Commit 5ab6e296 authored by Wink Saville's avatar Wink Saville

Add protobuf 2.3.0 sources

This is the contents of protobuf-2.3.0.tar.bz2 from
http://code.google.com/p/protobuf/downloads/list.

Change-Id: Idfde09ce7ef5ac027b07ee83f2674fbbed5c30b2
parent e5566f86
...@@ -82,184 +82,11 @@ running unit tests. ...@@ -82,184 +82,11 @@ running unit tests.
$ protoc --java_out=src/main/java -I../src \ $ protoc --java_out=src/main/java -I../src \
../src/google/protobuf/descriptor.proto ../src/google/protobuf/descriptor.proto
3) Compile the code in src/main/java using whatever means you prefer. 3) Compile the code in src/main/java using whatever means you prefer.
4) Install the classes wherever you prefer. 4) Install the classes wherever you prefer.
Micro version
============================
The runtime and generated code for MICRO_RUNTIME is smaller
because it does not include support for the descriptor,
reflection or extensions. Also, not currently supported
are packed repeated elements nor testing of java_multiple_files.
To create a jar file for the runtime and run tests invoke
"mvn package -P micro" from the <protobuf-root>/java
directory. The generated jar file is
<protobuf-root>java/target/protobuf-java-2.2.0-micro.jar.
If you wish to compile the MICRO_RUTIME your self, place
the 7 files below, in <root>/com/google/protobuf and
create a jar file for use with your code and the generated
code:
ByteStringMicro.java
CodedInputStreamMicro.java
CodedOutputStreamMicro.java
InvalidProtocolBufferException.java
MessageMicro.java
StringUtf8Micro.java
WireFormatMicro.java
If you wish to change on the code generator it is located
in /src/google/protobuf/compiler/javamicro.
To generate code for the MICRO_RUNTIME invoke protoc with
--javamicro_out command line parameter. javamciro_out takes
a series of optional sub-parameters separated by comma's
and a final parameter, with a colon separator, which defines
the source directory. Sub-paraemeters begin with a name
followed by an equal and if that sub-parameter has multiple
parameters they are seperated by "|". The command line options
are:
opt -> speed or space
java_use_vector -> true or false
java_package -> <file-name>|<package-name>
java_outer_classname -> <file-name>|<package-name>
opt:
This change the code generation to optimize for speed,
opt=speed, or space, opt=space. When opt=speed this
changes the code generation for strings to use
StringUtf8Micro which eliminates multiple conversions
of the string to utf8. The default value is opt=space.
java_use_vector:
Is a boolean flag either java_use_vector=true or
java_use_vector=false. When java_use_vector=true the
code generated for repeated elements uses
java.util.Vector and when java_use_vector=false the
java.util.ArrayList<> is used. When java.util.Vector
is used the code must be compiled with Java 1.3 and
when ArrayList is used Java 1.5 or above must be used.
The using javac the source parameter maybe used to
control the version of the srouce: "javac -source 1.3".
You can also change the <source> xml element for the
maven-compiler-plugin. Below is for 1.5 sources:
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.5</source>
<target>1.5</target>
</configuration>
</plugin>
When compiling for 1.5 java_use_vector=false or not
present where the default value is false.
And below would be for 1.3 sources note when changing
to 1.3 you must also set java_use_vector=true:
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.3</source>
<target>1.5</target>
</configuration>
</plugin>
java_package:
The allows setting/overriding the java_package option
and associates allows a package name for a file to
be specified on the command line. Overriding any
"option java_package xxxx" in the file. The default
if not present is to use the value from the package
statment or "option java_package xxxx" in the file.
java_outer_classname:
This allows the setting/overriding of the outer
class name option and associates a class name
to a file. An outer class name is required and
must be specified if there are multiple messages
in a single proto file either in the proto source
file or on the command line. If not present the
no outer class name will be used.
Below are a series of examples for clarification of the
various javamicro_out parameters using
src/test/proto/simple-data.proto:
package testprotobuf;
message SimpleData {
optional fixed64 id = 1;
optional string description = 2;
optional bool ok = 3 [default = false];
};
Assuming you've only compiled and not installed protoc and
your current working directory java/, then a simple
command line to compile simple-data would be:
../src/protoc --javamicro_out=. src/test/proto/simple-data.proto
This will create testprotobuf/SimpleData.java
The directory testprotobuf is created because on line 1
of simple-data.proto is "package testprotobuf;". If you
wanted a different package name you could use the
java_package option command line sub-parameter:
../src/protoc '--javamicro_out=java_package=src/test/proto/simple-data.proto|my_package:.' src/test/proto/simple-data.proto
Here you see the new java_package sub-parameter which
itself needs two parameters the file name and the
package name, these are separated by "|". Now you'll
find my_package/SimpleData.java.
If you wanted to also change the optimization for
speed you'd add opt=speed with the comma seperator
as follows:
../src/protoc '--javamicro_out=opt=speed,java_package=src/test/proto/simple-data.proto|my_package:.' src/test/proto/simple-data.proto
Finally if you also wanted an outer class name you'd
do the following:
../src/protoc '--javamicro_out=opt=speed,java_package=src/test/proto/simple-data.proto|my_package,java_outer_classname=src/test/proto/simple-data.proto|OuterName:.' src/test/proto/simple-data.proto
Now you'll find my_packate/OuterName.java.
As mentioned java_package and java_outer_classname
may also be specified in the file. In the example
below we must define java_outer_classname because
there are multiple messages in
src/test/proto/two-messages.proto
package testmicroruntime;
option java_package = "com.example";
option java_outer_classname = "TestMessages";
message TestMessage1 {
required int32 id = 1;
}
message TestMessage2 {
required int32 id = 1;
}
This could be compiled using:
../src/protoc --javamicro_out=. src/test/proto/two-message.proto
With the result will be com/example/TestMessages.java
Usage Usage
===== =====
......
/*
* Copyright (C) 2010 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.protobuf;
import java.util.Arrays;
/**
* A Performance Timing class that can be used to estimate the amount of time a
* sequence of code takes. The typical code sequence would be as follows:</p>
* <code>
PerfTimer pt = new PerfTimer();
pt.calibrate();
pt.timeEachAutomatically(new Runnable() = {
public void run() {
// Add code to time
}
});
System.out.printf("time per loop=" + pt);
* The calibrate method determines the overhead of timing the run() method and
* the number of times to call the run() method to have approximately 1% precision
* for timing. The method pt.stats() method will return a string containing some
* statistics tpl, il, ol, min, max, mean, median, stddev and total.
*
* tpl ::= Timer per loop
* min ::= minimum time one call to run() took
* stddev ::= Standard deviation of the collected times
* mean ::= the average time to call run()
* median ::= 1/2 the times were > than this time and 1/2 were less.
* total ::= Sum of the times collected.
* il ::= innerLoops; the number of times run() between each call to start/stop
* ol ::= outerLoops, the number of times start/stop was called
*
* You can also use start/stop/restart to do simple timing:
*
* pt.start();
* a += 1;
* pt.stop();
* pt.log("time=" + pt);
* pt.restart();
* doSomething();
* pt.stop();
* System.out.printf("time=" + pt);
* </code>
*
* @author wink@google.com (Wink Saville)
*/
public class PerfTimer {
/** No debug */
public static final int DEBUG_LEVEL_NONE = 0;
/** Some debug */
public static final int DEBUG_LEVEL_SOME = 1;
/** All debug */
public static final int DEBUG_LEVEL_ALL = 2;
/** Timer ticks per microsecond */
private static final double TICKS_PER_MICROSECOND = 1000.0;
/** Random number generator */
java.util.Random rng = new java.util.Random();
/** get ticks */
private static long getTicks() {
return System.nanoTime();
}
/** Debug logging */
private static void log(String s) {
System.out.printf(String.format("[PerfTimer] %s\n", s));
}
/** Outer loops for timeEachAutomatically */
private static final int OUTER_LOOPS = 100;
/** Thrown if an error occurs while timing */
public static class PerfTimerException extends RuntimeException {
}
/**
* Calibration record
*/
public static class CalibrationRec {
/** Runnable overhead */
public double mRunnableOverheadInMicros = 0.0;
/** Minimum Threshold value for timeEachAutomaticaly */
public double mMinThresholdInMicros = 3000.0;
/** Maximum Threshold value for timeEachAutomaticaly */
public double mMaxThresholdInMicros = 6000.0;
/** Desired precision in decimal digits */
public double mPrecisionInDecimalDigits = 2.0;
/**
* Default number of retries if the standard deviation ratio is too
* large
*/
public final int mStdDevRetrys = 5;
/** Default maximum standard deviation radio */
public final double mMaxStdDevRatio = 0.15;
/** Number of votes looking for smallest time per loop */
public final int mVotes = 3;
/** Convert to string */
@Override
public String toString() {
return String
.format(
"oh=%.6fus minT=%.6fus maxT=%.6fus prc=%,.3f stdDevRetrys=%d maxStdDevRatio=%.2f votes=%d",
mRunnableOverheadInMicros, mMinThresholdInMicros,
mMaxThresholdInMicros, mPrecisionInDecimalDigits, mStdDevRetrys,
mMaxStdDevRatio, mVotes);
}
}
/**
* Calibration record
*/
private CalibrationRec mCr;
/**
* Statistics calculated on the timing data.
*/
public static class Stats {
/** Number of outer loops */
private int mOuterLoops;
/** Number of inner loops */
private int mInnerLoops;
/** Minimum time in times array */
private long mMin;
/** Maximum time in times array */
private long mMax;
/** Median value in times array */
private double mMedian;
/** The mean (average) of the values in times array */
private double mMean;
/** The standard deviation of the values in times array */
private double mStdDev;
private int mStdDevTooLargeCount;
/** Sum of the times in the times array */
private double mTotal;
/** Initialize */
public void init() {
mInnerLoops = 1;
mOuterLoops = 1;
mMin = 0;
mMax = 0;
mMedian = 0;
mMean = 0;
mStdDev = 0;
mStdDevTooLargeCount = 0;
mTotal = 0;
}
/** Constructor */
public Stats() {
init();
}
/** Set number of inner loops */
public void setInnerLoops(int loops) {
mInnerLoops = loops;
}
/** Get number of inner loops */
public int getInnerLoops() {
return mInnerLoops;
}
/** Set number of inner loops */
public void setOuterLoops(int loops) {
mOuterLoops = loops;
}
/** Get number of inner loops */
public int getOuterLoops() {
return mOuterLoops;
}
/**
* Minimum value of collected data in microseconds, valid after analyze.
*/
public double getMinInMicros() {
return mMin / TICKS_PER_MICROSECOND;
}
/**
* Maximum value of collected data in microseconds, valid after analyze.
*/
public double getMaxInMicros() {
return mMax / TICKS_PER_MICROSECOND;
}
/**
* Sum of the values of collected data in microseconds, valid after
* analyze.
*/
public double getTotalInMicros() {
return mTotal / TICKS_PER_MICROSECOND;
}
/** Sum of the values of collected data in seconds, valid after analyze. */
public double getTotalInSecs() {
return mTotal / (TICKS_PER_MICROSECOND * 1000000.0);
}
/** Sum of the values of collected data in seconds, valid after analyze. */
public double getMeanInMicros() {
return mMean / TICKS_PER_MICROSECOND;
}
/** Median value of collected data in microseconds, valid after analyze. */
public double getMedianInMicros() {
return mMedian / TICKS_PER_MICROSECOND;
}
/**
* Standard deviation of collected data in microseconds, valid after
* analyze.
*/
public double getStdDevInMicros() {
return mStdDev / TICKS_PER_MICROSECOND;
}
public double getStdDevRatio() {
return mStdDev / mMin;
}
/** Return true if (mStdDev / mMin) <= maxStdDevRation */
public boolean stdDevOk(double maxStdDevRatio) {
return getStdDevRatio() <= maxStdDevRatio;
}
/** Increment StdDevTooLargeCount */
public void incStdDevTooLargeCount() {
mStdDevTooLargeCount += 1;
}
/** Return number of times stdDev was not ok */
public int getStdDevTooLargeCount() {
return mStdDevTooLargeCount;
}
/** Return time per loop */
public double getTimePerLoop() {
return mMin / TICKS_PER_MICROSECOND / mInnerLoops;
}
/**
* Calculate the stats for the data. Note the data in the range will be
* sorted.
*
* @param data
* @param count
*/
public Stats calculate(long data[], int count) {
if (count == 1) {
mMin = mMax = data[0];
mTotal = mMedian = mMean = data[0];
mStdDev = 0;
} else if (count > 1) {
Arrays.sort(data, 0, count);
mMin = data[0];
mMax = data[count - 1];
if ((count & 1) == 1) {
mMedian = data[((count + 1) / 2) - 1];
} else {
mMedian = (data[count / 2] + data[(count / 2) - 1]) / 2;
}
mTotal = 0;
double sumSquares = 0;
for (int i = 0; i < count; i++) {
long t = data[i];
mTotal += t;
sumSquares += t * t;
}
mMean = mTotal / count;
double variance = (sumSquares / count) - (mMean * mMean);
mStdDev = Math.pow(variance, 0.5);
} else {
init();
}
return this;
}
/** Convert to string */
@Override
public String toString() {
double timePerLoop = getTimePerLoop();
double stdDevPerLoop = mStdDev / TICKS_PER_MICROSECOND / mInnerLoops;
return String.format(
"tpl=%,.6fus stdDev=%,.6fus tpl/stdDev=%.2fpercent min=%,.6fus median=%,.6fus mean=%,.6fus max=%,.6fus total=%,.6fs il=%d, ol=%d tlc=%d",
timePerLoop, stdDevPerLoop, (stdDevPerLoop / timePerLoop) * 100, mMin
/ TICKS_PER_MICROSECOND, mMedian / TICKS_PER_MICROSECOND, mMean
/ TICKS_PER_MICROSECOND, mMax / TICKS_PER_MICROSECOND, mTotal
/ (TICKS_PER_MICROSECOND * 1000000.0), mInnerLoops, mOuterLoops, mStdDevTooLargeCount);
}
}
/** Statistics */
private Stats mStats = new Stats();
/** Statistics of the clock precision */
private Stats mClockStats;
/** Number of items in times array */
private int mCount;
/** Array of stop - start times */
private long mTimes[];
/** Time of last started */
private long mStart;
/** Sleep a little so we don't look like a hog */
private void sleep() {
try {
Thread.sleep(0);
} catch (InterruptedException e) {
// Ignore exception
}
}
/** Empty Runnable used for determining overhead */
private Runnable mEmptyRunnable = new Runnable() {
public void run() {
}
};
/** Initialize */
private void init(int maxCount, CalibrationRec cr) {
mTimes = new long[maxCount];
mCr = cr;
reset();
}
/** Construct the stop watch */
public PerfTimer() {
init(10, new CalibrationRec());
}
/** Construct setting size of times array */
public PerfTimer(int maxCount) {
init(maxCount, new CalibrationRec());
}
/** Construct the stop watch */
public PerfTimer(CalibrationRec cr) {
init(10, cr);
}
/** Construct the stop watch */
public PerfTimer(int maxCount, CalibrationRec cr) {
init(maxCount, cr);
}
/** Reset the contents of the times array */
public PerfTimer reset() {
mCount = 0;
mStats.init();
return this;
}
/** Reset and then start the timer */
public PerfTimer restart() {
reset();
mStart = getTicks();
return this;
}
/** Start timing */
public PerfTimer start() {
mStart = getTicks();
return this;
}
/**
* Record the difference between start and now in the times array
* incrementing count. The time will be stored in the times array if the
* array is not full.
*/
public PerfTimer stop() {
long stop = getTicks();
if (mCount < mTimes.length) {
mTimes[mCount++] = stop - mStart;
}
return this;
}
/**
* Time how long it takes to execute runnable.run() innerLoop number of
* times outerLoops number of times.
*
* @param outerLoops
* @param innerLoops
* @param runnable
* @return PerfTimer
*/
public PerfTimer timeEach(Stats stats, int outerLoops, int innerLoops, Runnable runnable) {
reset();
resize(outerLoops);
stats.setOuterLoops(outerLoops);
stats.setInnerLoops(innerLoops);
for (int i = 0; i < outerLoops; i++) {
start();
for (int j = 0; j < innerLoops; j++) {
runnable.run();
}
stop();
sleep();
}
return this;
}
/**
* Time how long it takes to execute runnable.run(). Runs runnable votes
* times and returns the Stats of the fastest run. The actual number times
* that runnable.run() is executes is enough times so that it runs at least
* minThreadholeInMicros but not greater than maxThreadholdInMicro. This
* minimizes the chance that long context switches influence the result.
*
* @param votes is the number of runnable will be executed to determine
* fastest run
* @param outerLoops is the number of of times the inner loop is run
* @param initialInnerLoops is the initial inner loop
* @param maxStdDevRetrys if the maxStdDevRatio is exceeded this number of
* time the PerfTimerException is thrown.
* @param maxStdDevRatio the ratio of the standard deviation of the run and
* the time to run.
* @param debugLevel DEBUG_LEVEL_NONE, DEBUG_LEVEL_SOME, DEBUG_LEVEL_ALL
* @param runnable is the code to test.
* @return Stats of the fastest run.
*/
public Stats timeEachAutomatically(int votes, int outerLoops, int initialInnerLoops,
double minThresholdInMicros, double maxThresholdInMicros, int maxStdDevRetrys,
double maxStdDevRatio, int debugLevel, Runnable runnable) throws PerfTimerException {
Stats minStats = null;
for (int v = 0; v < votes; v++) {
boolean successful = false;
Stats stats = new Stats();
int innerLoops = initialInnerLoops;
/* Warm up cache */
timeEach(stats, outerLoops, initialInnerLoops, runnable);
for (int stdDevRetrys = 0; stdDevRetrys < maxStdDevRetrys; stdDevRetrys++) {
/**
* First time may be long enough
*/
timeEach(stats, outerLoops, innerLoops, runnable);
analyze(stats, mTimes, outerLoops, debugLevel);
double innerLoopTime = stats.getMinInMicros();
if ((innerLoopTime >= minThresholdInMicros
- ((maxThresholdInMicros - minThresholdInMicros) / 2))) {
if (stats.stdDevOk(maxStdDevRatio)) {
successful = true;
break;
} else {
stats.incStdDevTooLargeCount();
if (debugLevel >= DEBUG_LEVEL_SOME) {
log(String.format(
"tea: tlc=%d StdDevRatio=%.2f > maxStdDevRatio=%.2f",
stats.getStdDevTooLargeCount(), stats.getStdDevRatio(),
maxStdDevRatio));
}
}
} else {
/**
* The initial number of loops is too short find the number
* of loops that exceeds maxThresholdInMicros. Then use a
* binary search to find the approriate innerLoop value that
* is between min/maxThreshold.
*/
innerLoops *= 10;
int maxInnerLoops = innerLoops;
int minInnerLoops = 1;
boolean binarySearch = false;
for (int i = 0; i < 10; i++) {
timeEach(stats, outerLoops, innerLoops, runnable);
analyze(stats, mTimes, outerLoops, debugLevel);
innerLoopTime = stats.getMedianInMicros();
if ((innerLoopTime >= minThresholdInMicros)
&& (innerLoopTime <= maxThresholdInMicros)) {
if (stats.stdDevOk(maxStdDevRatio)) {
successful = true;
break;
} else {
stats.incStdDevTooLargeCount();
if (debugLevel >= DEBUG_LEVEL_SOME) {
log(String.format(
"tea: tlc=%d StdDevRatio=%.2f > maxStdDevRatio=%.2f",
stats.getStdDevTooLargeCount(), stats.getStdDevRatio(),
maxStdDevRatio));
}
}
} else if (binarySearch) {
if ((innerLoopTime < minThresholdInMicros)) {
minInnerLoops = innerLoops;
} else {
maxInnerLoops = innerLoops;
}
innerLoops = (maxInnerLoops + minInnerLoops) / 2;
} else if (innerLoopTime >= maxThresholdInMicros) {
/* Found a too large value, change to binary search */
binarySearch = true;
maxInnerLoops = innerLoops;
innerLoops = (maxInnerLoops + minInnerLoops) / 2;
} else {
innerLoops *= 10;
}
}
if (successful) {
break;
}
}
}
if (!successful) {
/* Couldn't find the number of loops to execute */
throw new PerfTimerException();
}
/** Looking for minimum */
if ((minStats == null) || (minStats.getTimePerLoop() > stats.getTimePerLoop())) {
minStats = stats;
}
if (debugLevel >= DEBUG_LEVEL_SOME) {
log(String.format("minStats.getTimePerLoop=%f minStats: %s", minStats.getTimePerLoop(), minStats));
}
}
return minStats;
}
/**
* Time how long it takes to execute runnable.run() with a threshold of 1 to
* 10ms.
*
* @param debugLevel DEBUG_LEVEL_NONE, DEBUG_LEVEL_SOME, DEBUG_LEVEL_ALL
* @param runnable
* @throws PerfTimerException
*/
public Stats timeEachAutomatically(int debugLevel, Runnable runnable)
throws PerfTimerException {
mStats = timeEachAutomatically(mCr.mVotes, OUTER_LOOPS, 1, mCr.mMinThresholdInMicros,
mCr.mMaxThresholdInMicros, mCr.mStdDevRetrys, mCr.mMaxStdDevRatio, debugLevel,
runnable);
return mStats;
}
/**
* Time how long it takes to execute runnable.run() with a threshold of 1 to
* 10ms.
*
* @param runnable
* @throws PerfTimerException
*/
public Stats timeEachAutomatically(Runnable runnable) throws PerfTimerException {
mStats = timeEachAutomatically(mCr.mVotes, OUTER_LOOPS, 1, mCr.mMinThresholdInMicros,
mCr.mMaxThresholdInMicros, mCr.mStdDevRetrys, mCr.mMaxStdDevRatio,
DEBUG_LEVEL_NONE, runnable);
return mStats;
}
/** Resize the times array */
public void resize(int maxCount) {
if (maxCount > mTimes.length) {
mTimes = new long[maxCount];
}
}
/**
* Analyze the data calculating the min, max, total, median, mean and
* stdDev. The standard deviation is calculated as sqrt(((sum of the squares
* of each time) / count) - mean^2)
* {@link "http://www.sciencebuddies.org/mentoring/project_data_analysis_variance_std_deviation.shtml"}
*
* @param debugLevel DEBUG_LEVEL_NONE, DEBUG_LEVEL_SOME, DEBUG_LEVEL_ALL
* @return StopWatch
*/
public Stats analyze(Stats stats, long data[], int count, int debugLevel) {
if (count > 0) {
if (debugLevel >= DEBUG_LEVEL_ALL) {
for (int j = 0; j < count; j++) {
log(String.format("data[%d]=%,dns", j, data[j]));
}
}
stats.calculate(data, count);
} else {
stats.init();
}
if (debugLevel >= DEBUG_LEVEL_SOME) {
log("stats: " + stats);
}
return stats;
}
/**
* Calibrate the system and set it for this PerfTimer instance
*
* @param debugLevel DEBUG_LEVEL_NONE, DEBUG_LEVEL_SOME, DEBUG_LEVEL_ALL
* @param precisionInDecimalDigits the precision in number of decimal digits
*/
public CalibrationRec calibrate(int debugLevel, double precisionInDecimalDigits)
throws PerfTimerException {
int nonZeroCount = 0;
Stats stats = new Stats();
CalibrationRec cr = new CalibrationRec();
/* initialize the precision */
cr.mPrecisionInDecimalDigits = precisionInDecimalDigits;
/* Warm up the cache */
timeEach(stats, OUTER_LOOPS, 10, mEmptyRunnable);
/*
* Determine the clock stats with at least 20% non-zero unique values.
*/
for (int clockStatsTries = 1; clockStatsTries < 100; clockStatsTries++) {
int j;
int i;
long cur;
long prev;
long min;
int innerLoops = clockStatsTries * 10;
timeEach(stats, OUTER_LOOPS, innerLoops, mEmptyRunnable);
long nonZeroValues[] = new long[mCount];
prev = 0;
for (nonZeroCount = 0, i = 0; i < mCount; i++) {
cur = mTimes[i];
if (cur > 0) {
nonZeroValues[nonZeroCount++] = cur;
}
}
if (nonZeroCount > (mCount * 0.20)) {
// Calculate thresholds
analyze(stats, nonZeroValues, nonZeroCount, debugLevel);
stats.calculate(nonZeroValues, nonZeroCount);
cr.mMinThresholdInMicros = stats.getMeanInMicros()
* Math.pow(10, cr.mPrecisionInDecimalDigits);
cr.mMaxThresholdInMicros = cr.mMinThresholdInMicros * 2;
// Set overhead to 0 and time the empty loop then set overhead.
cr.mRunnableOverheadInMicros = 0;
mClockStats = timeEachAutomatically(mCr.mVotes, OUTER_LOOPS, innerLoops,
cr.mMinThresholdInMicros, cr.mMaxThresholdInMicros, mCr.mStdDevRetrys,
mCr.mMaxStdDevRatio, debugLevel, mEmptyRunnable);
cr.mRunnableOverheadInMicros = mClockStats.getMinInMicros()
/ mClockStats.getInnerLoops();
break;
}
nonZeroCount = 0;
}
if (nonZeroCount == 0) {
throw new PerfTimerException();
}
if (debugLevel >= DEBUG_LEVEL_SOME) {
log(String.format("calibrate X oh=%.6fus minT=%,.6fus maxT=%,.6fus stats: %s",
cr.mRunnableOverheadInMicros, cr.mMinThresholdInMicros,
cr.mMaxThresholdInMicros, stats));
}
mCr = cr;
return mCr;
}
/** Calibrate the system and set it for this PerfTimer instance */
public CalibrationRec calibrate(double precisionInDecimalDigits) throws PerfTimerException {
return calibrate(DEBUG_LEVEL_NONE, precisionInDecimalDigits);
}
/** Calibrate the system and set it for this PerfTimer instance */
public CalibrationRec calibrate() throws PerfTimerException {
return calibrate(DEBUG_LEVEL_NONE, mCr.mPrecisionInDecimalDigits);
}
/*
* Accessors for the private data
*/
/** Set calibration record */
public void setCalibrationRec(CalibrationRec cr) {
mCr = cr;
}
/** Get calibration record */
public CalibrationRec getCalibrationRec() {
return mCr;
}
/** Number of samples in times array. */
public int getCount() {
return mCount;
}
/** Minimum value of collected data in microseconds, valid after analyze. */
public double getMinInMicros() {
return mStats.getMinInMicros();
}
/** Maximum value of collected data in microseconds, valid after analyze. */
public double getMaxInMicros() {
return mStats.getMaxInMicros();
}
/**
* Sum of the values of collected data in microseconds, valid after analyze.
*/
public double getTotalInMicros() {
return mStats.getTotalInMicros();
}
/** Sum of the values of collected data in seconds, valid after analyze. */
public double getTotalInSecs() {
return mStats.getTotalInSecs();
}
/** Sum of the values of collected data in seconds, valid after analyze. */
public double getMeanInMicros() {
return mStats.getMeanInMicros();
}
/** Median value of collected data in microseconds, valid after analyze. */
public double getMedianInMicros() {
return mStats.getMedianInMicros();
}
/**
* Standard deviation of collected data in microseconds, valid after
* analyze.
*/
public double getStdDevInMicros() {
return mStats.getStdDevInMicros();
}
/** The mTimes[index] value */
public long getTime(int index) {
return mTimes[index];
}
/** The mTimes */
public long[] getTimes() {
return mTimes;
}
/** @return the clock stats as measured in calibrate */
public Stats getClockStats() {
return mClockStats;
}
/** @return the stats */
public Stats getStats() {
return mStats;
}
/**
* Convert stats to string
*
* @param debugLevel DEBUG_LEVEL_NONE, DEBUG_LEVEL_SOME, DEBUG_LEVEL_ALL
*/
public String stats(int debugLevel) {
int innerLoops = mStats.getInnerLoops();
if (mCount == 0) {
return String.format("%,.3fus", (getTicks() - mStart) / TICKS_PER_MICROSECOND);
} else {
if (mCount == 1) {
return String.format("%,.3fus", getTime());
} else {
analyze(mStats, mTimes, mCount, debugLevel);
return mStats.toString();
}
}
}
/**
* Convert string
*/
public String stats() {
return stats(0);
}
/**
* Get time
*/
public double getTime() {
int innerLoops = mStats.getInnerLoops();
if (mCount == 0) {
return (getTicks() - mStart) / TICKS_PER_MICROSECOND;
} else {
if (mCount == 1) {
return mStats.getTotalInMicros();
} else {
analyze(mStats, mTimes, mCount, DEBUG_LEVEL_NONE);
return (mStats.getMinInMicros() / innerLoops) - mCr.mRunnableOverheadInMicros;
}
}
}
/** Convert to string */
@Override
public String toString() {
return String.format("%,.3fus", getTime());
}
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment