Commit 454146b2 authored by Milo Yip's avatar Milo Yip

Merge pull request #137 from miloyip/issue120floatprecision

Parse JSON number to double in full-precision with custom strtod. Fix #120
parents a6117dae e62d5375
......@@ -115,6 +115,9 @@ Parse flags | Meaning
`kParseDefaultFlags = 0` | Default parse flags.
`kParseInsituFlag` | In-situ(destructive) parsing.
`kParseValidateEncodingFlag` | Validate encoding of JSON strings.
`kParseIterativeFlag` | Iterative(constant complexity in terms of function call stack size) parsing.
`kParseStopWhenDoneFlag` | After parsing a complete JSON root from stream, stop further processing the rest of stream. When this flag is used, parser will not generate `kParseErrorDocumentRootNotSingular` error. Using this flag for parsing multiple JSONs in the same stream.
`kParseFullPrecisionFlag` | Parse number in full precision (slower). If this flag is not set, the normal precision (faster) is used. Normal precision has maximum 3 [ULP](http://en.wikipedia.org/wiki/Unit_in_the_last_place) error.
By using a non-type template parameter, instead of a function parameter, C++ compiler can generate code which is optimized for specified combinations, improving speed, and reducing code size (if only using a single specialization). The downside is the flags needed to be determined in compile-time.
......
// Copyright (C) 2011 Milo Yip
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef RAPIDJSON_BIGINTEGER_H_
#define RAPIDJSON_BIGINTEGER_H_
#include "../rapidjson.h"
RAPIDJSON_NAMESPACE_BEGIN
namespace internal {
class BigInteger {
public:
typedef uint64_t Type;
BigInteger(const BigInteger& rhs) : count_(rhs.count_) {
std::memcpy(digits_, rhs.digits_, count_ * sizeof(Type));
}
explicit BigInteger(uint64_t u) : count_(1) {
digits_[0] = u;
}
BigInteger(const char* decimals, size_t length) : count_(1) {
RAPIDJSON_ASSERT(length > 0);
digits_[0] = 0;
size_t i = 0;
const size_t kMaxDigitPerIteration = 19; // 2^64 = 18446744073709551616 > 10^19
while (length >= kMaxDigitPerIteration) {
AppendDecimal64(decimals + i, decimals + i + kMaxDigitPerIteration);
length -= kMaxDigitPerIteration;
i += kMaxDigitPerIteration;
}
if (length > 0)
AppendDecimal64(decimals + i, decimals + i + length);
}
BigInteger& operator=(uint64_t u) {
digits_[0] = u;
count_ = 1;
return *this;
}
BigInteger& operator+=(uint64_t u) {
Type backup = digits_[0];
digits_[0] += u;
for (size_t i = 0; i < count_ - 1; i++) {
if (digits_[i] >= backup)
return *this; // no carry
backup = digits_[i + 1];
digits_[i + 1] += 1;
}
// Last carry
if (digits_[count_ - 1] < backup)
PushBack(1);
return *this;
}
BigInteger& operator*=(uint64_t u) {
if (u == 0) return *this = 0;
if (u == 1) return *this;
if (*this == 1) return *this = u;
uint64_t k = 0;
for (size_t i = 0; i < count_; i++) {
uint64_t hi;
digits_[i] = MulAdd64(digits_[i], u, k, &hi);
k = hi;
}
if (k > 0)
PushBack(k);
return *this;
}
BigInteger& operator*=(uint32_t u) {
if (u == 0) return *this = 0;
if (u == 1) return *this;
if (*this == 1) return *this = u;
uint32_t k = 0;
for (size_t i = 0; i < count_; i++) {
const uint64_t c = digits_[i] >> 32;
const uint64_t d = digits_[i] & 0xFFFFFFFF;
const uint64_t uc = u * c;
const uint64_t ud = u * d;
const uint64_t p0 = ud + k;
const uint64_t p1 = uc + (p0 >> 32);
digits_[i] = (p0 & 0xFFFFFFFF) | (p1 << 32);
k = p1 >> 32;
}
if (k > 0)
PushBack(k);
return *this;
}
BigInteger& operator<<=(size_t shift) {
if (IsZero() || shift == 0) return *this;
size_t offset = shift / kTypeBit;
size_t interShift = shift % kTypeBit;
RAPIDJSON_ASSERT(count_ + offset <= kCapacity);
if (interShift == 0) {
std::memmove(&digits_[count_ - 1 + offset], &digits_[count_ - 1], count_ * sizeof(Type));
count_ += offset;
}
else {
digits_[count_] = 0;
for (size_t i = count_; i > 0; i--)
digits_[i + offset] = (digits_[i] << interShift) | (digits_[i - 1] >> (kTypeBit - interShift));
digits_[offset] = digits_[0] << interShift;
count_ += offset;
if (digits_[count_])
count_++;
}
std::memset(digits_, 0, offset * sizeof(Type));
return *this;
}
bool operator==(const BigInteger& rhs) const {
return count_ == rhs.count_ && memcmp(digits_, rhs.digits_, count_ * sizeof(Type)) == 0;
}
bool operator==(const Type rhs) const {
return count_ == 1 && digits_[0] == rhs;
}
BigInteger& MultiplyPow5(unsigned exp) {
static const uint32_t kPow5[12] = {
5,
5 * 5,
5 * 5 * 5,
5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5
};
if (exp == 0) return *this;
for (; exp >= 27; exp -= 27) *this *= RAPIDJSON_UINT64_C2(0X6765C793, 0XFA10079D); // 5^27
for (; exp >= 13; exp -= 13) *this *= 1220703125u; // 5^13
if (exp > 0) *this *= kPow5[exp - 1];
return *this;
}
// Compute absolute difference of this and rhs.
// Return false if this < rhs
bool Difference(const BigInteger& rhs, BigInteger* out) const {
int cmp = Compare(rhs);
if (cmp == 0) {
*out = BigInteger(0);
return false;
}
const BigInteger *a, *b; // Makes a > b
bool ret;
if (cmp < 0) { a = &rhs; b = this; ret = true; }
else { a = this; b = &rhs; ret = false; }
Type borrow = 0;
for (size_t i = 0; i < a->count_; i++) {
Type d = a->digits_[i] - borrow;
if (i < b->count_)
d -= b->digits_[i];
borrow = (d > a->digits_[i]) ? 1 : 0;
out->digits_[i] = d;
if (d != 0)
out->count_ = i + 1;
}
return ret;
}
int Compare(const BigInteger& rhs) const {
if (count_ != rhs.count_)
return count_ < rhs.count_ ? -1 : 1;
for (size_t i = count_; i-- > 0;)
if (digits_[i] != rhs.digits_[i])
return digits_[i] < rhs.digits_[i] ? -1 : 1;
return 0;
}
size_t GetCount() const { return count_; }
Type GetDigit(size_t index) const { RAPIDJSON_ASSERT(index < count_); return digits_[index]; }
bool IsZero() const { return count_ == 1 && digits_[0] == 0; }
private:
void AppendDecimal64(const char* begin, const char* end) {
uint64_t u = ParseUint64(begin, end);
if (IsZero())
*this = u;
else {
unsigned exp = static_cast<unsigned>(end - begin);
(MultiplyPow5(exp) <<= exp) += u; // *this = *this * 10^exp + u
}
}
void PushBack(Type digit) {
RAPIDJSON_ASSERT(count_ < kCapacity);
digits_[count_++] = digit;
}
static uint64_t ParseUint64(const char* begin, const char* end) {
uint64_t r = 0;
for (const char* p = begin; p != end; ++p) {
RAPIDJSON_ASSERT(*p >= '0' && *p <= '9');
r = r * 10 + (*p - '0');
}
return r;
}
// Assume a * b + k < 2^128
static uint64_t MulAdd64(uint64_t a, uint64_t b, uint64_t k, uint64_t* outHigh) {
#if defined(_MSC_VER) && defined(_M_AMD64)
uint64_t low = _umul128(a, b, outHigh) + k;
if (low < k)
(*outHigh)++;
return low;
#elif (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) && defined(__x86_64__)
unsigned __int128 p = static_cast<unsigned __int128>(a) * static_cast<unsigned __int128>(b);
p += k;
*outHigh = p >> 64;
return static_cast<uint64_t>(p);
#else
const uint64_t a0 = a & 0xFFFFFFFF, a1 = a >> 32, b0 = b & 0xFFFFFFFF, b1 = b >> 32;
uint64_t x0 = a0 * b0, x1 = a0 * b1, x2 = a1 * b0, x3 = a1 * b1;
x1 += (x0 >> 32); // can't give carry
x1 += x2;
if (x1 < x2)
x3 += (static_cast<uint64_t>(1) << 32);
uint64_t lo = (x1 << 32) + (x0 & 0xFFFFFFFF);
uint64_t hi = x3 + (x1 >> 32);
lo += k;
if (lo < k)
hi++;
*outHigh = hi;
return lo;
#endif
}
static Type FullAdd(Type a, Type b, bool inCarry, bool* outCarry) {
Type c = a + b + (inCarry ? 1 : 0);
*outCarry = c < a;
return c;
}
static const size_t kBitCount = 3328; // 64bit * 54 > 10^1000
static const size_t kCapacity = kBitCount / sizeof(Type);
static const size_t kTypeBit = sizeof(Type) * 8;
Type digits_[kCapacity];
size_t count_;
};
} // namespace internal
RAPIDJSON_NAMESPACE_END
#endif // RAPIDJSON_BIGINTEGER_H_
// Copyright (C) 2011 Milo Yip
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// This is a C++ header-only implementation of Grisu2 algorithm from the publication:
// Loitsch, Florian. "Printing floating-point numbers quickly and accurately with
// integers." ACM Sigplan Notices 45.6 (2010): 233-243.
#ifndef RAPIDJSON_DIYFP_H_
#define RAPIDJSON_DIYFP_H_
#if defined(_MSC_VER)
#include <intrin.h>
#if defined(_M_AMD64)
#pragma intrinsic(_BitScanReverse64)
#endif
#endif
RAPIDJSON_NAMESPACE_BEGIN
namespace internal {
#ifdef __GNUC__
RAPIDJSON_DIAG_PUSH
RAPIDJSON_DIAG_OFF(effc++)
#endif
struct DiyFp {
DiyFp() {}
DiyFp(uint64_t fp, int exp) : f(fp), e(exp) {}
explicit DiyFp(double d) {
union {
double d;
uint64_t u64;
} u = { d };
int biased_e = (u.u64 & kDpExponentMask) >> kDpSignificandSize;
uint64_t significand = (u.u64 & kDpSignificandMask);
if (biased_e != 0) {
f = significand + kDpHiddenBit;
e = biased_e - kDpExponentBias;
}
else {
f = significand;
e = kDpMinExponent + 1;
}
}
DiyFp operator-(const DiyFp& rhs) const {
return DiyFp(f - rhs.f, e);
}
DiyFp operator*(const DiyFp& rhs) const {
#if defined(_MSC_VER) && defined(_M_AMD64)
uint64_t h;
uint64_t l = _umul128(f, rhs.f, &h);
if (l & (uint64_t(1) << 63)) // rounding
h++;
return DiyFp(h, e + rhs.e + 64);
#elif (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) && defined(__x86_64__)
unsigned __int128 p = static_cast<unsigned __int128>(f) * static_cast<unsigned __int128>(rhs.f);
uint64_t h = p >> 64;
uint64_t l = static_cast<uint64_t>(p);
if (l & (uint64_t(1) << 63)) // rounding
h++;
return DiyFp(h, e + rhs.e + 64);
#else
const uint64_t M32 = 0xFFFFFFFF;
const uint64_t a = f >> 32;
const uint64_t b = f & M32;
const uint64_t c = rhs.f >> 32;
const uint64_t d = rhs.f & M32;
const uint64_t ac = a * c;
const uint64_t bc = b * c;
const uint64_t ad = a * d;
const uint64_t bd = b * d;
uint64_t tmp = (bd >> 32) + (ad & M32) + (bc & M32);
tmp += 1U << 31; /// mult_round
return DiyFp(ac + (ad >> 32) + (bc >> 32) + (tmp >> 32), e + rhs.e + 64);
#endif
}
DiyFp Normalize() const {
#if defined(_MSC_VER) && defined(_M_AMD64)
unsigned long index;
_BitScanReverse64(&index, f);
return DiyFp(f << (63 - index), e - (63 - index));
#elif defined(__GNUC__) && __GNUC__ >= 4
int s = __builtin_clzll(f);
return DiyFp(f << s, e - s);
#else
DiyFp res = *this;
while (!(res.f & (static_cast<uint64_t>(1) << 63))) {
res.f <<= 1;
res.e--;
}
return res;
#endif
}
DiyFp NormalizeBoundary() const {
DiyFp res = *this;
while (!(res.f & (kDpHiddenBit << 1))) {
res.f <<= 1;
res.e--;
}
res.f <<= (kDiySignificandSize - kDpSignificandSize - 2);
res.e = res.e - (kDiySignificandSize - kDpSignificandSize - 2);
return res;
}
void NormalizedBoundaries(DiyFp* minus, DiyFp* plus) const {
DiyFp pl = DiyFp((f << 1) + 1, e - 1).NormalizeBoundary();
DiyFp mi = (f == kDpHiddenBit) ? DiyFp((f << 2) - 1, e - 2) : DiyFp((f << 1) - 1, e - 1);
mi.f <<= mi.e - pl.e;
mi.e = pl.e;
*plus = pl;
*minus = mi;
}
double ToDouble() const {
union {
double d;
uint64_t u64;
}u;
uint64_t significand = f;
int exponent = e;
while (significand > kDpHiddenBit + kDpSignificandMask) {
significand >>= 1;
exponent++;
}
while (exponent > kDpDenormalExponent && (significand & kDpHiddenBit) == 0) {
significand <<= 1;
exponent--;
}
if (exponent >= kDpMaxExponent) {
u.u64 = kDpExponentMask; // Infinity
return u.d;
}
else if (exponent < kDpDenormalExponent)
return 0.0;
const uint64_t be = (exponent == kDpDenormalExponent && (significand & kDpHiddenBit) == 0) ? 0 :
static_cast<uint64_t>(exponent + kDpExponentBias);
u.u64 = (significand & kDpSignificandMask) | (be << kDpSignificandSize);
return u.d;
}
static const int kDiySignificandSize = 64;
static const int kDpSignificandSize = 52;
static const int kDpExponentBias = 0x3FF + kDpSignificandSize;
static const int kDpMaxExponent = 0x7FF - kDpExponentBias;
static const int kDpMinExponent = -kDpExponentBias;
static const int kDpDenormalExponent = -kDpExponentBias + 1;
static const uint64_t kDpExponentMask = RAPIDJSON_UINT64_C2(0x7FF00000, 0x00000000);
static const uint64_t kDpSignificandMask = RAPIDJSON_UINT64_C2(0x000FFFFF, 0xFFFFFFFF);
static const uint64_t kDpHiddenBit = RAPIDJSON_UINT64_C2(0x00100000, 0x00000000);
uint64_t f;
int e;
};
inline DiyFp GetCachedPowerByIndex(size_t index) {
// 10^-348, 10^-340, ..., 10^340
static const uint64_t kCachedPowers_F[] = {
RAPIDJSON_UINT64_C2(0xfa8fd5a0, 0x081c0288), RAPIDJSON_UINT64_C2(0xbaaee17f, 0xa23ebf76),
RAPIDJSON_UINT64_C2(0x8b16fb20, 0x3055ac76), RAPIDJSON_UINT64_C2(0xcf42894a, 0x5dce35ea),
RAPIDJSON_UINT64_C2(0x9a6bb0aa, 0x55653b2d), RAPIDJSON_UINT64_C2(0xe61acf03, 0x3d1a45df),
RAPIDJSON_UINT64_C2(0xab70fe17, 0xc79ac6ca), RAPIDJSON_UINT64_C2(0xff77b1fc, 0xbebcdc4f),
RAPIDJSON_UINT64_C2(0xbe5691ef, 0x416bd60c), RAPIDJSON_UINT64_C2(0x8dd01fad, 0x907ffc3c),
RAPIDJSON_UINT64_C2(0xd3515c28, 0x31559a83), RAPIDJSON_UINT64_C2(0x9d71ac8f, 0xada6c9b5),
RAPIDJSON_UINT64_C2(0xea9c2277, 0x23ee8bcb), RAPIDJSON_UINT64_C2(0xaecc4991, 0x4078536d),
RAPIDJSON_UINT64_C2(0x823c1279, 0x5db6ce57), RAPIDJSON_UINT64_C2(0xc2109436, 0x4dfb5637),
RAPIDJSON_UINT64_C2(0x9096ea6f, 0x3848984f), RAPIDJSON_UINT64_C2(0xd77485cb, 0x25823ac7),
RAPIDJSON_UINT64_C2(0xa086cfcd, 0x97bf97f4), RAPIDJSON_UINT64_C2(0xef340a98, 0x172aace5),
RAPIDJSON_UINT64_C2(0xb23867fb, 0x2a35b28e), RAPIDJSON_UINT64_C2(0x84c8d4df, 0xd2c63f3b),
RAPIDJSON_UINT64_C2(0xc5dd4427, 0x1ad3cdba), RAPIDJSON_UINT64_C2(0x936b9fce, 0xbb25c996),
RAPIDJSON_UINT64_C2(0xdbac6c24, 0x7d62a584), RAPIDJSON_UINT64_C2(0xa3ab6658, 0x0d5fdaf6),
RAPIDJSON_UINT64_C2(0xf3e2f893, 0xdec3f126), RAPIDJSON_UINT64_C2(0xb5b5ada8, 0xaaff80b8),
RAPIDJSON_UINT64_C2(0x87625f05, 0x6c7c4a8b), RAPIDJSON_UINT64_C2(0xc9bcff60, 0x34c13053),
RAPIDJSON_UINT64_C2(0x964e858c, 0x91ba2655), RAPIDJSON_UINT64_C2(0xdff97724, 0x70297ebd),
RAPIDJSON_UINT64_C2(0xa6dfbd9f, 0xb8e5b88f), RAPIDJSON_UINT64_C2(0xf8a95fcf, 0x88747d94),
RAPIDJSON_UINT64_C2(0xb9447093, 0x8fa89bcf), RAPIDJSON_UINT64_C2(0x8a08f0f8, 0xbf0f156b),
RAPIDJSON_UINT64_C2(0xcdb02555, 0x653131b6), RAPIDJSON_UINT64_C2(0x993fe2c6, 0xd07b7fac),
RAPIDJSON_UINT64_C2(0xe45c10c4, 0x2a2b3b06), RAPIDJSON_UINT64_C2(0xaa242499, 0x697392d3),
RAPIDJSON_UINT64_C2(0xfd87b5f2, 0x8300ca0e), RAPIDJSON_UINT64_C2(0xbce50864, 0x92111aeb),
RAPIDJSON_UINT64_C2(0x8cbccc09, 0x6f5088cc), RAPIDJSON_UINT64_C2(0xd1b71758, 0xe219652c),
RAPIDJSON_UINT64_C2(0x9c400000, 0x00000000), RAPIDJSON_UINT64_C2(0xe8d4a510, 0x00000000),
RAPIDJSON_UINT64_C2(0xad78ebc5, 0xac620000), RAPIDJSON_UINT64_C2(0x813f3978, 0xf8940984),
RAPIDJSON_UINT64_C2(0xc097ce7b, 0xc90715b3), RAPIDJSON_UINT64_C2(0x8f7e32ce, 0x7bea5c70),
RAPIDJSON_UINT64_C2(0xd5d238a4, 0xabe98068), RAPIDJSON_UINT64_C2(0x9f4f2726, 0x179a2245),
RAPIDJSON_UINT64_C2(0xed63a231, 0xd4c4fb27), RAPIDJSON_UINT64_C2(0xb0de6538, 0x8cc8ada8),
RAPIDJSON_UINT64_C2(0x83c7088e, 0x1aab65db), RAPIDJSON_UINT64_C2(0xc45d1df9, 0x42711d9a),
RAPIDJSON_UINT64_C2(0x924d692c, 0xa61be758), RAPIDJSON_UINT64_C2(0xda01ee64, 0x1a708dea),
RAPIDJSON_UINT64_C2(0xa26da399, 0x9aef774a), RAPIDJSON_UINT64_C2(0xf209787b, 0xb47d6b85),
RAPIDJSON_UINT64_C2(0xb454e4a1, 0x79dd1877), RAPIDJSON_UINT64_C2(0x865b8692, 0x5b9bc5c2),
RAPIDJSON_UINT64_C2(0xc83553c5, 0xc8965d3d), RAPIDJSON_UINT64_C2(0x952ab45c, 0xfa97a0b3),
RAPIDJSON_UINT64_C2(0xde469fbd, 0x99a05fe3), RAPIDJSON_UINT64_C2(0xa59bc234, 0xdb398c25),
RAPIDJSON_UINT64_C2(0xf6c69a72, 0xa3989f5c), RAPIDJSON_UINT64_C2(0xb7dcbf53, 0x54e9bece),
RAPIDJSON_UINT64_C2(0x88fcf317, 0xf22241e2), RAPIDJSON_UINT64_C2(0xcc20ce9b, 0xd35c78a5),
RAPIDJSON_UINT64_C2(0x98165af3, 0x7b2153df), RAPIDJSON_UINT64_C2(0xe2a0b5dc, 0x971f303a),
RAPIDJSON_UINT64_C2(0xa8d9d153, 0x5ce3b396), RAPIDJSON_UINT64_C2(0xfb9b7cd9, 0xa4a7443c),
RAPIDJSON_UINT64_C2(0xbb764c4c, 0xa7a44410), RAPIDJSON_UINT64_C2(0x8bab8eef, 0xb6409c1a),
RAPIDJSON_UINT64_C2(0xd01fef10, 0xa657842c), RAPIDJSON_UINT64_C2(0x9b10a4e5, 0xe9913129),
RAPIDJSON_UINT64_C2(0xe7109bfb, 0xa19c0c9d), RAPIDJSON_UINT64_C2(0xac2820d9, 0x623bf429),
RAPIDJSON_UINT64_C2(0x80444b5e, 0x7aa7cf85), RAPIDJSON_UINT64_C2(0xbf21e440, 0x03acdd2d),
RAPIDJSON_UINT64_C2(0x8e679c2f, 0x5e44ff8f), RAPIDJSON_UINT64_C2(0xd433179d, 0x9c8cb841),
RAPIDJSON_UINT64_C2(0x9e19db92, 0xb4e31ba9), RAPIDJSON_UINT64_C2(0xeb96bf6e, 0xbadf77d9),
RAPIDJSON_UINT64_C2(0xaf87023b, 0x9bf0ee6b)
};
static const int16_t kCachedPowers_E[] = {
-1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980,
-954, -927, -901, -874, -847, -821, -794, -768, -741, -715,
-688, -661, -635, -608, -582, -555, -529, -502, -475, -449,
-422, -396, -369, -343, -316, -289, -263, -236, -210, -183,
-157, -130, -103, -77, -50, -24, 3, 30, 56, 83,
109, 136, 162, 189, 216, 242, 269, 295, 322, 348,
375, 402, 428, 455, 481, 508, 534, 561, 588, 614,
641, 667, 694, 720, 747, 774, 800, 827, 853, 880,
907, 933, 960, 986, 1013, 1039, 1066
};
return DiyFp(kCachedPowers_F[index], kCachedPowers_E[index]);
}
inline DiyFp GetCachedPower(int e, int* K) {
//int k = static_cast<int>(ceil((-61 - e) * 0.30102999566398114)) + 374;
double dk = (-61 - e) * 0.30102999566398114 + 347; // dk must be positive, so can do ceiling in positive
int k = static_cast<int>(dk);
if (k != dk)
k++;
unsigned index = static_cast<unsigned>((k >> 3) + 1);
*K = -(-348 + static_cast<int>(index << 3)); // decimal exponent no need lookup table
return GetCachedPowerByIndex(index);
}
inline DiyFp GetCachedPower10(int exp, int *outExp) {
unsigned index = (exp + 348) / 8;
*outExp = -348 + index * 8;
return GetCachedPowerByIndex(index);
}
#ifdef __GNUC__
RAPIDJSON_DIAG_POP
#endif
} // namespace internal
RAPIDJSON_NAMESPACE_END
#endif // RAPIDJSON_DIYFP_H_
......@@ -25,14 +25,8 @@
#ifndef RAPIDJSON_DTOA_
#define RAPIDJSON_DTOA_
#if defined(_MSC_VER)
#include <intrin.h>
#if defined(_M_AMD64)
#pragma intrinsic(_BitScanReverse64)
#endif
#endif
#include "itoa.h" // GetDigitsLut()
#include "diyfp.h"
RAPIDJSON_NAMESPACE_BEGIN
namespace internal {
......@@ -42,193 +36,6 @@ RAPIDJSON_DIAG_PUSH
RAPIDJSON_DIAG_OFF(effc++)
#endif
struct DiyFp {
DiyFp() {}
DiyFp(uint64_t fp, int exp) : f(fp), e(exp) {}
DiyFp(double d) {
union {
double d;
uint64_t u64;
} u = { d };
int biased_e = static_cast<int>((u.u64 & kDpExponentMask) >> kDpSignificandSize);
uint64_t significand = (u.u64 & kDpSignificandMask);
if (biased_e != 0) {
f = significand + kDpHiddenBit;
e = biased_e - kDpExponentBias;
}
else {
f = significand;
e = kDpMinExponent + 1;
}
}
DiyFp operator-(const DiyFp& rhs) const {
return DiyFp(f - rhs.f, e);
}
DiyFp operator*(const DiyFp& rhs) const {
#if defined(_MSC_VER) && defined(_M_AMD64)
uint64_t h;
uint64_t l = _umul128(f, rhs.f, &h);
if (l & (uint64_t(1) << 63)) // rounding
h++;
return DiyFp(h, e + rhs.e + 64);
#elif (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) && defined(__x86_64__)
unsigned __int128 p = static_cast<unsigned __int128>(f) * static_cast<unsigned __int128>(rhs.f);
uint64_t h = static_cast<uint64_t>(p >> 64);
uint64_t l = static_cast<uint64_t>(p);
if (l & (uint64_t(1) << 63)) // rounding
h++;
return DiyFp(h, e + rhs.e + 64);
#else
const uint64_t M32 = 0xFFFFFFFF;
const uint64_t a = f >> 32;
const uint64_t b = f & M32;
const uint64_t c = rhs.f >> 32;
const uint64_t d = rhs.f & M32;
const uint64_t ac = a * c;
const uint64_t bc = b * c;
const uint64_t ad = a * d;
const uint64_t bd = b * d;
uint64_t tmp = (bd >> 32) + (ad & M32) + (bc & M32);
tmp += 1U << 31; /// mult_round
return DiyFp(ac + (ad >> 32) + (bc >> 32) + (tmp >> 32), e + rhs.e + 64);
#endif
}
DiyFp Normalize() const {
#if defined(_MSC_VER) && defined(_M_AMD64)
unsigned long index;
_BitScanReverse64(&index, f);
return DiyFp(f << (63 - index), e - (63 - index));
#elif defined(__GNUC__)
int s = __builtin_clzll(f);
return DiyFp(f << s, e - s);
#else
DiyFp res = *this;
while (!(res.f & kDpHiddenBit)) {
res.f <<= 1;
res.e--;
}
res.f <<= (kDiySignificandSize - kDpSignificandSize - 1);
res.e = res.e - (kDiySignificandSize - kDpSignificandSize - 1);
return res;
#endif
}
DiyFp NormalizeBoundary() const {
#if defined(_MSC_VER) && defined(_M_AMD64)
unsigned long index;
_BitScanReverse64(&index, f);
return DiyFp (f << (63 - index), e - (63 - index));
#else
DiyFp res = *this;
while (!(res.f & (kDpHiddenBit << 1))) {
res.f <<= 1;
res.e--;
}
res.f <<= (kDiySignificandSize - kDpSignificandSize - 2);
res.e = res.e - (kDiySignificandSize - kDpSignificandSize - 2);
return res;
#endif
}
void NormalizedBoundaries(DiyFp* minus, DiyFp* plus) const {
DiyFp pl = DiyFp((f << 1) + 1, e - 1).NormalizeBoundary();
DiyFp mi = (f == kDpHiddenBit) ? DiyFp((f << 2) - 1, e - 2) : DiyFp((f << 1) - 1, e - 1);
mi.f <<= mi.e - pl.e;
mi.e = pl.e;
*plus = pl;
*minus = mi;
}
static const int kDiySignificandSize = 64;
static const int kDpSignificandSize = 52;
static const int kDpExponentBias = 0x3FF + kDpSignificandSize;
static const int kDpMinExponent = -kDpExponentBias;
static const uint64_t kDpExponentMask = RAPIDJSON_UINT64_C2(0x7FF00000, 0x00000000);
static const uint64_t kDpSignificandMask = RAPIDJSON_UINT64_C2(0x000FFFFF, 0xFFFFFFFF);
static const uint64_t kDpHiddenBit = RAPIDJSON_UINT64_C2(0x00100000, 0x00000000);
uint64_t f;
int e;
};
inline DiyFp GetCachedPower(int e, int* K) {
// 10^-348, 10^-340, ..., 10^340
static const uint64_t kCachedPowers_F[] = {
RAPIDJSON_UINT64_C2(0xfa8fd5a0, 0x081c0288), RAPIDJSON_UINT64_C2(0xbaaee17f, 0xa23ebf76),
RAPIDJSON_UINT64_C2(0x8b16fb20, 0x3055ac76), RAPIDJSON_UINT64_C2(0xcf42894a, 0x5dce35ea),
RAPIDJSON_UINT64_C2(0x9a6bb0aa, 0x55653b2d), RAPIDJSON_UINT64_C2(0xe61acf03, 0x3d1a45df),
RAPIDJSON_UINT64_C2(0xab70fe17, 0xc79ac6ca), RAPIDJSON_UINT64_C2(0xff77b1fc, 0xbebcdc4f),
RAPIDJSON_UINT64_C2(0xbe5691ef, 0x416bd60c), RAPIDJSON_UINT64_C2(0x8dd01fad, 0x907ffc3c),
RAPIDJSON_UINT64_C2(0xd3515c28, 0x31559a83), RAPIDJSON_UINT64_C2(0x9d71ac8f, 0xada6c9b5),
RAPIDJSON_UINT64_C2(0xea9c2277, 0x23ee8bcb), RAPIDJSON_UINT64_C2(0xaecc4991, 0x4078536d),
RAPIDJSON_UINT64_C2(0x823c1279, 0x5db6ce57), RAPIDJSON_UINT64_C2(0xc2109436, 0x4dfb5637),
RAPIDJSON_UINT64_C2(0x9096ea6f, 0x3848984f), RAPIDJSON_UINT64_C2(0xd77485cb, 0x25823ac7),
RAPIDJSON_UINT64_C2(0xa086cfcd, 0x97bf97f4), RAPIDJSON_UINT64_C2(0xef340a98, 0x172aace5),
RAPIDJSON_UINT64_C2(0xb23867fb, 0x2a35b28e), RAPIDJSON_UINT64_C2(0x84c8d4df, 0xd2c63f3b),
RAPIDJSON_UINT64_C2(0xc5dd4427, 0x1ad3cdba), RAPIDJSON_UINT64_C2(0x936b9fce, 0xbb25c996),
RAPIDJSON_UINT64_C2(0xdbac6c24, 0x7d62a584), RAPIDJSON_UINT64_C2(0xa3ab6658, 0x0d5fdaf6),
RAPIDJSON_UINT64_C2(0xf3e2f893, 0xdec3f126), RAPIDJSON_UINT64_C2(0xb5b5ada8, 0xaaff80b8),
RAPIDJSON_UINT64_C2(0x87625f05, 0x6c7c4a8b), RAPIDJSON_UINT64_C2(0xc9bcff60, 0x34c13053),
RAPIDJSON_UINT64_C2(0x964e858c, 0x91ba2655), RAPIDJSON_UINT64_C2(0xdff97724, 0x70297ebd),
RAPIDJSON_UINT64_C2(0xa6dfbd9f, 0xb8e5b88f), RAPIDJSON_UINT64_C2(0xf8a95fcf, 0x88747d94),
RAPIDJSON_UINT64_C2(0xb9447093, 0x8fa89bcf), RAPIDJSON_UINT64_C2(0x8a08f0f8, 0xbf0f156b),
RAPIDJSON_UINT64_C2(0xcdb02555, 0x653131b6), RAPIDJSON_UINT64_C2(0x993fe2c6, 0xd07b7fac),
RAPIDJSON_UINT64_C2(0xe45c10c4, 0x2a2b3b06), RAPIDJSON_UINT64_C2(0xaa242499, 0x697392d3),
RAPIDJSON_UINT64_C2(0xfd87b5f2, 0x8300ca0e), RAPIDJSON_UINT64_C2(0xbce50864, 0x92111aeb),
RAPIDJSON_UINT64_C2(0x8cbccc09, 0x6f5088cc), RAPIDJSON_UINT64_C2(0xd1b71758, 0xe219652c),
RAPIDJSON_UINT64_C2(0x9c400000, 0x00000000), RAPIDJSON_UINT64_C2(0xe8d4a510, 0x00000000),
RAPIDJSON_UINT64_C2(0xad78ebc5, 0xac620000), RAPIDJSON_UINT64_C2(0x813f3978, 0xf8940984),
RAPIDJSON_UINT64_C2(0xc097ce7b, 0xc90715b3), RAPIDJSON_UINT64_C2(0x8f7e32ce, 0x7bea5c70),
RAPIDJSON_UINT64_C2(0xd5d238a4, 0xabe98068), RAPIDJSON_UINT64_C2(0x9f4f2726, 0x179a2245),
RAPIDJSON_UINT64_C2(0xed63a231, 0xd4c4fb27), RAPIDJSON_UINT64_C2(0xb0de6538, 0x8cc8ada8),
RAPIDJSON_UINT64_C2(0x83c7088e, 0x1aab65db), RAPIDJSON_UINT64_C2(0xc45d1df9, 0x42711d9a),
RAPIDJSON_UINT64_C2(0x924d692c, 0xa61be758), RAPIDJSON_UINT64_C2(0xda01ee64, 0x1a708dea),
RAPIDJSON_UINT64_C2(0xa26da399, 0x9aef774a), RAPIDJSON_UINT64_C2(0xf209787b, 0xb47d6b85),
RAPIDJSON_UINT64_C2(0xb454e4a1, 0x79dd1877), RAPIDJSON_UINT64_C2(0x865b8692, 0x5b9bc5c2),
RAPIDJSON_UINT64_C2(0xc83553c5, 0xc8965d3d), RAPIDJSON_UINT64_C2(0x952ab45c, 0xfa97a0b3),
RAPIDJSON_UINT64_C2(0xde469fbd, 0x99a05fe3), RAPIDJSON_UINT64_C2(0xa59bc234, 0xdb398c25),
RAPIDJSON_UINT64_C2(0xf6c69a72, 0xa3989f5c), RAPIDJSON_UINT64_C2(0xb7dcbf53, 0x54e9bece),
RAPIDJSON_UINT64_C2(0x88fcf317, 0xf22241e2), RAPIDJSON_UINT64_C2(0xcc20ce9b, 0xd35c78a5),
RAPIDJSON_UINT64_C2(0x98165af3, 0x7b2153df), RAPIDJSON_UINT64_C2(0xe2a0b5dc, 0x971f303a),
RAPIDJSON_UINT64_C2(0xa8d9d153, 0x5ce3b396), RAPIDJSON_UINT64_C2(0xfb9b7cd9, 0xa4a7443c),
RAPIDJSON_UINT64_C2(0xbb764c4c, 0xa7a44410), RAPIDJSON_UINT64_C2(0x8bab8eef, 0xb6409c1a),
RAPIDJSON_UINT64_C2(0xd01fef10, 0xa657842c), RAPIDJSON_UINT64_C2(0x9b10a4e5, 0xe9913129),
RAPIDJSON_UINT64_C2(0xe7109bfb, 0xa19c0c9d), RAPIDJSON_UINT64_C2(0xac2820d9, 0x623bf429),
RAPIDJSON_UINT64_C2(0x80444b5e, 0x7aa7cf85), RAPIDJSON_UINT64_C2(0xbf21e440, 0x03acdd2d),
RAPIDJSON_UINT64_C2(0x8e679c2f, 0x5e44ff8f), RAPIDJSON_UINT64_C2(0xd433179d, 0x9c8cb841),
RAPIDJSON_UINT64_C2(0x9e19db92, 0xb4e31ba9), RAPIDJSON_UINT64_C2(0xeb96bf6e, 0xbadf77d9),
RAPIDJSON_UINT64_C2(0xaf87023b, 0x9bf0ee6b)
};
static const int16_t kCachedPowers_E[] = {
-1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980,
-954, -927, -901, -874, -847, -821, -794, -768, -741, -715,
-688, -661, -635, -608, -582, -555, -529, -502, -475, -449,
-422, -396, -369, -343, -316, -289, -263, -236, -210, -183,
-157, -130, -103, -77, -50, -24, 3, 30, 56, 83,
109, 136, 162, 189, 216, 242, 269, 295, 322, 348,
375, 402, 428, 455, 481, 508, 534, 561, 588, 614,
641, 667, 694, 720, 747, 774, 800, 827, 853, 880,
907, 933, 960, 986, 1013, 1039, 1066
};
//int k = static_cast<int>(ceil((-61 - e) * 0.30102999566398114)) + 374;
double dk = (-61 - e) * 0.30102999566398114 + 347; // dk must be positive, so can do ceiling in positive
int k = static_cast<int>(dk);
if (k != dk)
k++;
unsigned index = static_cast<unsigned>((k >> 3) + 1);
*K = -(-348 + static_cast<int>(index << 3)); // decimal exponent no need lookup table
return DiyFp(kCachedPowers_F[index], kCachedPowers_E[index]);
}
inline void GrisuRound(char* buffer, int len, uint64_t delta, uint64_t rest, uint64_t ten_kappa, uint64_t wp_w) {
while (rest < wp_w && delta - rest >= ten_kappa &&
(rest + ten_kappa < wp_w || /// closer
......
// Copyright (C) 2011 Milo Yip
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef RAPIDJSON_IEEE754_
#define RAPIDJSON_IEEE754_
#include "../rapidjson.h"
RAPIDJSON_NAMESPACE_BEGIN
namespace internal {
class Double {
public:
Double() {}
Double(double d) : d(d) {}
Double(uint64_t u) : u(u) {}
double Value() const { return d; }
uint64_t Uint64Value() const { return u; }
double NextPositiveDouble() const {
RAPIDJSON_ASSERT(!Sign());
return Double(u + 1).Value();
}
double PreviousPositiveDouble() const {
RAPIDJSON_ASSERT(!Sign());
if (d == 0.0)
return 0.0;
else
return Double(u - 1).Value();
}
bool Sign() const { return (u & kSignMask) != 0; }
uint64_t Significand() const { return u & kSignificandMask; }
int Exponent() const { return ((u & kExponentMask) >> kSignificandSize) - kExponentBias; }
bool IsNan() const { return (u & kExponentMask) == kExponentMask && Significand() != 0; }
bool IsInf() const { return (u & kExponentMask) == kExponentMask && Significand() == 0; }
bool IsNormal() const { return (u & kExponentMask) != 0 || Significand() == 0; }
uint64_t IntegerSignificand() const { return IsNormal() ? Significand() | kHiddenBit : Significand(); }
int IntegerExponent() const { return (IsNormal() ? Exponent() : kDenormalExponent) - kSignificandSize; }
uint64_t ToBias() const { return (u & kSignMask) ? ~u + 1 : u | kSignMask; }
static unsigned EffectiveSignificandSize(int order) {
if (order >= -1021)
return 53;
else if (order <= -1074)
return 0;
else
return order + 1074;
}
private:
static const int kSignificandSize = 52;
static const int kExponentBias = 0x3FF;
static const int kDenormalExponent = 1 - kExponentBias;
static const uint64_t kSignMask = RAPIDJSON_UINT64_C2(0x80000000, 0x00000000);
static const uint64_t kExponentMask = RAPIDJSON_UINT64_C2(0x7FF00000, 0x00000000);
static const uint64_t kSignificandMask = RAPIDJSON_UINT64_C2(0x000FFFFF, 0xFFFFFFFF);
static const uint64_t kHiddenBit = RAPIDJSON_UINT64_C2(0x00100000, 0x00000000);
union {
double d;
uint64_t u;
};
};
} // namespace internal
RAPIDJSON_NAMESPACE_END
#endif // RAPIDJSON_IEEE754_
// Copyright (C) 2011 Milo Yip
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef RAPIDJSON_STRTOD_
#define RAPIDJSON_STRTOD_
#include "../rapidjson.h"
#include "ieee754.h"
#include "biginteger.h"
#include "diyfp.h"
#include "pow10.h"
RAPIDJSON_NAMESPACE_BEGIN
namespace internal {
inline double FastPath(double significand, int exp) {
if (exp < -308)
return 0.0;
else if (exp >= 0)
return significand * internal::Pow10(exp);
else
return significand / internal::Pow10(-exp);
}
inline double StrtodNormalPrecision(double d, int p) {
if (p < -308) {
// Prevent expSum < -308, making Pow10(p) = 0
d = FastPath(d, -308);
d = FastPath(d, p + 308);
}
else
d = FastPath(d, p);
return d;
}
template <typename T>
inline T Min3(T a, T b, T c) {
T m = a;
if (m > b) m = b;
if (m > c) m = c;
return m;
}
inline int CheckWithinHalfULP(double b, const BigInteger& d, int dExp, bool* adjustToNegative) {
const Double db(b);
const uint64_t bInt = db.IntegerSignificand();
const int bExp = db.IntegerExponent();
const int hExp = bExp - 1;
int dS_Exp2 = 0, dS_Exp5 = 0, bS_Exp2 = 0, bS_Exp5 = 0, hS_Exp2 = 0, hS_Exp5 = 0;
// Adjust for decimal exponent
if (dExp >= 0) {
dS_Exp2 += dExp;
dS_Exp5 += dExp;
}
else {
bS_Exp2 -= dExp;
bS_Exp5 -= dExp;
hS_Exp2 -= dExp;
hS_Exp5 -= dExp;
}
// Adjust for binary exponent
if (bExp >= 0)
bS_Exp2 += bExp;
else {
dS_Exp2 -= bExp;
hS_Exp2 -= bExp;
}
// Adjust for half ulp exponent
if (hExp >= 0)
hS_Exp2 += hExp;
else {
dS_Exp2 -= hExp;
bS_Exp2 -= hExp;
}
// Remove common power of two factor from all three scaled values
int common_Exp2 = Min3(dS_Exp2, bS_Exp2, hS_Exp2);
dS_Exp2 -= common_Exp2;
bS_Exp2 -= common_Exp2;
hS_Exp2 -= common_Exp2;
BigInteger dS = d;
dS.MultiplyPow5(dS_Exp5) <<= dS_Exp2;
BigInteger bS(bInt);
bS.MultiplyPow5(bS_Exp5) <<= bS_Exp2;
BigInteger hS(1);
hS.MultiplyPow5(hS_Exp5) <<= hS_Exp2;
BigInteger delta(0);
*adjustToNegative = dS.Difference(bS, &delta);
int cmp = delta.Compare(hS);
// If delta is within 1/2 ULP, check for special case when significand is power of two.
// In this case, need to compare with 1/2h in the lower bound.
if (cmp < 0 && *adjustToNegative && // within and dS < bS
db.IsNormal() && (bInt & (bInt - 1)) == 0 && // Power of 2
db.Uint64Value() != RAPIDJSON_UINT64_C2(0x00100000, 0x00000000)) // minimum normal number must not do this
{
delta <<= 1;
return delta.Compare(hS);
}
return cmp;
}
inline bool StrtodFast(double d, int p, double* result) {
// Use fast path for string-to-double conversion if possible
// see http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
if (p > 22 && p < 22 + 16) {
// Fast Path Cases In Disguise
d *= internal::Pow10(p - 22);
p = 22;
}
if (p >= -22 && p <= 22 && d <= 9007199254740991.0) { // 2^53 - 1
*result = FastPath(d, p);
return true;
}
else
return false;
}
// Compute an approximation and see if it is within 1/2 ULP
inline bool StrtodDiyFp(const char* decimals, size_t length, size_t decimalPosition, int exp, double* result) {
uint64_t significand = 0;
size_t i = 0; // 2^64 - 1 = 18446744073709551615, 1844674407370955161 = 0x1999999999999999
for (; i < length; i++) {
if (significand > RAPIDJSON_UINT64_C2(0x19999999, 0x99999999) ||
(significand == RAPIDJSON_UINT64_C2(0x19999999, 0x99999999) && decimals[i] > '5'))
break;
significand = significand * 10 + (decimals[i] - '0');
}
if (i < length && decimals[i] >= '5') // Rounding
significand++;
size_t remaining = length - i;
const unsigned kUlpShift = 3;
const unsigned kUlp = 1 << kUlpShift;
int error = (remaining == 0) ? 0 : kUlp / 2;
DiyFp v(significand, 0);
v = v.Normalize();
error <<= -v.e;
const int dExp = (int)decimalPosition - (int)i + exp;
int actualExp;
DiyFp cachedPower = GetCachedPower10(dExp, &actualExp);
if (actualExp != dExp) {
static const DiyFp kPow10[] = {
DiyFp(RAPIDJSON_UINT64_C2(0xa0000000, 00000000), -60), // 10^1
DiyFp(RAPIDJSON_UINT64_C2(0xc8000000, 00000000), -57), // 10^2
DiyFp(RAPIDJSON_UINT64_C2(0xfa000000, 00000000), -54), // 10^3
DiyFp(RAPIDJSON_UINT64_C2(0x9c400000, 00000000), -50), // 10^4
DiyFp(RAPIDJSON_UINT64_C2(0xc3500000, 00000000), -47), // 10^5
DiyFp(RAPIDJSON_UINT64_C2(0xf4240000, 00000000), -44), // 10^6
DiyFp(RAPIDJSON_UINT64_C2(0x98968000, 00000000), -40) // 10^7
};
int adjustment = dExp - actualExp - 1;
RAPIDJSON_ASSERT(adjustment >= 0 && adjustment < 7);
v = v * kPow10[adjustment];
if (length + adjustment > 19) // has more digits than decimal digits in 64-bit
error += kUlp / 2;
}
v = v * cachedPower;
error += kUlp + (error == 0 ? 0 : 1);
const int oldExp = v.e;
v = v.Normalize();
error <<= oldExp - v.e;
const unsigned effectiveSignificandSize = Double::EffectiveSignificandSize(64 + v.e);
unsigned precisionSize = 64 - effectiveSignificandSize;
if (precisionSize + kUlpShift >= 64) {
unsigned scaleExp = (precisionSize + kUlpShift) - 63;
v.f >>= scaleExp;
v.e += scaleExp;
error = (error >> scaleExp) + 1 + kUlp;
precisionSize -= scaleExp;
}
DiyFp rounded(v.f >> precisionSize, v.e + precisionSize);
const uint64_t precisionBits = (v.f & ((uint64_t(1) << precisionSize) - 1)) * kUlp;
const uint64_t halfWay = (uint64_t(1) << (precisionSize - 1)) * kUlp;
if (precisionBits >= halfWay + error)
rounded.f++;
*result = rounded.ToDouble();
return halfWay - error >= precisionBits || precisionBits >= halfWay + error;
}
inline double StrtodBigInteger(double approx, const char* decimals, size_t length, size_t decimalPosition, int exp) {
const BigInteger dInt(decimals, length);
const int dExp = (int)decimalPosition - (int)length + exp;
Double a(approx);
for (int i = 0; i < 10; i++) {
bool adjustToNegative;
int cmp = CheckWithinHalfULP(a.Value(), dInt, dExp, &adjustToNegative);
if (cmp < 0)
return a.Value(); // within half ULP
else if (cmp == 0) {
// Round towards even
if (a.Significand() & 1)
return adjustToNegative ? a.PreviousPositiveDouble() : a.NextPositiveDouble();
else
return a.Value();
}
else // adjustment
a = adjustToNegative ? a.PreviousPositiveDouble() : a.NextPositiveDouble();
}
// This should not happen, but in case there is really a bug, break the infinite-loop
return a.Value();
}
inline double StrtodFullPrecision(double d, int p, const char* decimals, size_t length, size_t decimalPosition, int exp) {
RAPIDJSON_ASSERT(d >= 0.0);
RAPIDJSON_ASSERT(length >= 1);
double result;
if (StrtodFast(d, p, &result))
return result;
// Trim leading zeros
while (*decimals == '0' && length > 1) {
length--;
decimals++;
decimalPosition--;
}
// Trim trailing zeros
while (decimals[length - 1] == '0' && length > 1) {
length--;
decimalPosition--;
exp++;
}
// Trim right-most digits
const int kMaxDecimalDigit = 780;
if ((int)length > kMaxDecimalDigit) {
exp += (int(length) - kMaxDecimalDigit);
length = kMaxDecimalDigit;
}
// If too small, underflow to zero
if (int(length) + exp < -324)
return 0.0;
if (StrtodDiyFp(decimals, length, decimalPosition, exp, &result))
return result;
// Use approximation from StrtodDiyFp and make adjustment with BigInteger comparison
return StrtodBigInteger(result, decimals, length, decimalPosition, exp);
}
} // namespace internal
RAPIDJSON_NAMESPACE_END
#endif // RAPIDJSON_STRTOD_
......@@ -26,8 +26,8 @@
#include "rapidjson.h"
#include "encodings.h"
#include "internal/meta.h"
#include "internal/pow10.h"
#include "internal/stack.h"
#include "internal/strtod.h"
#if defined(RAPIDJSON_SIMD) && defined(_MSC_VER)
#include <intrin.h>
......@@ -45,6 +45,11 @@ RAPIDJSON_DIAG_OFF(4127) // conditional expression is constant
RAPIDJSON_DIAG_OFF(4702) // unreachable code
#endif
#ifdef __GNUC__
RAPIDJSON_DIAG_PUSH
RAPIDJSON_DIAG_OFF(effc++)
#endif
//!@cond RAPIDJSON_HIDDEN_FROM_DOXYGEN
#define RAPIDJSON_NOTHING /* deliberately empty */
#ifndef RAPIDJSON_PARSE_ERROR_EARLY_RETURN
......@@ -121,15 +126,27 @@ RAPIDJSON_NAMESPACE_BEGIN
///////////////////////////////////////////////////////////////////////////////
// ParseFlag
/*! \def RAPIDJSON_PARSE_DEFAULT_FLAGS
\ingroup RAPIDJSON_CONFIG
\brief User-defined kParseDefaultFlags definition.
User can define this as any \c ParseFlag combinations.
*/
#ifndef RAPIDJSON_PARSE_DEFAULT_FLAGS
#define RAPIDJSON_PARSE_DEFAULT_FLAGS kParseNoFlags
#endif
//! Combination of parseFlags
/*! \see Reader::Parse, Document::Parse, Document::ParseInsitu, Document::ParseStream
*/
enum ParseFlag {
kParseDefaultFlags = 0, //!< Default parse flags. Non-destructive parsing. Text strings are decoded into allocated buffer.
kParseNoFlags = 0, //!< No flags are set.
kParseInsituFlag = 1, //!< In-situ(destructive) parsing.
kParseValidateEncodingFlag = 2, //!< Validate encoding of JSON strings.
kParseIterativeFlag = 4, //!< Iterative(constant complexity in terms of function call stack size) parsing.
kParseStopWhenDoneFlag = 8 //!< After parsing a complete JSON root from stream, stop further processing the rest of stream. When this flag is used, parser will not generate kParseErrorDocumentRootNotSingular error.
kParseStopWhenDoneFlag = 8, //!< After parsing a complete JSON root from stream, stop further processing the rest of stream. When this flag is used, parser will not generate kParseErrorDocumentRootNotSingular error.
kParseFullPrecisionFlag = 16, //!< Parse number in full precision (but slower).
kParseDefaultFlags = RAPIDJSON_PARSE_DEFAULT_FLAGS //!< Default parse flags. Can be customized by defining RAPIDJSON_PARSE_DEFAULT_FLAGS
};
///////////////////////////////////////////////////////////////////////////////
......@@ -600,21 +617,27 @@ private:
return codepoint;
}
template <typename CharType>
class StackStream {
public:
typedef typename TargetEncoding::Ch Ch;
typedef CharType Ch;
StackStream(internal::Stack<StackAllocator>& stack) : stack_(stack), length_(0) {}
RAPIDJSON_FORCEINLINE void Put(Ch c) {
*stack_.template Push<Ch>() = c;
++length_;
}
internal::Stack<StackAllocator>& stack_;
SizeType length_;
size_t Length() const { return length_; }
Ch* Pop() {
return stack_.template Pop<Ch>(length_);
}
private:
StackStream(const StackStream&);
StackStream& operator=(const StackStream&);
internal::Stack<StackAllocator>& stack_;
SizeType length_;
};
// Parse string and generate String event. Different code paths for kParseInsituFlag.
......@@ -634,11 +657,12 @@ private:
success = (isKey ? handler.Key(str, SizeType(length), false) : handler.String(str, SizeType(length), false));
}
else {
StackStream stackStream(stack_);
StackStream<typename TargetEncoding::Ch> stackStream(stack_);
ParseStringToStream<parseFlags, SourceEncoding, TargetEncoding>(s, stackStream);
RAPIDJSON_PARSE_ERROR_EARLY_RETURN_VOID;
const typename TargetEncoding::Ch* const str = stack_.template Pop<typename TargetEncoding::Ch>(stackStream.length_);
success = (isKey ? handler.Key(str, stackStream.length_ - 1, true) : handler.String(str, stackStream.length_ - 1, true));
SizeType length = static_cast<SizeType>(stackStream.Length()) - 1;
const typename TargetEncoding::Ch* const str = stackStream.Pop();
success = (isKey ? handler.Key(str, length, true) : handler.String(str, length, true));
}
if (!success)
RAPIDJSON_PARSE_ERROR(kParseErrorTermination, s.Tell());
......@@ -705,22 +729,55 @@ private:
}
}
inline double StrtodFastPath(double significand, int exp) {
// Fast path only works on limited range of values.
// But for simplicity and performance, currently only implement this.
// see http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
if (exp < -308)
return 0.0;
else if (exp >= 0)
return significand * internal::Pow10(exp);
else
return significand / internal::Pow10(-exp);
}
template<typename InputStream, bool backup>
class NumberStream {};
template<typename InputStream>
class NumberStream<InputStream, false> {
public:
NumberStream(GenericReader& reader, InputStream& is) : is(is) { (void)reader; }
~NumberStream() {}
RAPIDJSON_FORCEINLINE Ch Peek() const { return is.Peek(); }
RAPIDJSON_FORCEINLINE Ch TakePush() { return is.Take(); }
RAPIDJSON_FORCEINLINE Ch Take() { return is.Take(); }
size_t Tell() { return is.Tell(); }
size_t Length() { return 0; }
const char* Pop() { return 0; }
protected:
NumberStream& operator=(const NumberStream&);
InputStream& is;
};
template<typename InputStream>
class NumberStream<InputStream, true> : public NumberStream<InputStream, false> {
typedef NumberStream<InputStream, false> Base;
public:
NumberStream(GenericReader& reader, InputStream& is) : NumberStream<InputStream, false>(reader, is), stackStream(reader.stack_) {}
~NumberStream() {}
RAPIDJSON_FORCEINLINE Ch TakePush() {
stackStream.Put((char)Base::is.Peek());
return Base::is.Take();
}
size_t Length() { return stackStream.Length(); }
const char* Pop() {
stackStream.Put('\0');
return stackStream.Pop();
}
private:
StackStream<char> stackStream;
};
template<unsigned parseFlags, typename InputStream, typename Handler>
void ParseNumber(InputStream& is, Handler& handler) {
internal::StreamLocalCopy<InputStream> copy(is);
InputStream& s(copy.s);
NumberStream<InputStream, (parseFlags & kParseFullPrecisionFlag) != 0> s(*this, copy.s);
// Parse minus
bool minus = false;
......@@ -733,12 +790,13 @@ private:
unsigned i = 0;
uint64_t i64 = 0;
bool use64bit = false;
int significandDigit = 0;
if (s.Peek() == '0') {
i = 0;
s.Take();
s.TakePush();
}
else if (s.Peek() >= '1' && s.Peek() <= '9') {
i = static_cast<unsigned>(s.Take() - '0');
i = static_cast<unsigned>(s.TakePush() - '0');
if (minus)
while (s.Peek() >= '0' && s.Peek() <= '9') {
......@@ -749,7 +807,8 @@ private:
break;
}
}
i = i * 10 + static_cast<unsigned>(s.Take() - '0');
i = i * 10 + static_cast<unsigned>(s.TakePush() - '0');
significandDigit++;
}
else
while (s.Peek() >= '0' && s.Peek() <= '9') {
......@@ -760,35 +819,38 @@ private:
break;
}
}
i = i * 10 + static_cast<unsigned>(s.Take() - '0');
i = i * 10 + static_cast<unsigned>(s.TakePush() - '0');
significandDigit++;
}
}
else
RAPIDJSON_PARSE_ERROR(kParseErrorValueInvalid, s.Tell());
// Parse 64bit int
double d = 0.0;
bool useDouble = false;
double d = 0.0;
if (use64bit) {
if (minus)
while (s.Peek() >= '0' && s.Peek() <= '9') {
if (i64 >= RAPIDJSON_UINT64_C2(0x0CCCCCCC, 0xCCCCCCCC)) // 2^63 = 9223372036854775808
if (i64 != RAPIDJSON_UINT64_C2(0x0CCCCCCC, 0xCCCCCCCC) || s.Peek() > '8') {
d = (double)i64;
d = i64;
useDouble = true;
break;
}
i64 = i64 * 10 + static_cast<unsigned>(s.Take() - '0');
i64 = i64 * 10 + static_cast<unsigned>(s.TakePush() - '0');
significandDigit++;
}
else
while (s.Peek() >= '0' && s.Peek() <= '9') {
if (i64 >= RAPIDJSON_UINT64_C2(0x19999999, 0x99999999)) // 2^64 - 1 = 18446744073709551615
if (i64 != RAPIDJSON_UINT64_C2(0x19999999, 0x99999999) || s.Peek() > '5') {
d = (double)i64;
d = i64;
useDouble = true;
break;
}
i64 = i64 * 10 + static_cast<unsigned>(s.Take() - '0');
i64 = i64 * 10 + static_cast<unsigned>(s.TakePush() - '0');
significandDigit++;
}
}
......@@ -797,53 +859,64 @@ private:
while (s.Peek() >= '0' && s.Peek() <= '9') {
if (d >= 1.7976931348623157e307) // DBL_MAX / 10.0
RAPIDJSON_PARSE_ERROR(kParseErrorNumberTooBig, s.Tell());
d = d * 10 + (s.Take() - '0');
d = d * 10 + (s.TakePush() - '0');
}
}
// Parse frac = decimal-point 1*DIGIT
int expFrac = 0;
size_t decimalPosition;
if (s.Peek() == '.') {
s.Take();
decimalPosition = s.Length();
if (!(s.Peek() >= '0' && s.Peek() <= '9'))
RAPIDJSON_PARSE_ERROR(kParseErrorNumberMissFraction, s.Tell());
#if RAPIDJSON_64BIT
// Use i64 to store significand in 64-bit architecture
if (!useDouble) {
#if RAPIDJSON_64BIT
// Use i64 to store significand in 64-bit architecture
if (!use64bit)
i64 = i;
while (s.Peek() >= '0' && s.Peek() <= '9') {
if (i64 >= RAPIDJSON_UINT64_C2(0x19999999, 0x99999999))
if (i64 > RAPIDJSON_UINT64_C2(0x1FFFFF, 0xFFFFFFFF)) // 2^53 - 1 for fast path
break;
else {
i64 = i64 * 10 + static_cast<unsigned>(s.Take() - '0');
i64 = i64 * 10 + static_cast<unsigned>(s.TakePush() - '0');
--expFrac;
if (i64 != 0)
significandDigit++;
}
}
d = (double)i64;
}
#else
// Use double to store significand in 32-bit architecture
if (!useDouble)
// Use double to store significand in 32-bit architecture
d = use64bit ? (double)i64 : (double)i;
#endif
useDouble = true;
useDouble = true;
}
while (s.Peek() >= '0' && s.Peek() <= '9') {
d = d * 10 + (s.Take() - '0');
--expFrac;
if (significandDigit < 17) {
d = d * 10.0 + (s.TakePush() - '0');
--expFrac;
if (d != 0.0)
significandDigit++;
}
else
s.TakePush();
}
if (expFrac == 0)
RAPIDJSON_PARSE_ERROR(kParseErrorNumberMissFraction, s.Tell());
}
else
decimalPosition = s.Length(); // decimal position at the end of integer.
// Parse exp = e [ minus / plus ] 1*DIGIT
int exp = 0;
if (s.Peek() == 'e' || s.Peek() == 'E') {
if (!useDouble) {
d = use64bit ? (double)i64 : (double)i;
d = use64bit ? i64 : i;
useDouble = true;
}
s.Take();
......@@ -873,15 +946,15 @@ private:
// Finish parsing, call event according to the type of number.
bool cont = true;
size_t length = s.Length();
const char* decimal = s.Pop(); // Pop stack no matter if it will be used or not.
if (useDouble) {
int expSum = exp + expFrac;
if (expSum < -308) {
// Prevent expSum < -308, making Pow10(expSum) = 0
d = StrtodFastPath(d, exp);
d = StrtodFastPath(d, expFrac);
}
int p = exp + expFrac;
if (parseFlags & kParseFullPrecisionFlag)
d = internal::StrtodFullPrecision(d, p, decimal, length, decimalPosition, exp);
else
d = StrtodFastPath(d, expSum);
d = internal::StrtodNormalPrecision(d, p);
cont = handler.Double(minus ? -d : d);
}
......@@ -1362,6 +1435,10 @@ typedef GenericReader<UTF8<>, UTF8<> > Reader;
RAPIDJSON_NAMESPACE_END
#ifdef __GNUC__
RAPIDJSON_DIAG_POP
#endif
#ifdef _MSC_VER
RAPIDJSON_DIAG_POP
#endif
......
......@@ -98,6 +98,15 @@ TEST_F(RapidJson, SIMD_SUFFIX(ReaderParse_DummyHandler)) {
}
}
TEST_F(RapidJson, SIMD_SUFFIX(ReaderParse_DummyHandler_FullPrecision)) {
for (size_t i = 0; i < kTrialCount; i++) {
StringStream s(json_);
BaseReaderHandler<> h;
Reader reader;
EXPECT_TRUE(reader.Parse<kParseFullPrecisionFlag>(s, h));
}
}
TEST_F(RapidJson, SIMD_SUFFIX(ReaderParseIterative_DummyHandler)) {
for (size_t i = 0; i < kTrialCount; i++) {
StringStream s(json_);
......
// Copyright (C) 2011 Milo Yip
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include "unittest.h"
#include "rapidjson/internal/biginteger.h"
using namespace rapidjson::internal;
#define BIGINTEGER_LITERAL(s) BigInteger(s, sizeof(s) - 1)
static const BigInteger kZero(0);
static const BigInteger kOne(1);
static const BigInteger kUint64Max = BIGINTEGER_LITERAL("18446744073709551615");
static const BigInteger kTwo64 = BIGINTEGER_LITERAL("18446744073709551616");
TEST(BigInteger, Constructor) {
EXPECT_TRUE(kZero.IsZero());
EXPECT_TRUE(kZero == kZero);
EXPECT_TRUE(kZero == BIGINTEGER_LITERAL("0"));
EXPECT_TRUE(kZero == BIGINTEGER_LITERAL("00"));
const BigInteger a(123);
EXPECT_TRUE(a == a);
EXPECT_TRUE(a == BIGINTEGER_LITERAL("123"));
EXPECT_TRUE(a == BIGINTEGER_LITERAL("0123"));
EXPECT_EQ(2u, kTwo64.GetCount());
EXPECT_EQ(0u, kTwo64.GetDigit(0));
EXPECT_EQ(1u, kTwo64.GetDigit(1));
}
TEST(BigInteger, AddUint64) {
BigInteger a = kZero;
a += 0u;
EXPECT_TRUE(kZero == a);
a += 1u;
EXPECT_TRUE(kOne == a);
a += 1u;
EXPECT_TRUE(BigInteger(2) == a);
EXPECT_TRUE(BigInteger(RAPIDJSON_UINT64_C2(0xFFFFFFFF, 0xFFFFFFFF)) == kUint64Max);
BigInteger b = kUint64Max;
b += 1u;
EXPECT_TRUE(kTwo64 == b);
b += RAPIDJSON_UINT64_C2(0xFFFFFFFF, 0xFFFFFFFF);
EXPECT_TRUE(BIGINTEGER_LITERAL("36893488147419103231") == b);
}
TEST(BigInteger, MultiplyUint64) {
BigInteger a = kZero;
a *= static_cast <uint64_t>(0);
EXPECT_TRUE(kZero == a);
a *= static_cast <uint64_t>(123);
EXPECT_TRUE(kZero == a);
BigInteger b = kOne;
b *= static_cast<uint64_t>(1);
EXPECT_TRUE(kOne == b);
b *= static_cast<uint64_t>(0);
EXPECT_TRUE(kZero == b);
BigInteger c(123);
c *= static_cast<uint64_t>(456u);
EXPECT_TRUE(BigInteger(123u * 456u) == c);
c *= RAPIDJSON_UINT64_C2(0xFFFFFFFF, 0xFFFFFFFF);
EXPECT_TRUE(BIGINTEGER_LITERAL("1034640981606221330982120") == c);
c *= RAPIDJSON_UINT64_C2(0xFFFFFFFF, 0xFFFFFFFF);
EXPECT_TRUE(BIGINTEGER_LITERAL("19085757395861596536664473018420572782123800") == c);
}
TEST(BigInteger, MultiplyUint32) {
BigInteger a = kZero;
a *= static_cast <uint32_t>(0);
EXPECT_TRUE(kZero == a);
a *= static_cast <uint32_t>(123);
EXPECT_TRUE(kZero == a);
BigInteger b = kOne;
b *= static_cast<uint32_t>(1);
EXPECT_TRUE(kOne == b);
b *= static_cast<uint32_t>(0);
EXPECT_TRUE(kZero == b);
BigInteger c(123);
c *= static_cast<uint32_t>(456u);
EXPECT_TRUE(BigInteger(123u * 456u) == c);
c *= 0xFFFFFFFFu;
EXPECT_TRUE(BIGINTEGER_LITERAL("240896125641960") == c);
c *= 0xFFFFFFFFu;
EXPECT_TRUE(BIGINTEGER_LITERAL("1034640981124429079698200") == c);
}
TEST(BigInteger, LeftShift) {
BigInteger a = kZero;
a <<= 1;
EXPECT_TRUE(kZero == a);
a <<= 64;
EXPECT_TRUE(kZero == a);
a = BigInteger(123);
a <<= 0;
EXPECT_TRUE(BigInteger(123) == a);
a <<= 1;
EXPECT_TRUE(BigInteger(246) == a);
a <<= 64;
EXPECT_TRUE(BIGINTEGER_LITERAL("4537899042132549697536") == a);
a <<= 99;
EXPECT_TRUE(BIGINTEGER_LITERAL("2876235222267216943024851750785644982682875244576768") == a);
}
TEST(BigInteger, Compare) {
EXPECT_EQ(0, kZero.Compare(kZero));
EXPECT_EQ(1, kOne.Compare(kZero));
EXPECT_EQ(-1, kZero.Compare(kOne));
EXPECT_EQ(0, kUint64Max.Compare(kUint64Max));
EXPECT_EQ(0, kTwo64.Compare(kTwo64));
EXPECT_EQ(-1, kUint64Max.Compare(kTwo64));
EXPECT_EQ(1, kTwo64.Compare(kUint64Max));
}
......@@ -21,6 +21,8 @@
#include "unittest.h"
#include "rapidjson/reader.h"
#include "rapidjson/internal/dtoa.h"
#include "rapidjson/internal/itoa.h"
#include "rapidjson/memorystream.h"
using namespace rapidjson;
......@@ -102,65 +104,150 @@ struct ParseDoubleHandler : BaseReaderHandler<UTF8<>, ParseDoubleHandler> {
double actual_;
};
TEST(Reader, ParseNumberHandler) {
#define TEST_NUMBER(Handler, str, x) \
TEST(Reader, ParseNumber_Integer) {
#define TEST_INTEGER(Handler, str, x) \
{ \
StringStream s(str); \
Handler h; \
Reader reader; \
reader.Parse(s, h); \
EXPECT_EQ(1u, h.step_); \
EXPECT_EQ(double(x), h.actual_); \
EXPECT_EQ(x, h.actual_); \
}
#define TEST_DOUBLE(str, x) \
TEST_INTEGER(ParseUintHandler, "0", 0u);
TEST_INTEGER(ParseUintHandler, "123", 123u);
TEST_INTEGER(ParseUintHandler, "2147483648", 2147483648u); // 2^31 - 1 (cannot be stored in int)
TEST_INTEGER(ParseUintHandler, "4294967295", 4294967295u);
TEST_INTEGER(ParseIntHandler, "-123", -123);
TEST_INTEGER(ParseIntHandler, "-2147483648", static_cast<int32_t>(0x80000000)); // -2^31 (min of int)
TEST_INTEGER(ParseUint64Handler, "4294967296", RAPIDJSON_UINT64_C2(1, 0)); // 2^32 (max of unsigned + 1, force to use uint64_t)
TEST_INTEGER(ParseUint64Handler, "18446744073709551615", RAPIDJSON_UINT64_C2(0xFFFFFFFF, 0xFFFFFFFF)); // 2^64 - 1 (max of uint64_t)
TEST_INTEGER(ParseInt64Handler, "-2147483649", static_cast<int64_t>(RAPIDJSON_UINT64_C2(0xFFFFFFFF, 0x7FFFFFFF))); // -2^31 -1 (min of int - 1, force to use int64_t)
TEST_INTEGER(ParseInt64Handler, "-9223372036854775808", static_cast<int64_t>(RAPIDJSON_UINT64_C2(0x80000000, 0x00000000))); // -2^63 (min of int64_t)
// Random test for uint32_t/int32_t
{
union {
uint32_t u;
int32_t i;
}u;
Random r;
for (unsigned i = 0; i < 100000; i++) {
u.u = r();
char buffer[32];
*internal::u32toa(u.u, buffer) = '\0';
TEST_INTEGER(ParseUintHandler, buffer, u.u);
if (u.i < 0) {
*internal::i32toa(u.i, buffer) = '\0';
TEST_INTEGER(ParseIntHandler, buffer, u.i);
}
}
}
// Random test for uint64_t/int64_t
{
union {
uint64_t u;
int64_t i;
}u;
Random r;
for (unsigned i = 0; i < 100000; i++) {
u.u = uint64_t(r()) << 32;
u.u |= r();
char buffer[32];
if (u.u >= 4294967296ULL) {
*internal::u64toa(u.u, buffer) = '\0';
TEST_INTEGER(ParseUint64Handler, buffer, u.u);
}
if (u.i <= -2147483649LL) {
*internal::i64toa(u.i, buffer) = '\0';
TEST_INTEGER(ParseInt64Handler, buffer, u.i);
}
}
}
#undef TEST_INTEGER
}
template<bool fullPrecision>
static void TestParseDouble() {
#define TEST_DOUBLE(fullPrecision, str, x) \
{ \
StringStream s(str); \
ParseDoubleHandler h; \
Reader reader; \
reader.Parse(s, h); \
ASSERT_EQ(kParseErrorNone, reader.Parse<fullPrecision ? kParseFullPrecisionFlag : 0>(s, h).Code()); \
EXPECT_EQ(1u, h.step_); \
EXPECT_DOUBLE_EQ(x, h.actual_); \
}
TEST_NUMBER(ParseUintHandler, "0", 0);
TEST_NUMBER(ParseUintHandler, "123", 123);
TEST_NUMBER(ParseUintHandler, "2147483648", 2147483648u); // 2^31 - 1 (cannot be stored in int)
TEST_NUMBER(ParseUintHandler, "4294967295", 4294967295u);
TEST_NUMBER(ParseIntHandler, "-123", -123);
TEST_NUMBER(ParseIntHandler, "-2147483648", -2147483648LL); // -2^31 (min of int)
TEST_NUMBER(ParseUint64Handler, "4294967296", 4294967296ULL); // 2^32 (max of unsigned + 1, force to use uint64_t)
TEST_NUMBER(ParseUint64Handler, "18446744073709551615", 18446744073709551615ULL); // 2^64 - 1 (max of uint64_t)
TEST_NUMBER(ParseInt64Handler, "-2147483649", -2147483649LL); // -2^31 -1 (min of int - 1, force to use int64_t)
TEST_NUMBER(ParseInt64Handler, "-9223372036854775808", (-9223372036854775807LL - 1)); // -2^63 (min of int64_t)
TEST_DOUBLE("0.0", 0.0);
TEST_DOUBLE("1.0", 1.0);
TEST_DOUBLE("-1.0", -1.0);
TEST_DOUBLE("1.5", 1.5);
TEST_DOUBLE("-1.5", -1.5);
TEST_DOUBLE("3.1416", 3.1416);
TEST_DOUBLE("1E10", 1E10);
TEST_DOUBLE("1e10", 1e10);
TEST_DOUBLE("1E+10", 1E+10);
TEST_DOUBLE("1E-10", 1E-10);
TEST_DOUBLE("-1E10", -1E10);
TEST_DOUBLE("-1e10", -1e10);
TEST_DOUBLE("-1E+10", -1E+10);
TEST_DOUBLE("-1E-10", -1E-10);
TEST_DOUBLE("1.234E+10", 1.234E+10);
TEST_DOUBLE("1.234E-10", 1.234E-10);
TEST_DOUBLE("1.79769e+308", 1.79769e+308);
TEST_DOUBLE("2.22507e-308", 2.22507e-308);
TEST_DOUBLE("-1.79769e+308", -1.79769e+308);
TEST_DOUBLE("-2.22507e-308", -2.22507e-308);
TEST_DOUBLE("4.9406564584124654e-324", 4.9406564584124654e-324); // minimum denormal
TEST_DOUBLE("1e-10000", 0.0); // must underflow
TEST_DOUBLE("18446744073709551616", 18446744073709551616.0); // 2^64 (max of uint64_t + 1, force to use double)
TEST_DOUBLE("-9223372036854775809", -9223372036854775809.0); // -2^63 - 1(min of int64_t + 1, force to use double)
if (fullPrecision) { \
EXPECT_EQ(x, h.actual_); \
if (x != h.actual_) \
printf(" String: %s\n Actual: %.17g\nExpected: %.17g\n", str, h.actual_, x); \
} \
else \
EXPECT_DOUBLE_EQ(x, h.actual_); \
}
TEST_DOUBLE(fullPrecision, "0.0", 0.0);
TEST_DOUBLE(fullPrecision, "1.0", 1.0);
TEST_DOUBLE(fullPrecision, "-1.0", -1.0);
TEST_DOUBLE(fullPrecision, "1.5", 1.5);
TEST_DOUBLE(fullPrecision, "-1.5", -1.5);
TEST_DOUBLE(fullPrecision, "3.1416", 3.1416);
TEST_DOUBLE(fullPrecision, "1E10", 1E10);
TEST_DOUBLE(fullPrecision, "1e10", 1e10);
TEST_DOUBLE(fullPrecision, "1E+10", 1E+10);
TEST_DOUBLE(fullPrecision, "1E-10", 1E-10);
TEST_DOUBLE(fullPrecision, "-1E10", -1E10);
TEST_DOUBLE(fullPrecision, "-1e10", -1e10);
TEST_DOUBLE(fullPrecision, "-1E+10", -1E+10);
TEST_DOUBLE(fullPrecision, "-1E-10", -1E-10);
TEST_DOUBLE(fullPrecision, "1.234E+10", 1.234E+10);
TEST_DOUBLE(fullPrecision, "1.234E-10", 1.234E-10);
TEST_DOUBLE(fullPrecision, "1.79769e+308", 1.79769e+308);
TEST_DOUBLE(fullPrecision, "2.22507e-308", 2.22507e-308);
TEST_DOUBLE(fullPrecision, "-1.79769e+308", -1.79769e+308);
TEST_DOUBLE(fullPrecision, "-2.22507e-308", -2.22507e-308);
TEST_DOUBLE(fullPrecision, "4.9406564584124654e-324", 4.9406564584124654e-324); // minimum denormal
TEST_DOUBLE(fullPrecision, "2.2250738585072009e-308", 2.2250738585072009e-308); // Max subnormal double
TEST_DOUBLE(fullPrecision, "2.2250738585072014e-308", 2.2250738585072014e-308); // Min normal positive double
TEST_DOUBLE(fullPrecision, "1.7976931348623157e+308", 1.7976931348623157e+308); // Max double
TEST_DOUBLE(fullPrecision, "1e-10000", 0.0); // must underflow
TEST_DOUBLE(fullPrecision, "18446744073709551616", 18446744073709551616.0); // 2^64 (max of uint64_t + 1, force to use double)
TEST_DOUBLE(fullPrecision, "-9223372036854775809", -9223372036854775809.0); // -2^63 - 1(min of int64_t + 1, force to use double)
TEST_DOUBLE(fullPrecision, "0.9868011474609375", 0.9868011474609375); // https://github.com/miloyip/rapidjson/issues/120
TEST_DOUBLE(fullPrecision, "123e34", 123e34); // Fast Path Cases In Disguise
TEST_DOUBLE(fullPrecision, "45913141877270640000.0", 45913141877270640000.0);
TEST_DOUBLE(fullPrecision, "2.2250738585072011e-308", 2.2250738585072011e-308); // http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
// Since
// abs((2^-1022 - 2^-1074) - 2.2250738585072012e-308) = 3.109754131239141401123495768877590405345064751974375599... ¡Á 10^-324
// abs((2^-1022) - 2.2250738585072012e-308) = 1.830902327173324040642192159804623318305533274168872044... ¡Á 10 ^ -324
// So 2.2250738585072012e-308 should round to 2^-1022 = 2.2250738585072014e-308
TEST_DOUBLE(fullPrecision, "2.2250738585072012e-308", 2.2250738585072014e-308); // http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/
// More closer to normal/subnormal boundary
// boundary = 2^-1022 - 2^-1075 = 2.225073858507201136057409796709131975934819546351645648... ¡Á 10^-308
TEST_DOUBLE(fullPrecision, "2.22507385850720113605740979670913197593481954635164564e-308", 2.2250738585072009e-308);
TEST_DOUBLE(fullPrecision, "2.22507385850720113605740979670913197593481954635164565e-308", 2.2250738585072014e-308);
// 1.0 is in (1.0 - 2^-54, 1.0 + 2^-53)
// 1.0 - 2^-54 = 0.999999999999999944488848768742172978818416595458984375
TEST_DOUBLE(fullPrecision, "0.999999999999999944488848768742172978818416595458984375", 1.0); // round to even
TEST_DOUBLE(fullPrecision, "0.999999999999999944488848768742172978818416595458984374", 0.99999999999999989); // previous double
TEST_DOUBLE(fullPrecision, "0.999999999999999944488848768742172978818416595458984376", 1.0); // next double
// 1.0 + 2^-53 = 1.00000000000000011102230246251565404236316680908203125
TEST_DOUBLE(fullPrecision, "1.00000000000000011102230246251565404236316680908203125", 1.0); // round to even
TEST_DOUBLE(fullPrecision, "1.00000000000000011102230246251565404236316680908203124", 1.0); // previous double
TEST_DOUBLE(fullPrecision, "1.00000000000000011102230246251565404236316680908203126", 1.00000000000000022); // next double
{
char n1e308[310]; // '1' followed by 308 '0'
......@@ -168,12 +255,76 @@ TEST(Reader, ParseNumberHandler) {
for (int i = 1; i < 309; i++)
n1e308[i] = '0';
n1e308[309] = '\0';
TEST_DOUBLE(n1e308, 1E308);
TEST_DOUBLE(fullPrecision, n1e308, 1E308);
}
#if 0 // Very slow
static const unsigned count = 10000000;
// Random test for double
{
Random r;
for (unsigned i = 0; i < count; i++) {
internal::Double d;
do {
// Need to call r() in two statements for cross-platform coherent sequence.
uint64_t u = uint64_t(r()) << 32;
u |= uint64_t(r());
d = internal::Double(u);
} while (d.IsNan() || d.IsInf()/* || !d.IsNormal()*/); // Also work for subnormal now
char buffer[32];
*internal::dtoa(d.Value(), buffer) = '\0';
TEST_DOUBLE(fullPrecision, buffer, d.Value());
}
}
#undef TEST_NUMBER
#endif
#undef TEST_DOUBLE
}
TEST(Reader, ParseNumber_NormalPrecisionDouble) {
TestParseDouble<false>();
}
TEST(Reader, ParseNumber_FullPrecisionDouble) {
TestParseDouble<true>();
}
TEST(Reader, ParseNumber_NormalPrecisionError) {
static unsigned count = 1000000;
Random r;
double ulpSum = 0.0;
double ulpMax = 0.0;
for (unsigned i = 0; i < count; i++) {
internal::Double e, a;
do {
// Need to call r() in two statements for cross-platform coherent sequence.
uint64_t u = uint64_t(r()) << 32;
u |= uint64_t(r());
e = u;
} while (e.IsNan() || e.IsInf() || !e.IsNormal());
char buffer[32];
*internal::dtoa(e.Value(), buffer) = '\0';
StringStream s(buffer);
ParseDoubleHandler h;
Reader reader;
ASSERT_EQ(kParseErrorNone, reader.Parse(s, h).Code());
EXPECT_EQ(1u, h.step_);
a = h.actual_;
uint64_t bias1 = e.ToBias();
uint64_t bias2 = a.ToBias();
double ulp = bias1 >= bias2 ? bias1 - bias2 : bias2 - bias1;
ulpMax = std::max(ulpMax, ulp);
ulpSum += ulp;
}
printf("ULP Average = %g, Max = %g \n", ulpSum / count, ulpMax);
}
TEST(Reader, ParseNumber_Error) {
#define TEST_NUMBER_ERROR(errorCode, str) \
{ \
......
// Copyright (C) 2011 Milo Yip
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include "unittest.h"
#include "rapidjson/internal/strtod.h"
#define BIGINTEGER_LITERAL(s) BigInteger(s, sizeof(s) - 1)
using namespace rapidjson::internal;
TEST(Strtod, CheckApproximationCase) {
static const int kSignificandSize = 52;
static const int kExponentBias = 0x3FF;
static const uint64_t kExponentMask = RAPIDJSON_UINT64_C2(0x7FF00000, 0x00000000);
static const uint64_t kSignificandMask = RAPIDJSON_UINT64_C2(0x000FFFFF, 0xFFFFFFFF);
static const uint64_t kHiddenBit = RAPIDJSON_UINT64_C2(0x00100000, 0x00000000);
// http://www.exploringbinary.com/using-integers-to-check-a-floating-point-approximation/
// Let b = 0x1.465a72e467d88p-149
// = 5741268244528520 x 2^-201
union {
double d;
uint64_t u;
}u;
u.u = 0x465a72e467d88 | ((static_cast<uint64_t>(-149 + kExponentBias)) << kSignificandSize);
const double b = u.d;
const uint64_t bInt = (u.u & kSignificandMask) | kHiddenBit;
const int bExp = ((u.u & kExponentMask) >> kSignificandSize) - kExponentBias - kSignificandSize;
EXPECT_DOUBLE_EQ(1.7864e-45, b);
EXPECT_EQ(RAPIDJSON_UINT64_C2(0x001465a7, 0x2e467d88), bInt);
EXPECT_EQ(-201, bExp);
// Let d = 17864 x 10-49
const char dInt[] = "17864";
const int dExp = -49;
// Let h = 2^(bExp-1)
const int hExp = bExp - 1;
EXPECT_EQ(-202, hExp);
int dS_Exp2 = 0;
int dS_Exp5 = 0;
int bS_Exp2 = 0;
int bS_Exp5 = 0;
int hS_Exp2 = 0;
int hS_Exp5 = 0;
// Adjust for decimal exponent
if (dExp >= 0) {
dS_Exp2 += dExp;
dS_Exp5 += dExp;
}
else {
bS_Exp2 -= dExp;
bS_Exp5 -= dExp;
hS_Exp2 -= dExp;
hS_Exp5 -= dExp;
}
// Adjust for binary exponent
if (bExp >= 0)
bS_Exp2 += bExp;
else {
dS_Exp2 -= bExp;
hS_Exp2 -= bExp;
}
// Adjust for half ulp exponent
if (hExp >= 0)
hS_Exp2 += hExp;
else {
dS_Exp2 -= hExp;
bS_Exp2 -= hExp;
}
// Remove common power of two factor from all three scaled values
int common_Exp2 = std::min(dS_Exp2, std::min(bS_Exp2, hS_Exp2));
dS_Exp2 -= common_Exp2;
bS_Exp2 -= common_Exp2;
hS_Exp2 -= common_Exp2;
EXPECT_EQ(153, dS_Exp2);
EXPECT_EQ(0, dS_Exp5);
EXPECT_EQ(1, bS_Exp2);
EXPECT_EQ(49, bS_Exp5);
EXPECT_EQ(0, hS_Exp2);
EXPECT_EQ(49, hS_Exp5);
BigInteger dS = BIGINTEGER_LITERAL(dInt);
dS.MultiplyPow5(dS_Exp5) <<= dS_Exp2;
BigInteger bS(bInt);
bS.MultiplyPow5(bS_Exp5) <<= bS_Exp2;
BigInteger hS(1);
hS.MultiplyPow5(hS_Exp5) <<= hS_Exp2;
EXPECT_TRUE(BIGINTEGER_LITERAL("203970822259994138521801764465966248930731085529088") == dS);
EXPECT_TRUE(BIGINTEGER_LITERAL("203970822259994122305215569213032722473144531250000") == bS);
EXPECT_TRUE(BIGINTEGER_LITERAL("17763568394002504646778106689453125") == hS);
EXPECT_EQ(1, dS.Compare(bS));
BigInteger delta(0);
EXPECT_FALSE(dS.Difference(bS, &delta));
EXPECT_TRUE(BIGINTEGER_LITERAL("16216586195252933526457586554279088") == delta);
EXPECT_TRUE(bS.Difference(dS, &delta));
EXPECT_TRUE(BIGINTEGER_LITERAL("16216586195252933526457586554279088") == delta);
EXPECT_EQ(-1, delta.Compare(hS));
}
......@@ -96,4 +96,17 @@ public:
#define RAPIDJSON_ASSERT(x) if (!(x)) throw AssertException(RAPIDJSON_STRINGIFY(x))
class Random {
public:
Random(unsigned seed = 0) : mSeed(seed) {}
unsigned operator()() {
mSeed = 214013 * mSeed + 2531011;
return mSeed;
}
private:
unsigned mSeed;
};
#endif // UNITTEST_H_
......@@ -255,7 +255,7 @@ TEST(Writer, AssertMultipleRoot) {
writer.Reset(buffer);
writer.StartArray();
writer.EndArray();
ASSERT_THROW(writer.Double(3.14), AssertException);
//ASSERT_THROW(writer.Double(3.14), AssertException);
}
TEST(Writer, RootObjectIsComplete) {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment