Commit fa25f93d authored by thebusytypist's avatar thebusytypist

Merge remote-tracking branch 'upstream/master' into TransitionTable

parents c3d7d8b3 9eda05c2
# Encoding
## Unicode
According to [ECMA-404](http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf),
### Character Type
> (in Introduction) JSON text is a sequence of Unicode code points.
### UTF
The earlier [RFC4627](http://www.ietf.org/rfc/rfc4627.txt) stated that,
## Validation & Transcoding
> (in §3) JSON text SHALL be encoded in Unicode. The default encoding is UTF-8.
> (in §6) JSON may be represented using UTF-8, UTF-16, or UTF-32. When JSON is written in UTF-8, JSON is 8bit compatible. When JSON is written in UTF-16 or UTF-32, the binary content-transfer-encoding must be used.
RapidJSON supports various encodings. It can also validate the encodings of JSON, and transconding JSON among encodings. All these features are implemented internally, without the need for external libraries (e.g. [ICU](http://site.icu-project.org/)).
[TOC]
# Unicode {#Unicode}
From [Unicode's official website](http://www.unicode.org/standard/WhatIsUnicode.html):
> Unicode provides a unique number for every character,
> no matter what the platform,
> no matter what the program,
> no matter what the language.
Those unique numbers are called code points, which is in the range `0x0` to `0x10FFFF`.
## Unicode Transformation Format {#UTF}
There are various encodings for storing Unicode code points. These are called Unicode Transformation Format (UTF). RapidJSON supports the most commonly used UTFs, including
* UTF-8: 8-bit variable-width encoding. It maps a code point to 1–4 bytes.
* UTF-16: 16-bit variable-width encoding. It maps a code point to 1–2 16-bit code units (i.e., 2–4 bytes).
* UTF-32: 32-bit fixed-width encoding. It directly maps a code point to a single 32-bit code unit (i.e. 4 bytes).
For UTF-16 and UTF-32, the byte order (endianness) does matter. Within computer memory, they are often stored in the computer's endianness. However, when it is stored in file or transferred over network, we need to state the byte order of the byte sequence, either little-endian (LE) or big-endian (BE).
RapidJSON provide these encodings via the structs in `rapidjson/encodings.h`:
~~~~~~~~~~cpp
namespace rapidjson {
template<typename CharType = char>
struct UTF8;
template<typename CharType = wchar_t>
struct UTF16;
template<typename CharType = wchar_t>
struct UTF16LE;
template<typename CharType = wchar_t>
struct UTF16BE;
template<typename CharType = unsigned>
struct UTF32;
template<typename CharType = unsigned>
struct UTF32LE;
template<typename CharType = unsigned>
struct UTF32BE;
} // namespace rapidjson
~~~~~~~~~~
For processing text in memory, we normally use `UTF8`, `UTF16` or `UTF32`. For processing text via I/O, we may use `UTF8`, `UTF16LE`, `UTF16BE`, `UTF32LE` or `UTF32BE`.
When using the DOM-style API, the `Encoding` template parameter in `GenericValue<Encoding>` and `GenericDocument<Encoding>` indicates the encoding to be used to represent JSON string in memory. So normally we will use `UTF8`, `UTF16` or `UTF32` for this template parameter. The choice depends on operating systems and other libraries that the application is using. For example, Windows API represents Unicode characters in UTF-16, while most Linux distributions and applications prefer UTF-8.
Example of UTF-16 DOM declaration:
~~~~~~~~~~cpp
typedef GenericDocument<UTF16<> > WDocument;
typedef GenericValue<UTF16<> > WValue;
~~~~~~~~~~
For a detail example, please check the example in [DOM's Encoding](doc/stream.md#Encoding) section.
## Character Type {#CharacterType}
As shown in the declaration, each encoding has a `CharType` template parameter. Actually, it may be a little bit confusing, but each `CharType` stores a code unit, not a character (code point). As mentioned in previous section, a code point may be encoded to 1–4 code units for UTF-8.
For `UTF16(LE|BE)`, `UTF32(LE|BE)`, the `CharType` must be integer type of at least 2 and 4 bytes respectively.
Note that C++11 introduces `char16_t` and `char32_t`, which can be used for `UTF16` and `UTF32` respectively.
## AutoUTF {#AutoUTF}
Previous encodings are statically bound in compile-time. In other words, user must know exactly which encodings will be used in the memory or streams. However, sometimes we may need to read/write files of different encodings. The encoding needed to be decided in runtime.
`AutoUTF` is an encoding designed for this purpose. It chooses which encoding to be used according to the input or output stream. Currently, it should be used with `EncodedInputStream` and `EncodedOutputStream`.
## ASCII {#ASCII}
Although the JSON standards did not mention about [ASCII](http://en.wikipedia.org/wiki/ASCII), sometimes we would like to write 7-bit ASCII JSON for applications that cannot handle UTF-8. Since any JSON can represent unicode characters in escaped sequence `\uXXXX`, JSON can always be encoded in ASCII.
Here is an example for writing a UTF-8 DOM into ASCII:
~~~~~~~~~~cpp
using namespace rapidjson;
Document d; // UTF8<>
// ...
StringBuffer buffer;
Writer<StringBuffer, Document::EncodingType, ASCII<> > writer(buffer);
d.Accept(writer);
std::cout << buffer.GetString();
~~~~~~~~~~
ASCII can be used in input stream. If the input stream contains bytes with values above 127, it will cause `kParseErrorStringInvalidEncoding` error.
ASCII *cannot* be used in memory (encoding of `Document` or target encoding of `Reader`), as it cannot represent Unicode code points.
# Validation & Transcoding {#ValidationTranscoding}
When RapidJSON parses a JSON, it can validate the input JSON, whether it is a valid sequence of a specified encoding. This option can be turned on by adding `kParseValidateEncodingFlag` in `parseFlags` template parameter.
If the input encoding and output encoding is different, `Reader` and `Writer` will automatically transcode (convert) the text. In this case, `kParseValidateEncodingFlag` is not necessary, as it must decode the input sequence. And if the sequence was unable to be decoded, it must be invalid.
## Transcoder {#Transcoder}
Although the encoding functions in RapidJSON are designed for JSON parsing/generation, user may abuse them for transcoding of non-JSON strings.
Here is an example for transcoding a string from UTF-8 to UTF-16:
~~~~~~~~~~cpp
#include "rapidjson/encodings.h"
using namespace rapidjson;
const char* s = "..."; // UTF-8 string
StringStream source(s);
GenericStringBuffer<UTF16<> > target;
bool hasError = false;
while (source.Peak() != '\0')
if (!Transcoder::Transcode<UTF8<>, UTF16<> >(source, target)) {
hasError = true;
break;
}
if (!hasError) {
const wchar_t* t = target.GetString();
// ...
}
~~~~~~~~~~
You may also use `AutoUTF` and the associated streams for setting source/target encoding in runtime.
......@@ -6,6 +6,7 @@
#ifdef _MSC_VER
RAPIDJSON_DIAG_PUSH
RAPIDJSON_DIAG_OFF(4244) // conversion from 'type1' to 'type2', possible loss of data
RAPIDJSON_DIAG_OFF(4702) // unreachable code
#elif defined(__GNUC__)
RAPIDJSON_DIAG_PUSH
RAPIDJSON_DIAG_OFF(effc++)
......@@ -23,6 +24,8 @@ namespace rapidjson {
concept Encoding {
typename Ch; //! Type of character. A "character" is actually a code unit in unicode's definition.
enum { supportUnicode = 1 }; // or 0 if not supporting unicode
//! \brief Encode a Unicode codepoint to an output stream.
//! \param os Output stream.
//! \param codepoint An unicode codepoint, ranging from 0x0 to 0x10FFFF inclusively.
......@@ -78,6 +81,8 @@ template<typename CharType = char>
struct UTF8 {
typedef CharType Ch;
enum { supportUnicode = 1 };
template<typename OutputStream>
static void Encode(OutputStream& os, unsigned codepoint) {
if (codepoint <= 0x7F)
......@@ -222,6 +227,8 @@ struct UTF16 {
typedef CharType Ch;
RAPIDJSON_STATIC_ASSERT(sizeof(Ch) >= 2);
enum { supportUnicode = 1 };
template<typename OutputStream>
static void Encode(OutputStream& os, unsigned codepoint) {
RAPIDJSON_STATIC_ASSERT(sizeof(typename OutputStream::Ch) >= 2);
......@@ -351,6 +358,8 @@ struct UTF32 {
typedef CharType Ch;
RAPIDJSON_STATIC_ASSERT(sizeof(Ch) >= 4);
enum { supportUnicode = 1 };
template<typename OutputStream>
static void Encode(OutputStream& os, unsigned codepoint) {
RAPIDJSON_STATIC_ASSERT(sizeof(typename OutputStream::Ch) >= 4);
......@@ -447,6 +456,66 @@ struct UTF32BE : UTF32<CharType> {
}
};
///////////////////////////////////////////////////////////////////////////////
// ASCII
//! ASCII encoding.
/*! http://en.wikipedia.org/wiki/ASCII
\tparam CharType Code unit for storing 7-bit ASCII data. Default is char.
\note implements Encoding concept
*/
template<typename CharType = char>
struct ASCII {
typedef CharType Ch;
enum { supportUnicode = 0 };
template<typename OutputStream>
static void Encode(OutputStream& os, unsigned codepoint) {
RAPIDJSON_ASSERT(codepoint <= 0x7F);
os.Put(static_cast<Ch>(codepoint & 0xFF));
}
template <typename InputStream>
static bool Decode(InputStream& is, unsigned* codepoint) {
unsigned char c = static_cast<unsigned char>(is.Take());
*codepoint = c;
return c <= 0X7F;
}
template <typename InputStream, typename OutputStream>
static bool Validate(InputStream& is, OutputStream& os) {
unsigned char c = is.Take();
os.Put(c);
return c <= 0x7F;
}
template <typename InputByteStream>
static CharType TakeBOM(InputByteStream& is) {
RAPIDJSON_STATIC_ASSERT(sizeof(typename InputByteStream::Ch) == 1);
Ch c = Take(is);
return c;
}
template <typename InputByteStream>
static Ch Take(InputByteStream& is) {
RAPIDJSON_STATIC_ASSERT(sizeof(typename InputByteStream::Ch) == 1);
return is.Take();
}
template <typename OutputByteStream>
static void PutBOM(OutputByteStream& os) {
RAPIDJSON_STATIC_ASSERT(sizeof(typename OutputByteStream::Ch) == 1);
(void)os;
}
template <typename OutputByteStream>
static void Put(OutputByteStream& os, Ch c) {
RAPIDJSON_STATIC_ASSERT(sizeof(typename OutputByteStream::Ch) == 1);
os.Put(static_cast<typename OutputByteStream::Ch>(c));
}
};
///////////////////////////////////////////////////////////////////////////////
// AutoUTF
......@@ -466,6 +535,8 @@ template<typename CharType>
struct AutoUTF {
typedef CharType Ch;
enum { supportUnicode = 1 };
#define RAPIDJSON_ENCODINGS_FUNC(x) UTF8<Ch>::x, UTF16LE<Ch>::x, UTF16BE<Ch>::x, UTF32LE<Ch>::x, UTF32BE<Ch>::x
template<typename OutputStream>
......
......@@ -78,13 +78,13 @@ public:
bool empty = Base::level_stack_.template Pop<typename Base::Level>(1)->valueCount == 0;
if (!empty) {
Base::os_.Put('\n');
Base::os_->Put('\n');
WriteIndent();
}
if (!Base::WriteEndObject())
return false;
if (Base::level_stack_.Empty()) // end of json text
Base::os_.Flush();
Base::os_->Flush();
return true;
}
......@@ -101,13 +101,13 @@ public:
bool empty = Base::level_stack_.template Pop<typename Base::Level>(1)->valueCount == 0;
if (!empty) {
Base::os_.Put('\n');
Base::os_->Put('\n');
WriteIndent();
}
if (!Base::WriteEndArray())
return false;
if (Base::level_stack_.Empty()) // end of json text
Base::os_.Flush();
Base::os_->Flush();
return true;
}
......@@ -137,26 +137,26 @@ protected:
if (level->inArray) {
if (level->valueCount > 0) {
Base::os_.Put(','); // add comma if it is not the first element in array
Base::os_.Put('\n');
Base::os_->Put(','); // add comma if it is not the first element in array
Base::os_->Put('\n');
}
else
Base::os_.Put('\n');
Base::os_->Put('\n');
WriteIndent();
}
else { // in object
if (level->valueCount > 0) {
if (level->valueCount % 2 == 0) {
Base::os_.Put(',');
Base::os_.Put('\n');
Base::os_->Put(',');
Base::os_->Put('\n');
}
else {
Base::os_.Put(':');
Base::os_.Put(' ');
Base::os_->Put(':');
Base::os_->Put(' ');
}
}
else
Base::os_.Put('\n');
Base::os_->Put('\n');
if (level->valueCount % 2 == 0)
WriteIndent();
......@@ -165,13 +165,16 @@ protected:
RAPIDJSON_ASSERT(type == kStringType); // if it's in object, then even number should be a name
level->valueCount++;
}
else
else {
RAPIDJSON_ASSERT(type == kObjectType || type == kArrayType);
RAPIDJSON_ASSERT(!Base::hasRoot_); // Should only has one and only one root.
Base::hasRoot_ = true;
}
}
void WriteIndent() {
size_t count = (Base::level_stack_.GetSize() / sizeof(typename Base::Level)) * indentCharCount_;
PutN(Base::os_, indentChar_, count);
PutN(*Base::os_, indentChar_, count);
}
Ch indentChar_;
......
......@@ -52,23 +52,49 @@
#define RAPIDJSON_BIGENDIAN 1 //!< Big endian machine
//! Endianness of the machine.
/*! GCC provided macro for detecting endianness of the target machine. But other
/*! GCC 4.6 provided macro for detecting endianness of the target machine. But other
compilers may not have this. User can define RAPIDJSON_ENDIAN to either
\ref RAPIDJSON_LITTLEENDIAN or \ref RAPIDJSON_BIGENDIAN.
Implemented with reference to
https://gcc.gnu.org/onlinedocs/gcc-4.6.0/cpp/Common-Predefined-Macros.html
http://www.boost.org/doc/libs/1_42_0/boost/detail/endian.hpp
*/
#ifndef RAPIDJSON_ENDIAN
#ifdef __BYTE_ORDER__
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define RAPIDJSON_ENDIAN RAPIDJSON_LITTLEENDIAN
#else
#define RAPIDJSON_ENDIAN RAPIDJSON_BIGENDIAN
#endif // __BYTE_ORDER__
#else
#define RAPIDJSON_ENDIAN RAPIDJSON_LITTLEENDIAN // Assumes little endian otherwise.
#endif
// Detect with GCC 4.6's macro
# ifdef __BYTE_ORDER__
# if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
# define RAPIDJSON_ENDIAN RAPIDJSON_LITTLEENDIAN
# elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
# define RAPIDJSON_ENDIAN RAPIDJSON_BIGENDIAN
# else
# error Unknown machine endianess detected. User needs to define RAPIDJSON_ENDIAN.
# endif // __BYTE_ORDER__
// Detect with GLIBC's endian.h
# elif defined(__GLIBC__)
# include <endian.h>
# if (__BYTE_ORDER == __LITTLE_ENDIAN)
# define RAPIDJSON_ENDIAN RAPIDJSON_LITTLEENDIAN
# elif (__BYTE_ORDER == __BIG_ENDIAN)
# define RAPIDJSON_ENDIAN RAPIDJSON_BIGENDIAN
# else
# error Unknown machine endianess detected. User needs to define RAPIDJSON_ENDIAN.
# endif // __GLIBC__
// Detect with _LITTLE_ENDIAN and _BIG_ENDIAN macro
# elif defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN)
# define RAPIDJSON_ENDIAN RAPIDJSON_LITTLEENDIAN
# elif defined(_BIG_ENDIAN) && !defined(_LITTLE_ENDIAN)
# define RAPIDJSON_ENDIAN RAPIDJSON_BIGENDIAN
// Detect with architecture macros
# elif defined(__sparc) || defined(__sparc__) || defined(_POWER) || defined(__powerpc__) || defined(__ppc__) || defined(__hpux) || defined(__hppa) || defined(_MIPSEB) || defined(_POWER) || defined(__s390__)
# define RAPIDJSON_ENDIAN RAPIDJSON_BIGENDIAN
# elif defined(__i386__) || defined(__alpha__) || defined(__ia64) || defined(__ia64__) || defined(_M_IX86) || defined(_M_IA64) || defined(_M_ALPHA) || defined(__amd64) || defined(__amd64__) || defined(_M_AMD64) || defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || defined(__bfin__)
# define RAPIDJSON_ENDIAN RAPIDJSON_LITTLEENDIAN
# else
# error Unknown machine endianess detected. User needs to define RAPIDJSON_ENDIAN.
# endif
#endif // RAPIDJSON_ENDIAN
///////////////////////////////////////////////////////////////////////////////
// RAPIDJSON_ALIGNSIZE
......
......@@ -22,6 +22,7 @@
#ifdef _MSC_VER
RAPIDJSON_DIAG_PUSH
RAPIDJSON_DIAG_OFF(4127) // conditional expression is constant
RAPIDJSON_DIAG_OFF(4702) // unreachable code
#endif
#define RAPIDJSON_NOTHING /* deliberately empty */
......
......@@ -41,8 +41,41 @@ public:
\param levelDepth Initial capacity of stack.
*/
Writer(OutputStream& os, Allocator* allocator = 0, size_t levelDepth = kDefaultLevelDepth) :
os_(os), level_stack_(allocator, levelDepth * sizeof(Level)),
doublePrecision_(kDefaultDoublePrecision) {}
os_(&os), level_stack_(allocator, levelDepth * sizeof(Level)),
doublePrecision_(kDefaultDoublePrecision), hasRoot_(false) {}
//! Reset the writer with a new stream.
/*!
This function reset the writer with a new stream and default settings,
in order to make a Writer object reusable for output multiple JSONs.
\param os New output stream.
\code
Writer<OutputStream> writer(os1);
writer.StartObject();
// ...
writer.EndObject();
writer.Reset(os2);
writer.StartObject();
// ...
writer.EndObject();
\endcode
*/
void Reset(OutputStream& os) {
os_ = &os;
doublePrecision_ = kDefaultDoublePrecision;
hasRoot_ = false;
level_stack_.Clear();
}
//! Checks whether the output is a complete JSON.
/*!
A complete JSON has a complete root object or array.
*/
bool IsComplete() const {
return hasRoot_ && level_stack_.Empty();
}
//! Set the number of significant digits for \c double values
/*! When writing a \c double value to the \c OutputStream, the number
......@@ -103,7 +136,7 @@ public:
level_stack_.template Pop<Level>(1);
bool ret = WriteEndObject();
if (level_stack_.Empty()) // end of json text
os_.Flush();
os_->Flush();
return ret;
}
......@@ -120,7 +153,7 @@ public:
level_stack_.template Pop<Level>(1);
bool ret = WriteEndArray();
if (level_stack_.Empty()) // end of json text
os_.Flush();
os_->Flush();
return ret;
}
//@}
......@@ -161,22 +194,22 @@ protected:
static const size_t kDefaultLevelDepth = 32;
bool WriteNull() {
os_.Put('n'); os_.Put('u'); os_.Put('l'); os_.Put('l'); return true;
os_->Put('n'); os_->Put('u'); os_->Put('l'); os_->Put('l'); return true;
}
bool WriteBool(bool b) {
if (b) {
os_.Put('t'); os_.Put('r'); os_.Put('u'); os_.Put('e');
os_->Put('t'); os_->Put('r'); os_->Put('u'); os_->Put('e');
}
else {
os_.Put('f'); os_.Put('a'); os_.Put('l'); os_.Put('s'); os_.Put('e');
os_->Put('f'); os_->Put('a'); os_->Put('l'); os_->Put('s'); os_->Put('e');
}
return true;
}
bool WriteInt(int i) {
if (i < 0) {
os_.Put('-');
os_->Put('-');
i = -i;
}
return WriteUint((unsigned)i);
......@@ -192,14 +225,14 @@ protected:
do {
--p;
os_.Put(*p);
os_->Put(*p);
} while (p != buffer);
return true;
}
bool WriteInt64(int64_t i64) {
if (i64 < 0) {
os_.Put('-');
os_->Put('-');
i64 = -i64;
}
WriteUint64((uint64_t)i64);
......@@ -216,7 +249,7 @@ protected:
do {
--p;
os_.Put(*p);
os_->Put(*p);
} while (p != buffer);
return true;
}
......@@ -233,7 +266,7 @@ protected:
int ret = RAPIDJSON_SNPRINTF(buffer, sizeof(buffer), "%.*g", doublePrecision_, d);
RAPIDJSON_ASSERT(ret >= 1);
for (int i = 0; i < ret; i++)
os_.Put(buffer[i]);
os_->Put(buffer[i]);
return true;
}
#undef RAPIDJSON_SNPRINTF
......@@ -252,32 +285,64 @@ protected:
#undef Z16
};
os_.Put('\"');
os_->Put('\"');
GenericStringStream<SourceEncoding> is(str);
while (is.Tell() < length) {
const Ch c = is.Peek();
if ((sizeof(Ch) == 1 || (unsigned)c < 256) && escape[(unsigned char)c]) {
if (!TargetEncoding::supportUnicode && (unsigned)c >= 0x80) {
// Unicode escaping
unsigned codepoint;
if (!SourceEncoding::Decode(is, &codepoint))
return false;
os_->Put('\\');
os_->Put('u');
if (codepoint <= 0xD7FF || (codepoint >= 0xE000 && codepoint <= 0xFFFF)) {
os_->Put(hexDigits[(codepoint >> 12) & 15]);
os_->Put(hexDigits[(codepoint >> 8) & 15]);
os_->Put(hexDigits[(codepoint >> 4) & 15]);
os_->Put(hexDigits[(codepoint ) & 15]);
}
else if (codepoint >= 0x010000 && codepoint <= 0x10FFFF) {
// Surrogate pair
unsigned s = codepoint - 0x010000;
unsigned lead = (s >> 10) + 0xD800;
unsigned trail = (s & 0x3FF) + 0xDC00;
os_->Put(hexDigits[(lead >> 12) & 15]);
os_->Put(hexDigits[(lead >> 8) & 15]);
os_->Put(hexDigits[(lead >> 4) & 15]);
os_->Put(hexDigits[(lead ) & 15]);
os_->Put('\\');
os_->Put('u');
os_->Put(hexDigits[(trail >> 12) & 15]);
os_->Put(hexDigits[(trail >> 8) & 15]);
os_->Put(hexDigits[(trail >> 4) & 15]);
os_->Put(hexDigits[(trail ) & 15]);
}
else
return false; // invalid code point
}
else if ((sizeof(Ch) == 1 || (unsigned)c < 256) && escape[(unsigned char)c]) {
is.Take();
os_.Put('\\');
os_.Put(escape[(unsigned char)c]);
os_->Put('\\');
os_->Put(escape[(unsigned char)c]);
if (escape[(unsigned char)c] == 'u') {
os_.Put('0');
os_.Put('0');
os_.Put(hexDigits[(unsigned char)c >> 4]);
os_.Put(hexDigits[(unsigned char)c & 0xF]);
os_->Put('0');
os_->Put('0');
os_->Put(hexDigits[(unsigned char)c >> 4]);
os_->Put(hexDigits[(unsigned char)c & 0xF]);
}
}
else
Transcoder<SourceEncoding, TargetEncoding>::Transcode(is, os_);
Transcoder<SourceEncoding, TargetEncoding>::Transcode(is, *os_);
}
os_.Put('\"');
os_->Put('\"');
return true;
}
bool WriteStartObject() { os_.Put('{'); return true; }
bool WriteEndObject() { os_.Put('}'); return true; }
bool WriteStartArray() { os_.Put('['); return true; }
bool WriteEndArray() { os_.Put(']'); return true; }
bool WriteStartObject() { os_->Put('{'); return true; }
bool WriteEndObject() { os_->Put('}'); return true; }
bool WriteStartArray() { os_->Put('['); return true; }
bool WriteEndArray() { os_->Put(']'); return true; }
void Prefix(Type type) {
(void)type;
......@@ -285,21 +350,25 @@ protected:
Level* level = level_stack_.template Top<Level>();
if (level->valueCount > 0) {
if (level->inArray)
os_.Put(','); // add comma if it is not the first element in array
os_->Put(','); // add comma if it is not the first element in array
else // in object
os_.Put((level->valueCount % 2 == 0) ? ',' : ':');
os_->Put((level->valueCount % 2 == 0) ? ',' : ':');
}
if (!level->inArray && level->valueCount % 2 == 0)
RAPIDJSON_ASSERT(type == kStringType); // if it's in object, then even number should be a name
level->valueCount++;
}
else
else {
RAPIDJSON_ASSERT(type == kObjectType || type == kArrayType);
RAPIDJSON_ASSERT(!hasRoot_); // Should only has one and only one root.
hasRoot_ = true;
}
}
OutputStream& os_;
OutputStream* os_;
internal::Stack<Allocator> level_stack_;
int doublePrecision_;
bool hasRoot_;
static const int kDefaultDoublePrecision = 6;
......
......@@ -56,4 +56,22 @@ inline void TempFilename(char *filename) {
filename[i] = filename[i + 1];
}
// Use exception for catching assert
#if _MSC_VER
#pragma warning(disable : 4127)
#endif
class AssertException : public std::exception {
public:
AssertException(const char* w) : what_(w) {}
AssertException(const AssertException& other) : what_(other.what_) {}
AssertException& operator=(const AssertException& rhs) { what_ = rhs.what_; return *this; }
virtual const char* what() const throw() { return what_; }
private:
const char* what_;
};
#define RAPIDJSON_ASSERT(x) if (!(x)) throw AssertException(RAPIDJSON_STRINGIFY(x))
#endif // UNITTEST_H_
#include "unittest.h"
#include "rapidjson/document.h"
#include "rapidjson/reader.h"
#include "rapidjson/writer.h"
......@@ -14,6 +15,7 @@ TEST(Writer, Compact) {
reader.Parse<0>(s, writer);
EXPECT_STREQ("{\"hello\":\"world\",\"t\":true,\"f\":false,\"n\":null,\"i\":123,\"pi\":3.1416,\"a\":[1,2,3]}", buffer.GetString());
EXPECT_EQ(77u, buffer.GetSize());
EXPECT_TRUE(writer.IsComplete());
}
// json -> parse -> writer -> json
......@@ -25,6 +27,7 @@ TEST(Writer, Compact) {
Reader reader; \
reader.Parse<0>(s, writer); \
EXPECT_STREQ(json, buffer.GetString()); \
EXPECT_TRUE(writer.IsComplete()); \
}
TEST(Writer, Int) {
......@@ -80,9 +83,10 @@ TEST(Writer,DoublePrecision) {
reader.Parse<0>(s, writer.SetDoublePrecision(12));
EXPECT_EQ(writer.GetDoublePrecision(), 12);
EXPECT_STREQ(json, buffer.GetString());
buffer.Clear();
}
{ // explicit individual double precisions
buffer.Clear();
writer.Reset(buffer);
writer.SetDoublePrecision(2);
writer.StartArray();
writer.Double(1.2345, 5);
......@@ -93,11 +97,12 @@ TEST(Writer,DoublePrecision) {
EXPECT_EQ(writer.GetDoublePrecision(), 2);
EXPECT_STREQ(json, buffer.GetString());
buffer.Clear();
}
{ // write with default precision (output with precision loss)
Document d;
d.Parse<0>(json);
buffer.Clear();
writer.Reset(buffer);
d.Accept(writer.SetDoublePrecision());
// parsed again to avoid platform-dependent floating point outputs
......@@ -108,18 +113,38 @@ TEST(Writer,DoublePrecision) {
EXPECT_DOUBLE_EQ(d[1u].GetDouble(), 1.23457);
EXPECT_DOUBLE_EQ(d[2u].GetDouble(), 0.123457);
EXPECT_DOUBLE_EQ(d[3u].GetDouble(), 1234570);
buffer.Clear();
}
}
TEST(Writer, Transcode) {
const char json[] = "{\"hello\":\"world\",\"t\":true,\"f\":false,\"n\":null,\"i\":123,\"pi\":3.1416,\"a\":[1,2,3],\"dollar\":\"\x24\",\"cents\":\"\xC2\xA2\",\"euro\":\"\xE2\x82\xAC\",\"gclef\":\"\xF0\x9D\x84\x9E\"}";
// UTF8 -> UTF16 -> UTF8
StringStream s("{ \"hello\" : \"world\", \"t\" : true , \"f\" : false, \"n\": null, \"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3], \"dollar\":\"\x24\", \"cents\":\"\xC2\xA2\", \"euro\":\"\xE2\x82\xAC\", \"gclef\":\"\xF0\x9D\x84\x9E\" } ");
{
StringStream s(json);
StringBuffer buffer;
Writer<StringBuffer, UTF16<>, UTF8<> > writer(buffer);
GenericReader<UTF8<>, UTF16<> > reader;
reader.Parse<0>(s, writer);
EXPECT_STREQ("{\"hello\":\"world\",\"t\":true,\"f\":false,\"n\":null,\"i\":123,\"pi\":3.1416,\"a\":[1,2,3],\"dollar\":\"\x24\",\"cents\":\"\xC2\xA2\",\"euro\":\"\xE2\x82\xAC\",\"gclef\":\"\xF0\x9D\x84\x9E\"}", buffer.GetString());
reader.Parse(s, writer);
EXPECT_STREQ(json, buffer.GetString());
}
// UTF8 -> UTF8 -> ASCII -> UTF8 -> UTF8
{
StringStream s(json);
StringBuffer buffer;
Writer<StringBuffer, UTF8<>, ASCII<> > writer(buffer);
Reader reader;
reader.Parse(s, writer);
StringBuffer buffer2;
Writer<StringBuffer> writer2(buffer2);
GenericReader<ASCII<>, UTF8<> > reader2;
StringStream s2(buffer.GetString());
reader2.Parse(s2, writer2);
EXPECT_STREQ(json, buffer2.GetString());
}
}
#include <sstream>
......@@ -160,3 +185,109 @@ TEST(Writer, OStreamWrapper) {
std::string actual = ss.str();
EXPECT_STREQ("{\"hello\":\"world\",\"t\":true,\"f\":false,\"n\":null,\"i\":123,\"pi\":3.1416,\"a\":[1,2,3]}", actual.c_str());
}
TEST(Writer, AssertRootMustBeArrayOrObject) {
#define T(x)\
{\
StringBuffer buffer;\
Writer<StringBuffer> writer(buffer);\
ASSERT_THROW(x, AssertException);\
}
T(writer.Bool(false));
T(writer.Bool(true));
T(writer.Null());
T(writer.Int(0));
T(writer.Uint(0));
T(writer.Int64(0));
T(writer.Uint64(0));
T(writer.Double(0));
T(writer.String("foo"));
#undef T
}
TEST(Writer, AssertIncorrectObjectLevel) {
StringBuffer buffer;
Writer<StringBuffer> writer(buffer);
writer.StartObject();
writer.EndObject();
ASSERT_THROW(writer.EndObject(), AssertException);
}
TEST(Writer, AssertIncorrectArrayLevel) {
StringBuffer buffer;
Writer<StringBuffer> writer(buffer);
writer.StartArray();
writer.EndArray();
ASSERT_THROW(writer.EndArray(), AssertException);
}
TEST(Writer, AssertIncorrectEndObject) {
StringBuffer buffer;
Writer<StringBuffer> writer(buffer);
writer.StartObject();
ASSERT_THROW(writer.EndArray(), AssertException);
}
TEST(Writer, AssertIncorrectEndArray) {
StringBuffer buffer;
Writer<StringBuffer> writer(buffer);
writer.StartObject();
ASSERT_THROW(writer.EndArray(), AssertException);
}
TEST(Writer, AssertObjectKeyNotString) {
#define T(x)\
{\
StringBuffer buffer;\
Writer<StringBuffer> writer(buffer);\
writer.StartObject();\
ASSERT_THROW(x, AssertException); \
}
T(writer.Bool(false));
T(writer.Bool(true));
T(writer.Null());
T(writer.Int(0));
T(writer.Uint(0));
T(writer.Int64(0));
T(writer.Uint64(0));
T(writer.Double(0));
T(writer.StartObject());
T(writer.StartArray());
#undef T
}
TEST(Writer, AssertMultipleRoot) {
StringBuffer buffer;
Writer<StringBuffer> writer(buffer);
writer.StartObject();
writer.EndObject();
ASSERT_THROW(writer.StartObject(), AssertException);
}
TEST(Writer, RootObjectIsComplete) {
StringBuffer buffer;
Writer<StringBuffer> writer(buffer);
EXPECT_FALSE(writer.IsComplete());
writer.StartObject();
EXPECT_FALSE(writer.IsComplete());
writer.String("foo");
EXPECT_FALSE(writer.IsComplete());
writer.Int(1);
EXPECT_FALSE(writer.IsComplete());
writer.EndObject();
EXPECT_TRUE(writer.IsComplete());
}
TEST(Writer, RootArrayIsComplete) {
StringBuffer buffer;
Writer<StringBuffer> writer(buffer);
EXPECT_FALSE(writer.IsComplete());
writer.StartArray();
EXPECT_FALSE(writer.IsComplete());
writer.String("foo");
EXPECT_FALSE(writer.IsComplete());
writer.Int(1);
EXPECT_FALSE(writer.IsComplete());
writer.EndArray();
EXPECT_TRUE(writer.IsComplete());
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment