#region Copyright notice and license // Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #endregion using Google.Protobuf.Compatibility; using System; using System.Reflection; namespace Google.Protobuf.Reflection { /// <summary> /// The methods in this class are somewhat evil, and should not be tampered with lightly. /// Basically they allow the creation of relatively weakly typed delegates from MethodInfos /// which are more strongly typed. They do this by creating an appropriate strongly typed /// delegate from the MethodInfo, and then calling that within an anonymous method. /// Mind-bending stuff (at least to your humble narrator) but the resulting delegates are /// very fast compared with calling Invoke later on. /// </summary> internal static class ReflectionUtil { static ReflectionUtil() { ForceInitialize<string>(); // Handles all reference types ForceInitialize<int>(); ForceInitialize<long>(); ForceInitialize<uint>(); ForceInitialize<ulong>(); ForceInitialize<float>(); ForceInitialize<double>(); ForceInitialize<bool>(); ForceInitialize<int?>(); ForceInitialize<long?>(); ForceInitialize<uint?>(); ForceInitialize<ulong?>(); ForceInitialize<float?>(); ForceInitialize<double?>(); ForceInitialize<bool?>(); ForceInitialize<SampleEnum>(); SampleEnumMethod(); } internal static void ForceInitialize<T>() => new ReflectionHelper<IMessage, T>(); /// <summary> /// Empty Type[] used when calling GetProperty to force property instead of indexer fetching. /// </summary> internal static readonly Type[] EmptyTypes = new Type[0]; /// <summary> /// Creates a delegate which will cast the argument to the type that declares the method, /// call the method on it, then convert the result to object. /// </summary> /// <param name="method">The method to create a delegate for, which must be declared in an IMessage /// implementation.</param> internal static Func<IMessage, object> CreateFuncIMessageObject(MethodInfo method) => GetReflectionHelper(method.DeclaringType, method.ReturnType).CreateFuncIMessageObject(method); /// <summary> /// Creates a delegate which will cast the argument to the type that declares the method, /// call the method on it, then convert the result to the specified type. The method is expected /// to actually return an enum (because of where we're calling it - for oneof cases). Sometimes that /// means we need some extra work to perform conversions. /// </summary> /// <param name="method">The method to create a delegate for, which must be declared in an IMessage /// implementation.</param> internal static Func<IMessage, int> CreateFuncIMessageInt32(MethodInfo method) => GetReflectionHelper(method.DeclaringType, method.ReturnType).CreateFuncIMessageInt32(method); /// <summary> /// Creates a delegate which will execute the given method after casting the first argument to /// the type that declares the method, and the second argument to the first parameter type of the method. /// </summary> /// <param name="method">The method to create a delegate for, which must be declared in an IMessage /// implementation.</param> internal static Action<IMessage, object> CreateActionIMessageObject(MethodInfo method) => GetReflectionHelper(method.DeclaringType, method.GetParameters()[0].ParameterType).CreateActionIMessageObject(method); /// <summary> /// Creates a delegate which will execute the given method after casting the first argument to /// type that declares the method. /// </summary> /// <param name="method">The method to create a delegate for, which must be declared in an IMessage /// implementation.</param> internal static Action<IMessage> CreateActionIMessage(MethodInfo method) => GetReflectionHelper(method.DeclaringType, typeof(object)).CreateActionIMessage(method); internal static Func<IMessage, bool> CreateFuncIMessageBool(MethodInfo method) => GetReflectionHelper(method.DeclaringType, method.ReturnType).CreateFuncIMessageBool(method); /// <summary> /// Creates a reflection helper for the given type arguments. Currently these are created on demand /// rather than cached; this will be "busy" when initially loading a message's descriptor, but after that /// they can be garbage collected. We could cache them by type if that proves to be important, but creating /// an object is pretty cheap. /// </summary> private static IReflectionHelper GetReflectionHelper(Type t1, Type t2) => (IReflectionHelper) Activator.CreateInstance(typeof(ReflectionHelper<,>).MakeGenericType(t1, t2)); // Non-generic interface allowing us to use an instance of ReflectionHelper<T1, T2> without statically // knowing the types involved. private interface IReflectionHelper { Func<IMessage, int> CreateFuncIMessageInt32(MethodInfo method); Action<IMessage> CreateActionIMessage(MethodInfo method); Func<IMessage, object> CreateFuncIMessageObject(MethodInfo method); Action<IMessage, object> CreateActionIMessageObject(MethodInfo method); Func<IMessage, bool> CreateFuncIMessageBool(MethodInfo method); } private class ReflectionHelper<T1, T2> : IReflectionHelper { public Func<IMessage, int> CreateFuncIMessageInt32(MethodInfo method) { // On pleasant runtimes, we can create a Func<int> from a method returning // an enum based on an int. That's the fast path. if (CanConvertEnumFuncToInt32Func) { var del = (Func<T1, int>) method.CreateDelegate(typeof(Func<T1, int>)); return message => del((T1) message); } else { // On some runtimes (e.g. old Mono) the return type has to be exactly correct, // so we go via boxing. Reflection is already fairly inefficient, and this is // only used for one-of case checking, fortunately. var del = (Func<T1, T2>) method.CreateDelegate(typeof(Func<T1, T2>)); return message => (int) (object) del((T1) message); } } public Action<IMessage> CreateActionIMessage(MethodInfo method) { var del = (Action<T1>) method.CreateDelegate(typeof(Action<T1>)); return message => del((T1) message); } public Func<IMessage, object> CreateFuncIMessageObject(MethodInfo method) { var del = (Func<T1, T2>) method.CreateDelegate(typeof(Func<T1, T2>)); return message => del((T1) message); } public Action<IMessage, object> CreateActionIMessageObject(MethodInfo method) { var del = (Action<T1, T2>) method.CreateDelegate(typeof(Action<T1, T2>)); return (message, arg) => del((T1) message, (T2) arg); } public Func<IMessage, bool> CreateFuncIMessageBool(MethodInfo method) { var del = (Func<T1, bool>)method.CreateDelegate(typeof(Func<T1, bool>)); return message => del((T1)message); } } // Runtime compatibility checking code - see ReflectionHelper<T1, T2>.CreateFuncIMessageInt32 for // details about why we're doing this. // Deliberately not inside the generic type. We only want to check this once. private static bool CanConvertEnumFuncToInt32Func { get; } = CheckCanConvertEnumFuncToInt32Func(); private static bool CheckCanConvertEnumFuncToInt32Func() { try { // Try to do the conversion using reflection, so we can see whether it's supported. MethodInfo method = typeof(ReflectionUtil).GetMethod(nameof(SampleEnumMethod)); // If this passes, we're in a reasonable runtime. method.CreateDelegate(typeof(Func<int>)); return true; } catch (ArgumentException) { return false; } } public enum SampleEnum { X } // Public to make the reflection simpler. public static SampleEnum SampleEnumMethod() => SampleEnum.X; } }