:
RuntimeError() : std::runtime_error("") {}
};
......@@ -1401,12 +1554,14 @@ class ArgMap;
} // namespace internal
/** An argument list. */
class ArgList {
class ArgList
{
private:
// To reduce compiled code size per formatting function call, types of first
// MAX_PACKED_ARGS arguments are passed in the types_ field.
uint64_t types_;
union {
union
{
// If the number of arguments is less than MAX_PACKED_ARGS, the argument
// values are stored in values_, otherwise they are stored in args_.
// This is done to reduce compiled code size as storing larger objects
......@@ -1416,7 +1571,8 @@ private:
const internal::Arg *args_;
};
internal::Arg::Type type(unsigned index) const {
internal::Arg::Type type(unsigned index) const
{
unsigned shift = index * 4;
uint64_t mask = 0xf;
return static_cast<internal::Arg::Type>(
......@@ -1438,11 +1594,13 @@ public:
: types_(types), args_(args) {}
/** Returns the argument at specified index. */
internal::Arg operator[](unsigned index) const {
internal::Arg operator[](unsigned index) const
{
using internal::Arg;
Arg arg;
bool use_values = type(MAX_PACKED_ARGS - 1) == Arg::NONE;
if (index < MAX_PACKED_ARGS) {
if (index < MAX_PACKED_ARGS)
{
Arg::Type arg_type = type(index);
internal::Value &val = arg;
if (arg_type != Arg::NONE)
......@@ -1450,13 +1608,15 @@ public:
arg.type = arg_type;
return arg;
}
if (use_values) {
if (use_values)
{
// The index is greater than the number of arguments that can be stored
// in values, so return a "none" argument.
arg.type = Arg::NONE;
return arg;
}
for (unsigned i = MAX_PACKED_ARGS; i <= index; ++i) {
for (unsigned i = MAX_PACKED_ARGS; i <= index; ++i)
{
if (args_[i].type == Arg::NONE)
return args_[i];
}
......@@ -1466,10 +1626,12 @@ public:
struct FormatSpec;
namespace internal {
namespace internal
{
template <typename Char>
class ArgMap {
class ArgMap
{
private:
typedef std::map<fmt::BasicStringRef<Char>, internal::Arg> MapType;
typedef typename MapType::value_type Pair;
......@@ -1479,13 +1641,15 @@ private:
public:
void init(const ArgList &args);
const internal::Arg* find(const fmt::BasicStringRef<Char> &name) const {
const internal::Arg* find(const fmt::BasicStringRef<Char> &name) const
{
typename MapType::const_iterator it = map_.find(name);
return it != map_.end() ? &it->second : 0;
}
};
class FormatterBase {
class FormatterBase
{
private:
ArgList args_;
int next_arg_index_;
......@@ -1494,11 +1658,13 @@ private:
Arg do_get_arg(unsigned arg_index, const char *&error);
protected:
const ArgList &args() const {
const ArgList &args() const
{
return args_;
}
explicit FormatterBase(const ArgList &args) {
explicit FormatterBase(const ArgList &args)
{
args_ = args;
next_arg_index_ = 0;
}
......@@ -1513,7 +1679,8 @@ protected:
bool check_no_auto_index(const char *&error);
template <typename Char>
void write(BasicWriter<Char> &w, const Char *start, const Char *end) {
void write(BasicWriter<Char> &w, const Char *start, const Char *end)
{
if (start != end)
w << BasicStringRef<Char>(start, end - start);
}
......@@ -1521,7 +1688,8 @@ protected:
// A printf formatter.
template <typename Char>
class PrintfFormatter : private FormatterBase {
class PrintfFormatter : private FormatterBase
{
private:
void parse_flags(FormatSpec &spec, const Char *&s);
......@@ -1541,7 +1709,8 @@ public:
// A formatter.
template <typename Char>
class BasicFormatter : private internal::FormatterBase {
class BasicFormatter : private internal::FormatterBase
{
private:
BasicWriter<Char> &writer_;
internal::ArgMap<Char> map_;
......@@ -1564,7 +1733,8 @@ public:
BasicFormatter(const ArgList &args, BasicWriter<Char> &w)
: internal::FormatterBase(args), writer_(w) {}
BasicWriter<Char> &writer() {
BasicWriter<Char> &writer()
{
return writer_;
}
......@@ -1573,12 +1743,14 @@ public:
const Char *format(const Char *&format_str, const internal::Arg &arg);
};
enum Alignment {
enum Alignment
{
ALIGN_DEFAULT, ALIGN_LEFT, ALIGN_RIGHT, ALIGN_CENTER, ALIGN_NUMERIC
};
// Flags.
enum {
enum
{
SIGN_FLAG = 1, PLUS_FLAG = 2, MINUS_FLAG = 4, HASH_FLAG = 8,
CHAR_FLAG = 0x10 // Argument has char type - used in error reporting.
};
......@@ -1588,29 +1760,37 @@ struct EmptySpec {};
// A type specifier.
template <char TYPE>
struct TypeSpec : EmptySpec {
Alignment align() const {
struct TypeSpec : EmptySpec
{
Alignment align() const
{
return ALIGN_DEFAULT;
}
unsigned width() const {
unsigned width() const
{
return 0;
}
int precision() const {
int precision() const
{
return -1;
}
bool flag(unsigned) const {
bool flag(unsigned) const
{
return false;
}
char type() const {
char type() const
{
return TYPE;
}
char fill() const {
char fill() const
{
return ' ';
}
};
// A width specifier.
struct WidthSpec {
struct WidthSpec
{
unsigned width_;
// Fill is always wchar_t and cast to char if necessary to avoid having
// two specialization of WidthSpec and its subclasses.
......@@ -1618,45 +1798,54 @@ struct WidthSpec {
WidthSpec(unsigned width, wchar_t fill) : width_(width), fill_(fill) {}
unsigned width() const {
unsigned width() const
{
return width_;
}
wchar_t fill() const {
wchar_t fill() const
{
return fill_;
}
};
// An alignment specifier.
struct AlignSpec : WidthSpec {
struct AlignSpec : WidthSpec
{
Alignment align_;
AlignSpec(unsigned width, wchar_t fill, Alignment align = ALIGN_DEFAULT)
: WidthSpec(width, fill), align_(align) {}
Alignment align() const {
Alignment align() const
{
return align_;
}
int precision() const {
int precision() const
{
return -1;
}
};
// An alignment and type specifier.
template <char TYPE>
struct AlignTypeSpec : AlignSpec {
struct AlignTypeSpec : AlignSpec
{
AlignTypeSpec(unsigned width, wchar_t fill) : AlignSpec(width, fill) {}
bool flag(unsigned) const {
bool flag(unsigned) const
{
return false;
}
char type() const {
char type() const
{
return TYPE;
}
};
// A full format specifier.
struct FormatSpec : AlignSpec {
struct FormatSpec : AlignSpec
{
unsigned flags_;
int precision_;
char type_;
......@@ -1665,20 +1854,24 @@ struct FormatSpec : AlignSpec {
unsigned width = 0, char type = 0, wchar_t fill = ' ')
: AlignSpec(width, fill), flags_(0), precision_(-1), type_(type) {}
bool flag(unsigned f) const {
bool flag(unsigned f) const
{
return (flags_ & f) != 0;
}
int precision() const {
int precision() const
{
return precision_;
}
char type() const {
char type() const
{
return type_;
}
};
// An integer format specifier.
template <typename T, typename SpecT = TypeSpec<0>, typename Char = char>
class IntFormatSpec : public SpecT {
class IntFormatSpec : public SpecT
{
private:
T value_;
......@@ -1686,25 +1879,29 @@ public:
IntFormatSpec(T val, const SpecT &spec = SpecT())
: SpecT(spec), value_(val) {}
T value() const {
T value() const
{
return value_;
}
};
// A string format specifier.
template <typename Char>
class StrFormatSpec : public AlignSpec {
class StrFormatSpec : public AlignSpec
{
private:
const Char *str_;
public:
template <typename FillChar>
StrFormatSpec(const Char *str, unsigned width, FillChar fill)
: AlignSpec(width, fill), str_(str) {
: AlignSpec(width, fill), str_(str)
{
internal::CharTraits<Char>::convert(FillChar());
}
const Char *str() const {
const Char *str() const
{
return str_;
}
};
......@@ -1819,12 +2016,14 @@ std::string s = str(MemoryWriter() << pad("abc", 8));
*/
template <typename Char>
inline StrFormatSpec<Char> pad(
const Char *str, unsigned width, Char fill = ' ') {
const Char *str, unsigned width, Char fill = ' ')
{
return StrFormatSpec<Char>(str, width, fill);
}
inline StrFormatSpec<wchar_t> pad(
const wchar_t *str, unsigned width, char fill = ' ') {
const wchar_t *str, unsigned width, char fill = ' ')
{
return StrFormatSpec<wchar_t>(str, width, fill);
}
......@@ -1847,18 +2046,22 @@ inline StrFormatSpec<wchar_t> pad(
# define FMT_GEN14(f) FMT_GEN13(f), f(13)
# define FMT_GEN15(f) FMT_GEN14(f), f(14)
namespace internal {
inline uint64_t make_type() {
namespace internal
{
inline uint64_t make_type()
{
return 0;
}
template <typename T>
inline uint64_t make_type(const T &arg) {
inline uint64_t make_type(const T &arg)
{
return MakeValue<char>::type(arg);
}
template <unsigned N>
struct ArgArray {
struct ArgArray
{
// Computes the argument array size by adding 1 to N, which is the number of
// arguments, if N is zero, because array of zero size is invalid, or if N
// is greater than ArgList::MAX_PACKED_ARGS to accommodate for an extra
......@@ -1871,27 +2074,31 @@ struct ArgArray {
#if FMT_USE_VARIADIC_TEMPLATES
template <typename Arg, typename... Args>
inline uint64_t make_type(const Arg &first, const Args & ... tail) {
inline uint64_t make_type(const Arg &first, const Args & ... tail)
{
return make_type(first) | (make_type(tail...) << 4);
}
inline void do_set_types(Arg *) {}
template <typename T, typename... Args>
inline void do_set_types(Arg *args, const T &arg, const Args & ... tail) {
inline void do_set_types(Arg *args, const T &arg, const Args & ... tail)
{
args->type = static_cast<Arg::Type>(MakeValue<T>::type(arg));
do_set_types(args + 1, tail...);
}
template <typename... Args>
inline void set_types(Arg *array, const Args & ... args) {
inline void set_types(Arg *array, const Args & ... args)
{
if (check(sizeof...(Args) > ArgList::MAX_PACKED_ARGS))
do_set_types(array, args...);
array[sizeof...(Args)].type = Arg::NONE;
}
template <typename... Args>
inline void set_types(Value *, const Args & ...) {
inline void set_types(Value *, const Args & ...)
{
// Do nothing as types are passed separately from values.
}
......@@ -1899,7 +2106,8 @@ template <typename Char, typename Value>
inline void store_args(Value *) {}
template <typename Char, typename Arg, typename T, typename... Args>
inline void store_args(Arg *args, const T &arg, const Args & ... tail) {
inline void store_args(Arg *args, const T &arg, const Args & ... tail)
{
// Assign only the Value subobject of Arg and don't overwrite type (if any)
// that is assigned by set_types.
Value &value = *args;
......@@ -1909,7 +2117,8 @@ inline void store_args(Arg *args, const T &arg, const Args & ... tail) {
template <typename Char, typename... Args>
ArgList make_arg_list(typename ArgArray<sizeof...(Args)>::Type array,
const Args & ... args) {
const Args & ... args)
{
if (check(sizeof...(Args) >= ArgList::MAX_PACKED_ARGS))
set_types(array, args...);
store_args<Char>(array, args...);
......@@ -1917,7 +2126,8 @@ ArgList make_arg_list(typename ArgArray<sizeof...(Args)>::Type array,
}
#else
struct ArgType {
struct ArgType
{
uint64_t type;
ArgType() : type(0) {}
......@@ -1928,7 +2138,8 @@ struct ArgType {
# define FMT_ARG_TYPE_DEFAULT(n) ArgType t##n = ArgType()
inline uint64_t make_type(FMT_GEN15(FMT_ARG_TYPE_DEFAULT)) {
inline uint64_t make_type(FMT_GEN15(FMT_ARG_TYPE_DEFAULT))
{
return t0.type | (t1.type << 4) | (t2.type << 8) | (t3.type << 12) |
(t4.type << 16) | (t5.type << 20) | (t6.type << 24) | (t7.type << 28) |
(t8.type << 32) | (t9.type << 36) | (t10.type << 40) | (t11.type << 44) |
......@@ -1937,7 +2148,8 @@ inline uint64_t make_type(FMT_GEN15(FMT_ARG_TYPE_DEFAULT)) {
#endif
template <class Char>
class FormatBuf : public std::basic_streambuf<Char> {
class FormatBuf : public std::basic_streambuf<Char>
{
private:
typedef typename std::basic_streambuf<Char>::int_type int_type;
typedef typename std::basic_streambuf<Char>::traits_type traits_type;
......@@ -1946,12 +2158,15 @@ private:
Char *start_;
public:
FormatBuf(Buffer<Char> &buffer) : buffer_(buffer), start_(&buffer[0]) {
FormatBuf(Buffer<Char> &buffer) : buffer_(buffer), start_(&buffer[0])
{
this->setp(start_, start_ + buffer_.capacity());
}
int_type overflow(int_type ch = traits_type::eof()) {
if (!traits_type::eq_int_type(ch, traits_type::eof())) {
int_type overflow(int_type ch = traits_type::eof())
{
if (!traits_type::eq_int_type(ch, traits_type::eof()))
{
size_t size = this->pptr() - start_;
buffer_.resize(size);
buffer_.reserve(size * 2);
......@@ -1963,7 +2178,8 @@ public:
return ch;
}
size_t size() const {
size_t size() const
{
return this->pptr() - start_;
}
};
......@@ -2064,7 +2280,8 @@ public:
An error returned by an operating system or a language runtime,
for example a file opening error.
*/
class SystemError : public internal::RuntimeError {
class SystemError : public internal::RuntimeError
{
private:
void init(int err_code, CStringRef format_str, ArgList args);
......@@ -2101,12 +2318,14 @@ public:
throw fmt::SystemError(errno, "cannot open file '{}'", filename);
\endrst
*/
SystemError(int error_code, CStringRef message) {
SystemError(int error_code, CStringRef message)
{
init(error_code, message, ArgList());
}
FMT_VARIADIC_CTOR(SystemError, init, int, CStringRef)
int error_code() const {
int error_code() const
{
return error_code_;
}
};
......@@ -2130,7 +2349,8 @@ You can use one of the following typedefs for common character types:
\endrst
*/
template <typename Char>
class BasicWriter {
class BasicWriter
{
private:
// Output buffer.
Buffer<Char> &buffer_;
......@@ -2141,11 +2361,13 @@ private:
#if FMT_SECURE_SCL
// Returns pointer value.
static Char *get(CharPtr p) {
static Char *get(CharPtr p)
{
return p.base();
}
#else
static Char *get(Char *p) {
static Char *get(Char *p)
{
return p;
}
#endif
......@@ -2157,7 +2379,8 @@ private:
// Grows the buffer by n characters and returns a pointer to the newly
// allocated area.
CharPtr grow_buffer(std::size_t n) {
CharPtr grow_buffer(std::size_t n)
{
std::size_t size = buffer_.size();
buffer_.resize(size + n);
return internal::make_ptr(&buffer_[size], n);
......@@ -2165,7 +2388,8 @@ private:
// Writes an unsigned decimal integer.
template <typename UInt>
Char *write_unsigned_decimal(UInt value, unsigned prefix_size = 0) {
Char *write_unsigned_decimal(UInt value, unsigned prefix_size = 0)
{
unsigned num_digits = internal::count_digits(value);
Char *ptr = get(grow_buffer(prefix_size + num_digits));
internal::format_decimal(ptr + prefix_size, value, num_digits);
......@@ -2174,20 +2398,24 @@ private:
// Writes a decimal integer.
template <typename Int>
void write_decimal(Int value) {
void write_decimal(Int value)
{
typename internal::IntTraits<Int>::MainType abs_value = value;
if (internal::is_negative(value)) {
if (internal::is_negative(value))
{
abs_value = 0 - abs_value;
*write_unsigned_decimal(abs_value, 1) = '-';
}
else {
else
{
write_unsigned_decimal(abs_value, 0);
}
}
// Prepare a buffer for integer formatting.
CharPtr prepare_int_buffer(unsigned num_digits,
const EmptySpec &, const char *prefix, unsigned prefix_size) {
const EmptySpec &, const char *prefix, unsigned prefix_size)
{
unsigned size = prefix_size + num_digits;
CharPtr p = grow_buffer(size);
std::copy(prefix, prefix + prefix_size, p);
......@@ -2225,7 +2453,8 @@ private:
// Appends floating-point length specifier to the format string.
// The second argument is only used for overload resolution.
void append_float_length(Char *&format_ptr, long double) {
void append_float_length(Char *&format_ptr, long double)
{
*format_ptr++ = 'L';
}
......@@ -2254,7 +2483,8 @@ public:
/**
Returns the total number of characters written.
*/
std::size_t size() const {
std::size_t size() const
{
return buffer_.size();
}
......@@ -2262,7 +2492,8 @@ public:
Returns a pointer to the output buffer content. No terminating null
character is appended.
*/
const Char *data() const FMT_NOEXCEPT {
const Char *data() const FMT_NOEXCEPT
{
return &buffer_[0];
}
......@@ -2270,7 +2501,8 @@ public:
Returns a pointer to the output buffer content with terminating null
character appended.
*/
const Char *c_str() const {
const Char *c_str() const
{
std::size_t size = buffer_.size();
buffer_.reserve(size + 1);
buffer_[size] = '\0';
......@@ -2282,7 +2514,8 @@ public:
Returns the content of the output buffer as an `std::string`.
\endrst
*/
std::basic_string<Char> str() const {
std::basic_string<Char> str() const
{
return std::basic_string<Char>(&buffer_[0], buffer_.size());
}
......@@ -2311,26 +2544,32 @@ public:
See also :ref:`syntax`.
\endrst
*/
void write(BasicCStringRef<Char> format, ArgList args) {
void write(BasicCStringRef<Char> format, ArgList args)
{
BasicFormatter<Char>(args, *this).format(format);
}
FMT_VARIADIC_VOID(write, BasicCStringRef<Char>)
BasicWriter &operator<<(int value) {
BasicWriter &operator<<(int value)
{
write_decimal(value);
return *this;
}
BasicWriter &operator<<(unsigned value) {
BasicWriter &operator<<(unsigned value)
{
return *this << IntFormatSpec<unsigned>(value);
}
BasicWriter &operator<<(long value) {
BasicWriter &operator<<(long value)
{
write_decimal(value);
return *this;
}
BasicWriter &operator<<(unsigned long value) {
BasicWriter &operator<<(unsigned long value)
{
return *this << IntFormatSpec<unsigned long>(value);
}
BasicWriter &operator<<(LongLong value) {
BasicWriter &operator<<(LongLong value)
{
write_decimal(value);
return *this;
}
......@@ -2340,11 +2579,13 @@ public:
Formats *value* and writes it to the stream.
\endrst
*/
BasicWriter &operator<<(ULongLong value) {
BasicWriter &operator<<(ULongLong value)
{
return *this << IntFormatSpec<ULongLong>(value);
}
BasicWriter &operator<<(double value) {
BasicWriter &operator<<(double value)
{
write_double(value, FormatSpec());
return *this;
}
......@@ -2355,7 +2596,8 @@ public:
(``'g'``) and writes it to the stream.
\endrst
*/
BasicWriter &operator<<(long double value) {
BasicWriter &operator<<(long double value)
{
write_double(value, FormatSpec());
return *this;
}
......@@ -2363,13 +2605,15 @@ public:
/**
Writes a character to the stream.
*/
BasicWriter &operator<<(char value) {
BasicWriter &operator<<(char value)
{
buffer_.push_back(value);
return *this;
}
BasicWriter &operator<<(
typename internal::WCharHelper<wchar_t, Char>::Supported value) {
typename internal::WCharHelper<wchar_t, Char>::Supported value)
{
buffer_.push_back(value);
return *this;
}
......@@ -2379,56 +2623,66 @@ public:
Writes *value* to the stream.
\endrst
*/
BasicWriter &operator<<(fmt::BasicStringRef<Char> value) {
BasicWriter &operator<<(fmt::BasicStringRef<Char> value)
{
const Char *str = value.data();
buffer_.append(str, str + value.size());
return *this;
}
BasicWriter &operator<<(
typename internal::WCharHelper<StringRef, Char>::Supported value) {
typename internal::WCharHelper<StringRef, Char>::Supported value)
{
const char *str = value.data();
buffer_.append(str, str + value.size());
return *this;
}
template <typename T, typename Spec, typename FillChar>
BasicWriter &operator<<(IntFormatSpec<T, Spec, FillChar> spec) {
BasicWriter &operator<<(IntFormatSpec<T, Spec, FillChar> spec)
{
internal::CharTraits<Char>::convert(FillChar());
write_int(spec.value(), spec);
return *this;
}
template <typename StrChar>
BasicWriter &operator<<(const StrFormatSpec<StrChar> &spec) {
BasicWriter &operator<<(const StrFormatSpec<StrChar> &spec)
{
const StrChar *s = spec.str();
write_str(s, std::char_traits<Char>::length(s), spec);
return *this;
}
void clear() FMT_NOEXCEPT{ buffer_.clear(); }
void clear() FMT_NOEXCEPT { buffer_.clear(); }
};
template <typename Char>
template <typename StrChar>
typename BasicWriter<Char>::CharPtr BasicWriter<Char>::write_str(
const StrChar *s, std::size_t size, const AlignSpec &spec) {
const StrChar *s, std::size_t size, const AlignSpec &spec)
{
CharPtr out = CharPtr();
if (spec.width() > size) {
if (spec.width() > size)
{
out = grow_buffer(spec.width());
Char fill = internal::CharTraits<Char>::cast(spec.fill());
if (spec.align() == ALIGN_RIGHT) {
if (spec.align() == ALIGN_RIGHT)
{
std::fill_n(out, spec.width() - size, fill);
out += spec.width() - size;
}
else if (spec.align() == ALIGN_CENTER) {
else if (spec.align() == ALIGN_CENTER)
{
out = fill_padding(out, spec.width(), size, fill);
}
else {
else
{
std::fill_n(out + size, spec.width() - size, fill);
}
}
else {
else
{
out = grow_buffer(size);
}
std::copy(s, s + size, out);
......@@ -2439,7 +2693,8 @@ template <typename Char>
typename BasicWriter<Char>::CharPtr
BasicWriter<Char>::fill_padding(
CharPtr buffer, unsigned total_size,
std::size_t content_size, wchar_t fill) {
std::size_t content_size, wchar_t fill)
{
std::size_t padding = total_size - content_size;
std::size_t left_padding = padding / 2;
Char fill_char = internal::CharTraits<Char>::cast(fill);
......@@ -2455,11 +2710,13 @@ template <typename Spec>
typename BasicWriter<Char>::CharPtr
BasicWriter<Char>::prepare_int_buffer(
unsigned num_digits, const Spec &spec,
const char *prefix, unsigned prefix_size) {
const char *prefix, unsigned prefix_size)
{
unsigned width = spec.width();
Alignment align = spec.align();
Char fill = internal::CharTraits<Char>::cast(spec.fill());
if (spec.precision() > static_cast<int>(num_digits)) {
if (spec.precision() > static_cast<int>(num_digits))
{
// Octal prefix '0' is counted as a digit, so ignore it if precision
// is specified.
if (prefix_size > 0 && prefix[prefix_size - 1] == '0')
......@@ -2470,44 +2727,53 @@ BasicWriter<Char>::prepare_int_buffer(
return prepare_int_buffer(num_digits, subspec, prefix, prefix_size);
buffer_.reserve(width);
unsigned fill_size = width - number_size;
if (align != ALIGN_LEFT) {
if (align != ALIGN_LEFT)
{
CharPtr p = grow_buffer(fill_size);
std::fill(p, p + fill_size, fill);
}
CharPtr result = prepare_int_buffer(
num_digits, subspec, prefix, prefix_size);
if (align == ALIGN_LEFT) {
if (align == ALIGN_LEFT)
{
CharPtr p = grow_buffer(fill_size);
std::fill(p, p + fill_size, fill);
}
return result;
}
unsigned size = prefix_size + num_digits;
if (width <= size) {
if (width <= size)
{
CharPtr p = grow_buffer(size);
std::copy(prefix, prefix + prefix_size, p);
return p + size - 1;
}
CharPtr p = grow_buffer(width);
CharPtr end = p + width;
if (align == ALIGN_LEFT) {
if (align == ALIGN_LEFT)
{
std::copy(prefix, prefix + prefix_size, p);
p += size;
std::fill(p, end, fill);
}
else if (align == ALIGN_CENTER) {
else if (align == ALIGN_CENTER)
{
p = fill_padding(p, width, size, fill);
std::copy(prefix, prefix + prefix_size, p);
p += size;
}
else {
if (align == ALIGN_NUMERIC) {
if (prefix_size != 0) {
else
{
if (align == ALIGN_NUMERIC)
{
if (prefix_size != 0)
{
p = std::copy(prefix, prefix + prefix_size, p);
size -= prefix_size;
}
}
else {
else
{
std::copy(prefix, prefix + prefix_size, end - size);
}
std::fill(p, end - size, fill);
......@@ -2518,23 +2784,28 @@ BasicWriter<Char>::prepare_int_buffer(
template <typename Char>
template <typename T, typename Spec>
void BasicWriter<Char>::write_int(T value, Spec spec) {
void BasicWriter<Char>::write_int(T value, Spec spec)
{
unsigned prefix_size = 0;
typedef typename internal::IntTraits<T>::MainType UnsignedType;
UnsignedType abs_value = value;
char prefix[4] = "";
if (internal::is_negative(value)) {
if (internal::is_negative(value))
{
prefix[0] = '-';
++prefix_size;
abs_value = 0 - abs_value;
}
else if (spec.flag(SIGN_FLAG)) {
else if (spec.flag(SIGN_FLAG))
{
prefix[0] = spec.flag(PLUS_FLAG) ? '+' : ' ';
++prefix_size;
}
switch (spec.type()) {
switch (spec.type())
{
case 0:
case 'd': {
case 'd':
{
unsigned num_digits = internal::count_digits(abs_value);
CharPtr p = prepare_int_buffer(
num_digits, spec, prefix, prefix_size) + 1 - num_digits;
......@@ -2542,57 +2813,74 @@ void BasicWriter<Char>::write_int(T value, Spec spec) {
break;
}
case 'x':
case 'X': {
case 'X':
{
UnsignedType n = abs_value;
if (spec.flag(HASH_FLAG)) {
if (spec.flag(HASH_FLAG))
{
prefix[prefix_size++] = '0';
prefix[prefix_size++] = spec.type();
}
unsigned num_digits = 0;
do {
do
{
++num_digits;
} while ((n >>= 4) != 0);
}
while ((n >>= 4) != 0);
Char *p = get(prepare_int_buffer(
num_digits, spec, prefix, prefix_size));
n = abs_value;
const char *digits = spec.type() == 'x' ?
"0123456789abcdef" : "0123456789ABCDEF";
do {
do
{
*p-- = digits[n & 0xf];
} while ((n >>= 4) != 0);
}
while ((n >>= 4) != 0);
break;
}
case 'b':
case 'B': {
case 'B':
{
UnsignedType n = abs_value;
if (spec.flag(HASH_FLAG)) {
if (spec.flag(HASH_FLAG))
{
prefix[prefix_size++] = '0';
prefix[prefix_size++] = spec.type();
}
unsigned num_digits = 0;
do {
do
{
++num_digits;
} while ((n >>= 1) != 0);
}
while ((n >>= 1) != 0);
Char *p = get(prepare_int_buffer(num_digits, spec, prefix, prefix_size));
n = abs_value;
do {
do
{
*p-- = static_cast<Char>('0' + (n & 1));
} while ((n >>= 1) != 0);
}
while ((n >>= 1) != 0);
break;
}
case 'o': {
case 'o':
{
UnsignedType n = abs_value;
if (spec.flag(HASH_FLAG))
prefix[prefix_size++] = '0';
unsigned num_digits = 0;
do {
do
{
++num_digits;
} while ((n >>= 3) != 0);
}
while ((n >>= 3) != 0);
Char *p = get(prepare_int_buffer(num_digits, spec, prefix, prefix_size));
n = abs_value;
do {
do
{
*p-- = static_cast<Char>('0' + (n & 7));
} while ((n >>= 3) != 0);
}
while ((n >>= 3) != 0);
break;
}
default:
......@@ -2605,11 +2893,13 @@ void BasicWriter<Char>::write_int(T value, Spec spec) {
template <typename Char>
template <typename T>
void BasicWriter<Char>::write_double(
T value, const FormatSpec &spec) {
T value, const FormatSpec &spec)
{
// Check type.
char type = spec.type();
bool upper = false;
switch (type) {
switch (type)
{
case 0:
type = 'g';
break;
......@@ -2637,20 +2927,24 @@ void BasicWriter<Char>::write_double(
char sign = 0;
// Use isnegative instead of value < 0 because the latter is always
// false for NaN.
if (internal::FPUtil::isnegative(static_cast<double>(value))) {
if (internal::FPUtil::isnegative(static_cast<double>(value)))
{
sign = '-';
value = -value;
}
else if (spec.flag(SIGN_FLAG)) {
else if (spec.flag(SIGN_FLAG))
{
sign = spec.flag(PLUS_FLAG) ? '+' : ' ';
}
if (internal::FPUtil::isnotanumber(value)) {
if (internal::FPUtil::isnotanumber(value))
{
// Format NaN ourselves because sprintf's output is not consistent
// across platforms.
std::size_t nan_size = 4;
const char *nan = upper ? " NAN" : " nan";
if (!sign) {
if (!sign)
{
--nan_size;
++nan;
}
......@@ -2660,12 +2954,14 @@ void BasicWriter<Char>::write_double(
return;
}
if (internal::FPUtil::isinfinity(value)) {
if (internal::FPUtil::isinfinity(value))
{
// Format infinity ourselves because sprintf's output is not consistent
// across platforms.
std::size_t inf_size = 4;
const char *inf = upper ? " INF" : " inf";
if (!sign) {
if (!sign)
{
--inf_size;
++inf;
}
......@@ -2677,7 +2973,8 @@ void BasicWriter<Char>::write_double(
std::size_t offset = buffer_.size();
unsigned width = spec.width();
if (sign) {
if (sign)
{
buffer_.reserve(buffer_.size() + (std::max)(width, 1u));
if (width > 0)
--width;
......@@ -2692,16 +2989,19 @@ void BasicWriter<Char>::write_double(
unsigned width_for_sprintf = width;
if (spec.flag(HASH_FLAG))
*format_ptr++ = '#';
if (spec.align() == ALIGN_CENTER) {
if (spec.align() == ALIGN_CENTER)
{
width_for_sprintf = 0;
}
else {
else
{
if (spec.align() == ALIGN_LEFT)
*format_ptr++ = '-';
if (width != 0)
*format_ptr++ = '*';
}
if (spec.precision() >= 0) {
if (spec.precision() >= 0)
{
*format_ptr++ = '.';
*format_ptr++ = '*';
}
......@@ -2712,13 +3012,15 @@ void BasicWriter<Char>::write_double(
// Format using snprintf.
Char fill = internal::CharTraits<Char>::cast(spec.fill());
for (;;) {
for (;;)
{
std::size_t buffer_size = buffer_.capacity() - offset;
#ifdef _MSC_VER
// MSVC's vsnprintf_s doesn't work with zero size, so reserve
// space for at least one extra character to make the size non-zero.
// Note that the buffer's capacity will increase by more than 1.
if (buffer_size == 0) {
if (buffer_size == 0)
{
buffer_.reserve(offset + 1);
buffer_size = buffer_.capacity() - offset;
}
......@@ -2726,27 +3028,33 @@ void BasicWriter<Char>::write_double(
Char *start = &buffer_[offset];
int n = internal::CharTraits<Char>::format_float(
start, buffer_size, format, width_for_sprintf, spec.precision(), value);
if (n >= 0 && offset + n < buffer_.capacity()) {
if (sign) {
if (n >= 0 && offset + n < buffer_.capacity())
{
if (sign)
{
if ((spec.align() != ALIGN_RIGHT && spec.align() != ALIGN_DEFAULT) ||
*start != ' ') {
*start != ' ')
{
*(start - 1) = sign;
sign = 0;
}
else {
else
{
*(start - 1) = fill;
}
++n;
}
if (spec.align() == ALIGN_CENTER &&
spec.width() > static_cast<unsigned>(n)) {
spec.width() > static_cast<unsigned>(n))
{
width = spec.width();
CharPtr p = grow_buffer(width);
std::copy(p, p + n, p + (width - n) / 2);
fill_padding(p, spec.width(), n, fill);
return;
}
if (spec.fill() != ' ' || sign) {
if (spec.fill() != ' ' || sign)
{
while (*start == ' ')
*start++ = fill;
if (sign)
......@@ -2796,7 +3104,8 @@ accessed as a C string with ``out.c_str()``.
\endrst
*/
template <typename Char, typename Allocator = std::allocator<Char> >
class BasicMemoryWriter : public BasicWriter<Char> {
class BasicMemoryWriter : public BasicWriter<Char>
{
private:
internal::MemoryBuffer<Char, internal::INLINE_BUFFER_SIZE, Allocator> buffer_;
......@@ -2812,7 +3121,8 @@ public:
\endrst
*/
BasicMemoryWriter(BasicMemoryWriter &&other)
: BasicWriter<Char>(buffer_), buffer_(std::move(other.buffer_)) {
: BasicWriter<Char>(buffer_), buffer_(std::move(other.buffer_))
{
}
/**
......@@ -2820,7 +3130,8 @@ public:
Moves the content of the other ``BasicMemoryWriter`` object to this one.
\endrst
*/
BasicMemoryWriter &operator=(BasicMemoryWriter &&other) {
BasicMemoryWriter &operator=(BasicMemoryWriter &&other)
{
buffer_ = std::move(other.buffer_);
return *this;
}
......@@ -2851,7 +3162,8 @@ You can use one of the following typedefs for common character types:
\endrst
*/
template <typename Char>
class BasicArrayWriter : public BasicWriter<Char> {
class BasicArrayWriter : public BasicWriter<Char>
{
private:
internal::FixedBuffer<Char> buffer_;
......@@ -2881,7 +3193,8 @@ typedef BasicArrayWriter<wchar_t> WArrayWriter;
// Formats a value.
template <typename Char, typename T>
void format(BasicFormatter<Char> &f, const Char *&format_str, const T &value) {
void format(BasicFormatter<Char> &f, const Char *&format_str, const T &value)
{
internal::MemoryBuffer<Char, internal::INLINE_BUFFER_SIZE> buffer;
internal::FormatBuf<Char> format_buf(buffer);
......@@ -2902,7 +3215,8 @@ void report_system_error(int error_code, StringRef message) FMT_NOEXCEPT;
#if FMT_USE_WINDOWS_H
/** A Windows error. */
class WindowsError : public SystemError {
class WindowsError : public SystemError
{
private:
void init(int error_code, CStringRef format_str, ArgList args);
......@@ -2935,7 +3249,8 @@ public:
}
\endrst
*/
WindowsError(int error_code, CStringRef message) {
WindowsError(int error_code, CStringRef message)
{
init(error_code, message, ArgList());
}
FMT_VARIADIC_CTOR(WindowsError, init, int, CStringRef)
......@@ -2966,13 +3281,15 @@ Formats arguments and returns the result as a string.
std::string message = format("The answer is {}", 42);
\endrst
*/
inline std::string format(CStringRef format_str, ArgList args) {
inline std::string format(CStringRef format_str, ArgList args)
{
MemoryWriter w;
w.write(format_str, args);
return w.str();
}
inline std::wstring format(WCStringRef format_str, ArgList args) {
inline std::wstring format(WCStringRef format_str, ArgList args)
{
WMemoryWriter w;
w.write(format_str, args);
return w.str();
......@@ -3001,7 +3318,8 @@ print("Elapsed time: {0:.2f} seconds", 1.23);
void print(CStringRef format_str, ArgList args);
template <typename Char>
void printf(BasicWriter<Char> &w, BasicCStringRef<Char> format, ArgList args) {
void printf(BasicWriter<Char> &w, BasicCStringRef<Char> format, ArgList args)
{
internal::PrintfFormatter<Char>(args).format(w, format);
}
......@@ -3014,13 +3332,15 @@ Formats arguments and returns the result as a string.
std::string message = fmt::sprintf("The answer is %d", 42);
\endrst
*/
inline std::string sprintf(CStringRef format, ArgList args) {
inline std::string sprintf(CStringRef format, ArgList args)
{
MemoryWriter w;
printf(w, format, args);
return w.str();
}
inline std::wstring sprintf(WCStringRef format, ArgList args) {
inline std::wstring sprintf(WCStringRef format, ArgList args)
{
WMemoryWriter w;
printf(w, format, args);
return w.str();
......@@ -3046,14 +3366,16 @@ Prints formatted data to ``stdout``.
fmt::printf("Elapsed time: %.2f seconds", 1.23);
\endrst
*/
inline int printf(CStringRef format, ArgList args) {
inline int printf(CStringRef format, ArgList args)
{
return fprintf(stdout, format, args);
}
/**
Fast integer formatter.
*/
class FormatInt {
class FormatInt
{
private:
// Buffer should be large enough to hold all digits (digits10 + 1),
// a sign and a null character.
......@@ -3062,9 +3384,11 @@ private:
char *str_;
// Formats value in reverse and returns the number of digits.
char *format_decimal(ULongLong value) {
char *format_decimal(ULongLong value)
{
char *buffer_end = buffer_ + BUFFER_SIZE - 1;
while (value >= 100) {
while (value >= 100)
{
// Integer division is slow so do it for a group of two digits instead
// of for every digit. The idea comes from the talk by Alexandrescu
// "Three Optimization Tips for C++". See speed-test for a comparison.
......@@ -3073,7 +3397,8 @@ private:
*--buffer_end = internal::Data::DIGITS[index + 1];
*--buffer_end = internal::Data::DIGITS[index];
}
if (value < 10) {
if (value < 10)
{
*--buffer_end = static_cast<char>('0' + value);
return buffer_end;
}
......@@ -3083,7 +3408,8 @@ private:
return buffer_end;
}
void FormatSigned(LongLong value) {
void FormatSigned(LongLong value)
{
ULongLong abs_value = static_cast<ULongLong>(value);
bool negative = value < 0;
if (negative)
......@@ -3094,13 +3420,16 @@ private:
}
public:
explicit FormatInt(int value) {
explicit FormatInt(int value)
{
FormatSigned(value);
}
explicit FormatInt(long value) {
explicit FormatInt(long value)
{
FormatSigned(value);
}
explicit FormatInt(LongLong value) {
explicit FormatInt(LongLong value)
{
FormatSigned(value);
}
explicit FormatInt(unsigned value) : str_(format_decimal(value)) {}
......@@ -3110,7 +3439,8 @@ public:
/**
Returns the number of characters written to the output buffer.
*/
std::size_t size() const {
std::size_t size() const
{
return buffer_ - str_ + BUFFER_SIZE - 1;
}
......@@ -3118,7 +3448,8 @@ public:
Returns a pointer to the output buffer content. No terminating null
character is appended.
*/
const char *data() const {
const char *data() const
{
return str_;
}
......@@ -3126,7 +3457,8 @@ public:
Returns a pointer to the output buffer content with terminating null
character appended.
*/
const char *c_str() const {
const char *c_str() const
{
buffer_[BUFFER_SIZE - 1] = '\0';
return str_;
}
......@@ -3136,7 +3468,8 @@ public:
Returns the content of the output buffer as an ``std::string``.
\endrst
*/
std::string str() const {
std::string str() const
{
return std::string(str_, size());
}
};
......@@ -3145,14 +3478,18 @@ public:
// a pointer to the end of the formatted string. This function doesn't
// write a terminating null character.
template <typename T>
inline void format_decimal(char *&buffer, T value) {
inline void format_decimal(char *&buffer, T value)
{
typename internal::IntTraits<T>::MainType abs_value = value;
if (internal::is_negative(value)) {
if (internal::is_negative(value))
{
*buffer++ = '-';
abs_value = 0 - abs_value;
}
if (abs_value < 100) {
if (abs_value < 10) {
if (abs_value < 100)
{
if (abs_value < 10)
{
*buffer++ = static_cast<char>('0' + abs_value);
return;
}
......@@ -3177,12 +3514,14 @@ print("Elapsed time: {s:.2f} seconds", arg("s", 1.23));
\endrst
*/
template <typename T>
inline internal::NamedArg<char> arg(StringRef name, const T &arg) {
inline internal::NamedArg<char> arg(StringRef name, const T &arg)
{
return internal::NamedArg<char>(name, arg);
}
template <typename T>
inline internal::NamedArg<wchar_t> arg(WStringRef name, const T &arg) {
inline internal::NamedArg<wchar_t> arg(WStringRef name, const T &arg)
{
return internal::NamedArg<wchar_t>(name, arg);
}
......@@ -3319,7 +3658,8 @@ print("point: ({x}, {y})", FMT_CAPTURE(x, y));
#define FMT_CAPTURE_W(...) FMT_FOR_EACH(FMT_CAPTURE_ARG_W_, __VA_ARGS__)
namespace fmt {
namespace fmt
{
FMT_VARIADIC(std::string, format, CStringRef)
FMT_VARIADIC_W(std::wstring, format, WCStringRef)
FMT_VARIADIC(void, print, CStringRef)
......@@ -3347,33 +3687,40 @@ FMT_VARIADIC(void, print, std::ostream &, CStringRef)
} // namespace fmt
#if FMT_USE_USER_DEFINED_LITERALS
namespace fmt {
namespace internal {
namespace fmt
{
namespace internal
{
template <typename Char>
struct UdlFormat {
struct UdlFormat
{
const Char *str;
template <typename... Args>
auto operator()(Args && ... args) const
-> decltype(format(str, std::forward<Args>(args)...)) {
-> decltype(format(str, std::forward<Args>(args)...))
{
return format(str, std::forward<Args>(args)...);
}
};
template <typename Char>
struct UdlArg {
struct UdlArg
{
const Char *str;
template <typename T>
NamedArg<Char> operator=(T &&value) const {
return{ str, std::forward<T>(value) };
NamedArg<Char> operator=(T &&value) const
{
return { str, std::forward<T>(value) };
}
};
} // namespace internal
inline namespace literals {
inline namespace literals
{
/**
\rst
......@@ -3386,12 +3733,14 @@ std::string message = "The answer is {}"_format(42);
\endrst
*/
inline internal::UdlFormat<char>
operator"" _format(const char *s, std::size_t) {
return{ s };
operator"" _format(const char *s, std::size_t)
{
return { s };
}
inline internal::UdlFormat<wchar_t>
operator"" _format(const wchar_t *s, std::size_t) {
return{ s };
operator"" _format(const wchar_t *s, std::size_t)
{
return { s };
}
/**
......@@ -3405,12 +3754,14 @@ print("Elapsed time: {s:.2f} seconds", "s"_a=1.23);
\endrst
*/
inline internal::UdlArg<char>
operator"" _a(const char *s, std::size_t) {
return{ s };
operator"" _a(const char *s, std::size_t)
{
return { s };
}
inline internal::UdlArg<wchar_t>
operator"" _a(const wchar_t *s, std::size_t) {
return{ s };
operator"" _a(const wchar_t *s, std::size_t)
{
return { s };
}
} // inline namespace literals
......
......@@ -50,7 +50,8 @@ inline spdlog::logger::logger(const std::string& logger_name, sinks_init_list si
// ctor with single sink
inline spdlog::logger::logger(const std::string& logger_name, spdlog::sink_ptr single_sink) :
logger(logger_name, {
logger(logger_name,
{
single_sink
}) {}
......@@ -314,7 +315,8 @@ inline void spdlog::logger::_set_formatter(formatter_ptr msg_formatter)
_formatter = msg_formatter;
}
inline void spdlog::logger::flush() {
inline void spdlog::logger::flush()
{
for (auto& sink : _sinks)
sink->flush();
}
\ No newline at end of file
......@@ -158,7 +158,7 @@ private:
throw spdlog_ex("logger with name " + logger_name + " already exists");
_loggers[logger->name()] = logger;
}
registry_t<Mutex>(){}
registry_t<Mutex>() {}
registry_t<Mutex>(const registry_t<Mutex>&) = delete;
registry_t<Mutex>& operator=(const registry_t<Mutex>&) = delete;
Mutex _mutex;
......
......@@ -75,16 +75,26 @@ private:
{
switch(level)
{
case spdlog::level::trace: return ANDROID_LOG_VERBOSE;
case spdlog::level::debug: return ANDROID_LOG_DEBUG;
case spdlog::level::info: return ANDROID_LOG_INFO;
case spdlog::level::notice: return ANDROID_LOG_INFO;
case spdlog::level::warn: return ANDROID_LOG_WARN;
case spdlog::level::err: return ANDROID_LOG_ERROR;
case spdlog::level::critical: return ANDROID_LOG_FATAL;
case spdlog::level::alert: return ANDROID_LOG_FATAL;
case spdlog::level::emerg: return ANDROID_LOG_FATAL;
default: throw spdlog_ex("Incorrect level value");
case spdlog::level::trace:
return ANDROID_LOG_VERBOSE;
case spdlog::level::debug:
return ANDROID_LOG_DEBUG;
case spdlog::level::info:
return ANDROID_LOG_INFO;
case spdlog::level::notice:
return ANDROID_LOG_INFO;
case spdlog::level::warn:
return ANDROID_LOG_WARN;
case spdlog::level::err:
return ANDROID_LOG_ERROR;
case spdlog::level::critical:
return ANDROID_LOG_FATAL;
case spdlog::level::alert:
return ANDROID_LOG_FATAL;
case spdlog::level::emerg:
return ANDROID_LOG_FATAL;
default:
throw spdlog_ex("Incorrect level value");
}
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment