upb.h 320 KB
Newer Older
1 2
// Amalgamated source file
/*
3 4 5 6 7
** Defs are upb's internal representation of the constructs that can appear
** in a .proto file:
**
** - upb::MessageDef (upb_msgdef): describes a "message" construct.
** - upb::FieldDef (upb_fielddef): describes a message field.
8
** - upb::FileDef (upb_filedef): describes a .proto file and its defs.
9 10 11 12 13 14 15 16 17 18 19 20
** - upb::EnumDef (upb_enumdef): describes an enum.
** - upb::OneofDef (upb_oneofdef): describes a oneof.
** - upb::Def (upb_def): base class of all the others.
**
** TODO: definitions of services.
**
** Like upb_refcounted objects, defs are mutable only until frozen, and are
** only thread-safe once frozen.
**
** This is a mixed C/C++ interface that offers a full API to both languages.
** See the top-level README for more information.
*/
21 22 23 24 25

#ifndef UPB_DEF_H_
#define UPB_DEF_H_

/*
26 27 28 29 30 31 32 33 34 35 36 37 38
** upb::RefCounted (upb_refcounted)
**
** A refcounting scheme that supports circular refs.  It accomplishes this by
** partitioning the set of objects into groups such that no cycle spans groups;
** we can then reference-count the group as a whole and ignore refs within the
** group.  When objects are mutable, these groups are computed very
** conservatively; we group any objects that have ever had a link between them.
** When objects are frozen, we compute strongly-connected components which
** allows us to be precise and only group objects that are actually cyclic.
**
** This is a mixed C/C++ interface that offers a full API to both languages.
** See the top-level README for more information.
*/
39 40 41 42 43

#ifndef UPB_REFCOUNTED_H_
#define UPB_REFCOUNTED_H_

/*
44 45 46 47 48 49 50 51 52 53 54 55 56 57
** upb_table
**
** This header is INTERNAL-ONLY!  Its interfaces are not public or stable!
** This file defines very fast int->upb_value (inttable) and string->upb_value
** (strtable) hash tables.
**
** The table uses chained scatter with Brent's variation (inspired by the Lua
** implementation of hash tables).  The hash function for strings is Austin
** Appleby's "MurmurHash."
**
** The inttable uses uintptr_t as its key, which guarantees it can be used to
** store pointers or integers of at least 32 bits (upb isn't really useful on
** systems where sizeof(void*) < 4).
**
58
** The table must be homogeneous (all values of the same type).  In debug
59 60
** mode, we check this on insert and lookup.
*/
61 62 63 64 65 66 67 68

#ifndef UPB_TABLE_H_
#define UPB_TABLE_H_

#include <assert.h>
#include <stdint.h>
#include <string.h>
/*
69 70 71 72 73
** This file contains shared definitions that are widely used across upb.
**
** This is a mixed C/C++ interface that offers a full API to both languages.
** See the top-level README for more information.
*/
74 75 76 77 78 79 80 81 82

#ifndef UPB_H_
#define UPB_H_

#include <assert.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stddef.h>

83 84 85 86 87 88 89 90 91 92 93 94
#ifdef __cplusplus
namespace upb {
class Allocator;
class Arena;
class Environment;
class ErrorSpace;
class Status;
template <int N> class InlinedArena;
template <int N> class InlinedEnvironment;
}
#endif

95
/* UPB_INLINE: inline if possible, emit standalone code if required. */
96 97
#ifdef __cplusplus
#define UPB_INLINE inline
98 99
#elif defined (__GNUC__)
#define UPB_INLINE static __inline__
100
#else
101
#define UPB_INLINE static
102 103
#endif

104 105 106 107 108 109 110
/* Define UPB_BIG_ENDIAN manually if you're on big endian and your compiler
 * doesn't provide these preprocessor symbols. */
#if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
#define UPB_BIG_ENDIAN
#endif

/* Macros for function attributes on compilers that support them. */
111
#ifdef __GNUC__
112
#define UPB_FORCEINLINE __inline__ __attribute__((always_inline))
113
#define UPB_NOINLINE __attribute__((noinline))
114 115
#define UPB_NORETURN __attribute__((__noreturn__))
#else  /* !defined(__GNUC__) */
116 117
#define UPB_FORCEINLINE
#define UPB_NOINLINE
118
#define UPB_NORETURN
119 120
#endif

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
/* A few hacky workarounds for functions not in C89.
 * For internal use only!
 * TODO(haberman): fix these by including our own implementations, or finding
 * another workaround.
 */
#ifdef __GNUC__
#define _upb_snprintf __builtin_snprintf
#define _upb_vsnprintf __builtin_vsnprintf
#define _upb_va_copy(a, b) __va_copy(a, b)
#elif __STDC_VERSION__ >= 199901L
/* C99 versions. */
#define _upb_snprintf snprintf
#define _upb_vsnprintf vsnprintf
#define _upb_va_copy(a, b) va_copy(a, b)
#else
#error Need implementations of [v]snprintf and va_copy
137 138
#endif

139

140 141 142 143 144
#if ((defined(__cplusplus) && __cplusplus >= 201103L) || \
      defined(__GXX_EXPERIMENTAL_CXX0X__)) && !defined(UPB_NO_CXX11)
#define UPB_CXX11
#endif

145 146 147 148 149
/* UPB_DISALLOW_COPY_AND_ASSIGN()
 * UPB_DISALLOW_POD_OPS()
 *
 * Declare these in the "private" section of a C++ class to forbid copy/assign
 * or all POD ops (construct, destruct, copy, assign) on that class. */
150 151 152 153 154 155 156 157 158 159 160 161
#ifdef UPB_CXX11
#include <type_traits>
#define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \
  class_name(const class_name&) = delete; \
  void operator=(const class_name&) = delete;
#define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \
  class_name() = delete; \
  ~class_name() = delete; \
  UPB_DISALLOW_COPY_AND_ASSIGN(class_name)
#define UPB_ASSERT_STDLAYOUT(type) \
  static_assert(std::is_standard_layout<type>::value, \
                #type " must be standard layout");
162
#define UPB_FINAL final
163
#else  /* !defined(UPB_CXX11) */
164 165 166 167 168 169 170 171
#define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \
  class_name(const class_name&); \
  void operator=(const class_name&);
#define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \
  class_name(); \
  ~class_name(); \
  UPB_DISALLOW_COPY_AND_ASSIGN(class_name)
#define UPB_ASSERT_STDLAYOUT(type)
172
#define UPB_FINAL
173 174
#endif

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
/* UPB_DECLARE_TYPE()
 * UPB_DECLARE_DERIVED_TYPE()
 * UPB_DECLARE_DERIVED_TYPE2()
 *
 * Macros for declaring C and C++ types both, including inheritance.
 * The inheritance doesn't use real C++ inheritance, to stay compatible with C.
 *
 * These macros also provide upcasts:
 *  - in C: types-specific functions (ie. upb_foo_upcast(foo))
 *  - in C++: upb::upcast(foo) along with implicit conversions
 *
 * Downcasts are not provided, but upb/def.h defines downcasts for upb::Def. */

#define UPB_C_UPCASTS(ty, base)                                      \
  UPB_INLINE base *ty ## _upcast_mutable(ty *p) { return (base*)p; } \
  UPB_INLINE const base *ty ## _upcast(const ty *p) { return (const base*)p; }

#define UPB_C_UPCASTS2(ty, base, base2)                                 \
  UPB_C_UPCASTS(ty, base)                                               \
  UPB_INLINE base2 *ty ## _upcast2_mutable(ty *p) { return (base2*)p; } \
  UPB_INLINE const base2 *ty ## _upcast2(const ty *p) { return (const base2*)p; }
196 197 198 199 200

#ifdef __cplusplus

#define UPB_BEGIN_EXTERN_C extern "C" {
#define UPB_END_EXTERN_C }
201 202 203 204 205 206
#define UPB_PRIVATE_FOR_CPP private:
#define UPB_DECLARE_TYPE(cppname, cname) typedef cppname cname;

#define UPB_DECLARE_DERIVED_TYPE(cppname, cppbase, cname, cbase)  \
  UPB_DECLARE_TYPE(cppname, cname)                                \
  UPB_C_UPCASTS(cname, cbase)                                     \
207 208 209 210
  namespace upb {                                                 \
  template <>                                                     \
  class Pointer<cppname> : public PointerBase<cppname, cppbase> { \
   public:                                                        \
211 212
    explicit Pointer(cppname* ptr)                                \
        : PointerBase<cppname, cppbase>(ptr) {}                   \
213 214 215 216 217
  };                                                              \
  template <>                                                     \
  class Pointer<const cppname>                                    \
      : public PointerBase<const cppname, const cppbase> {        \
   public:                                                        \
218 219
    explicit Pointer(const cppname* ptr)                          \
        : PointerBase<const cppname, const cppbase>(ptr) {}       \
220 221
  };                                                              \
  }
222 223 224 225 226

#define UPB_DECLARE_DERIVED_TYPE2(cppname, cppbase, cppbase2, cname, cbase,  \
                                  cbase2)                                    \
  UPB_DECLARE_TYPE(cppname, cname)                                           \
  UPB_C_UPCASTS2(cname, cbase, cbase2)                                       \
227 228 229 230
  namespace upb {                                                            \
  template <>                                                                \
  class Pointer<cppname> : public PointerBase2<cppname, cppbase, cppbase2> { \
   public:                                                                   \
231 232
    explicit Pointer(cppname* ptr)                                           \
        : PointerBase2<cppname, cppbase, cppbase2>(ptr) {}                   \
233 234 235 236 237
  };                                                                         \
  template <>                                                                \
  class Pointer<const cppname>                                               \
      : public PointerBase2<const cppname, const cppbase, const cppbase2> {  \
   public:                                                                   \
238 239
    explicit Pointer(const cppname* ptr)                                     \
        : PointerBase2<const cppname, const cppbase, const cppbase2>(ptr) {} \
240 241 242
  };                                                                         \
  }

243
#else  /* !defined(__cplusplus) */
244

245 246
#define UPB_BEGIN_EXTERN_C
#define UPB_END_EXTERN_C
247 248 249 250
#define UPB_PRIVATE_FOR_CPP
#define UPB_DECLARE_TYPE(cppname, cname) \
  struct cname;                          \
  typedef struct cname cname;
251 252 253 254 255 256 257
#define UPB_DECLARE_DERIVED_TYPE(cppname, cppbase, cname, cbase) \
  UPB_DECLARE_TYPE(cppname, cname)                               \
  UPB_C_UPCASTS(cname, cbase)
#define UPB_DECLARE_DERIVED_TYPE2(cppname, cppbase, cppbase2,    \
                                  cname, cbase, cbase2)          \
  UPB_DECLARE_TYPE(cppname, cname)                               \
  UPB_C_UPCASTS2(cname, cbase, cbase2)
258

259
#endif  /* defined(__cplusplus) */
260 261 262 263 264 265

#define UPB_MAX(x, y) ((x) > (y) ? (x) : (y))
#define UPB_MIN(x, y) ((x) < (y) ? (x) : (y))

#define UPB_UNUSED(var) (void)var

266 267 268
/* For asserting something about a variable when the variable is not used for
 * anything else.  This prevents "unused variable" warnings when compiling in
 * debug mode. */
269 270
#define UPB_ASSERT_VAR(var, predicate) UPB_UNUSED(var); assert(predicate)

271
/* Generic function type. */
272 273
typedef void upb_func();

274

275
/* C++ Casts ******************************************************************/
276 277 278 279 280

#ifdef __cplusplus

namespace upb {

281 282 283 284 285 286 287 288 289 290 291 292
template <class T> class Pointer;

/* Casts to a subclass.  The caller must know that cast is correct; an
 * incorrect cast will throw an assertion failure in debug mode.
 *
 * Example:
 *   upb::Def* def = GetDef();
 *   // Assert-fails if this was not actually a MessageDef.
 *   upb::MessgeDef* md = upb::down_cast<upb::MessageDef>(def);
 *
 * Note that downcasts are only defined for some types (at the moment you can
 * only downcast from a upb::Def to a specific Def type). */
293 294
template<class To, class From> To down_cast(From* f);

295 296 297 298 299 300 301 302 303 304
/* Casts to a subclass.  If the class does not actually match the given To type,
 * returns NULL.
 *
 * Example:
 *   upb::Def* def = GetDef();
 *   // md will be NULL if this was not actually a MessageDef.
 *   upb::MessgeDef* md = upb::down_cast<upb::MessageDef>(def);
 *
 * Note that dynamic casts are only defined for some types (at the moment you
 * can only downcast from a upb::Def to a specific Def type).. */
305 306
template<class To, class From> To dyn_cast(From* f);

307 308 309 310 311 312 313
/* Casts to any base class, or the type itself (ie. can be a no-op).
 *
 * Example:
 *   upb::MessageDef* md = GetDef();
 *   // This will fail to compile if this wasn't actually a base class.
 *   upb::Def* def = upb::upcast(md);
 */
314 315
template <class T> inline Pointer<T> upcast(T *f) { return Pointer<T>(f); }

316 317 318 319 320 321 322 323 324 325 326 327 328
/* Attempt upcast to specific base class.
 *
 * Example:
 *   upb::MessageDef* md = GetDef();
 *   upb::upcast_to<upb::Def>(md)->MethodOnDef();
 */
template <class T, class F> inline T* upcast_to(F *f) {
  return static_cast<T*>(upcast(f));
}

/* PointerBase<T>: implementation detail of upb::upcast().
 * It is implicitly convertable to pointers to the Base class(es).
 */
329 330 331 332 333
template <class T, class Base>
class PointerBase {
 public:
  explicit PointerBase(T* ptr) : ptr_(ptr) {}
  operator T*() { return ptr_; }
334
  operator Base*() { return (Base*)ptr_; }
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

 private:
  T* ptr_;
};

template <class T, class Base, class Base2>
class PointerBase2 : public PointerBase<T, Base> {
 public:
  explicit PointerBase2(T* ptr) : PointerBase<T, Base>(ptr) {}
  operator Base2*() { return Pointer<Base>(*this); }
};

}

#endif


352 353 354 355 356 357 358 359 360 361 362 363
/* upb::ErrorSpace ************************************************************/

/* A upb::ErrorSpace represents some domain of possible error values.  This lets
 * upb::Status attach specific error codes to operations, like POSIX/C errno,
 * Win32 error codes, etc.  Clients who want to know the very specific error
 * code can check the error space and then know the type of the integer code.
 *
 * NOTE: upb::ErrorSpace is currently not used and should be considered
 * experimental.  It is important primarily in cases where upb is performing
 * I/O, but upb doesn't currently have any components that do this. */

UPB_DECLARE_TYPE(upb::ErrorSpace, upb_errorspace)
364 365

#ifdef __cplusplus
366 367 368 369 370 371
class upb::ErrorSpace {
#else
struct upb_errorspace {
#endif
  const char *name;
};
372 373


374
/* upb::Status ****************************************************************/
375

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
/* upb::Status represents a success or failure status and error message.
 * It owns no resources and allocates no memory, so it should work
 * even in OOM situations. */
UPB_DECLARE_TYPE(upb::Status, upb_status)

/* The maximum length of an error message before it will get truncated. */
#define UPB_STATUS_MAX_MESSAGE 128

UPB_BEGIN_EXTERN_C

const char *upb_status_errmsg(const upb_status *status);
bool upb_ok(const upb_status *status);
upb_errorspace *upb_status_errspace(const upb_status *status);
int upb_status_errcode(const upb_status *status);

/* Any of the functions that write to a status object allow status to be NULL,
 * to support use cases where the function's caller does not care about the
 * status message. */
void upb_status_clear(upb_status *status);
void upb_status_seterrmsg(upb_status *status, const char *msg);
void upb_status_seterrf(upb_status *status, const char *fmt, ...);
void upb_status_vseterrf(upb_status *status, const char *fmt, va_list args);
void upb_status_copy(upb_status *to, const upb_status *from);

UPB_END_EXTERN_C

#ifdef __cplusplus

class upb::Status {
405
 public:
406
  Status() { upb_status_clear(this); }
407

408 409
  /* Returns true if there is no error. */
  bool ok() const { return upb_ok(this); }
410

411 412 413 414
  /* Optional error space and code, useful if the caller wants to
   * programmatically check the specific kind of error. */
  ErrorSpace* error_space() { return upb_status_errspace(this); }
  int error_code() const { return upb_status_errcode(this); }
415

416 417 418 419 420 421 422 423 424 425 426
  /* The returned string is invalidated by any other call into the status. */
  const char *error_message() const { return upb_status_errmsg(this); }

  /* The error message will be truncated if it is longer than
   * UPB_STATUS_MAX_MESSAGE-4. */
  void SetErrorMessage(const char* msg) { upb_status_seterrmsg(this, msg); }
  void SetFormattedErrorMessage(const char* fmt, ...) {
    va_list args;
    va_start(args, fmt);
    upb_status_vseterrf(this, fmt, args);
    va_end(args);
427 428
  }

429 430
  /* Resets the status to a successful state with no message. */
  void Clear() { upb_status_clear(this); }
431

432
  void CopyFrom(const Status& other) { upb_status_copy(this, &other); }
433

434 435 436 437 438 439
 private:
  UPB_DISALLOW_COPY_AND_ASSIGN(Status)
#else
struct upb_status {
#endif
  bool ok_;
440

441 442 443
  /* Specific status code defined by some error space (optional). */
  int code_;
  upb_errorspace *error_space_;
444

445
  /* TODO(haberman): add file/line of error? */
446

447 448 449
  /* Error message; NULL-terminated. */
  char msg[UPB_STATUS_MAX_MESSAGE];
};
450

451
#define UPB_STATUS_INIT {true, 0, NULL, {0}}
452 453


454
/** Built-in error spaces. ****************************************************/
455

456 457 458 459
/* Errors raised by upb that we want to be able to detect programmatically. */
typedef enum {
  UPB_NOMEM   /* Can't reuse ENOMEM because it is POSIX, not ISO C. */
} upb_errcode_t;
460

461
extern upb_errorspace upb_upberr;
462

463
void upb_upberr_setoom(upb_status *s);
464

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
/* Since errno is defined by standard C, we define an error space for it in
 * core upb.  Other error spaces should be defined in other, platform-specific
 * modules. */

extern upb_errorspace upb_errnoerr;


/** upb::Allocator ************************************************************/

/* A upb::Allocator is a possibly-stateful allocator object.
 *
 * It could either be an arena allocator (which doesn't require individual
 * free() calls) or a regular malloc() (which does).  The client must therefore
 * free memory unless it knows that the allocator is an arena allocator. */
UPB_DECLARE_TYPE(upb::Allocator, upb_alloc)

/* A malloc()/free() function.
 * If "size" is 0 then the function acts like free(), otherwise it acts like
 * realloc().  Only "oldsize" bytes from a previous allocation are preserved. */
typedef void *upb_alloc_func(upb_alloc *alloc, void *ptr, size_t oldsize,
                             size_t size);

#ifdef __cplusplus

class upb::Allocator UPB_FINAL {
 public:
  Allocator() {}
492 493

 private:
494 495 496 497 498 499 500
  UPB_DISALLOW_COPY_AND_ASSIGN(Allocator)

 public:
#else
struct upb_alloc {
#endif  /* __cplusplus */
  upb_alloc_func *func;
501 502
};

503 504 505 506
UPB_INLINE void *upb_malloc(upb_alloc *alloc, size_t size) {
  assert(size > 0);
  return alloc->func(alloc, NULL, 0, size);
}
507

508 509 510 511 512
UPB_INLINE void *upb_realloc(upb_alloc *alloc, void *ptr, size_t oldsize,
                             size_t size) {
  assert(size > 0);
  return alloc->func(alloc, ptr, oldsize, size);
}
513

514 515 516
UPB_INLINE void upb_free(upb_alloc *alloc, void *ptr) {
  alloc->func(alloc, ptr, 0, 0);
}
517

518
/* The global allocator used by upb.  Uses the standard malloc()/free(). */
519

520 521 522 523 524 525 526 527 528
extern upb_alloc upb_alloc_global;

/* Functions that hard-code the global malloc.
 *
 * We still get benefit because we can put custom logic into our global
 * allocator, like injecting out-of-memory faults in debug/testing builds. */

UPB_INLINE void *upb_gmalloc(size_t size) {
  return upb_malloc(&upb_alloc_global, size);
529 530
}

531 532 533
UPB_INLINE void *upb_grealloc(void *ptr, size_t oldsize, size_t size) {
  return upb_realloc(&upb_alloc_global, ptr, oldsize, size);
}
534

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
UPB_INLINE void upb_gfree(void *ptr) {
  upb_free(&upb_alloc_global, ptr);
}

/* upb::Arena *****************************************************************/

/* upb::Arena is a specific allocator implementation that uses arena allocation.
 * The user provides an allocator that will be used to allocate the underlying
 * arena blocks.  Arenas by nature do not require the individual allocations
 * to be freed.  However the Arena does allow users to register cleanup
 * functions that will run when the arena is destroyed.
 *
 * A upb::Arena is *not* thread-safe.
 *
 * You could write a thread-safe arena allocator that satisfies the
 * upb::Allocator interface, but it would not be as efficient for the
 * single-threaded case. */
UPB_DECLARE_TYPE(upb::Arena, upb_arena)

typedef void upb_cleanup_func(void *ud);
555

556 557 558 559 560 561 562 563 564 565 566 567 568 569
#define UPB_ARENA_BLOCK_OVERHEAD (sizeof(size_t)*4)

UPB_BEGIN_EXTERN_C

void upb_arena_init(upb_arena *a);
void upb_arena_init2(upb_arena *a, void *mem, size_t n, upb_alloc *alloc);
void upb_arena_uninit(upb_arena *a);
upb_alloc *upb_arena_alloc(upb_arena *a);
bool upb_arena_addcleanup(upb_arena *a, upb_cleanup_func *func, void *ud);
size_t upb_arena_bytesallocated(const upb_arena *a);
void upb_arena_setnextblocksize(upb_arena *a, size_t size);
void upb_arena_setmaxblocksize(upb_arena *a, size_t size);

UPB_END_EXTERN_C
570

571
#ifdef __cplusplus
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

class upb::Arena {
 public:
  /* A simple arena with no initial memory block and the default allocator. */
  Arena() { upb_arena_init(this); }

  /* Constructs an arena with the given initial block which allocates blocks
   * with the given allocator.  The given allocator must outlive the Arena.
   *
   * If you pass NULL for the allocator it will default to the global allocator
   * upb_alloc_global, and NULL/0 for the initial block will cause there to be
   * no initial block. */
  Arena(void *mem, size_t len, Allocator* a) {
    upb_arena_init2(this, mem, len, a);
  }

  ~Arena() { upb_arena_uninit(this); }

  /* Sets the size of the next block the Arena will request (unless the
   * requested allocation is larger).  Each block will double in size until the
   * max limit is reached. */
  void SetNextBlockSize(size_t size) { upb_arena_setnextblocksize(this, size); }

  /* Sets the maximum block size.  No blocks larger than this will be requested
   * from the underlying allocator unless individual arena allocations are
   * larger. */
  void SetMaxBlockSize(size_t size) { upb_arena_setmaxblocksize(this, size); }

  /* Allows this arena to be used as a generic allocator.
   *
   * The arena does not need free() calls so when using Arena as an allocator
   * it is safe to skip them.  However they are no-ops so there is no harm in
   * calling free() either. */
  Allocator* allocator() { return upb_arena_alloc(this); }

  /* Add a cleanup function to run when the arena is destroyed.
   * Returns false on out-of-memory. */
  bool AddCleanup(upb_cleanup_func* func, void* ud) {
    return upb_arena_addcleanup(this, func, ud);
  }

  /* Total number of bytes that have been allocated.  It is undefined what
   * Realloc() does to this counter. */
  size_t BytesAllocated() const {
    return upb_arena_bytesallocated(this);
  }

 private:
  UPB_DISALLOW_COPY_AND_ASSIGN(Arena)

622
#else
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
struct upb_arena {
#endif  /* __cplusplus */
  /* We implement the allocator interface.
   * This must be the first member of upb_arena! */
  upb_alloc alloc;

  /* Allocator to allocate arena blocks.  We are responsible for freeing these
   * when we are destroyed. */
  upb_alloc *block_alloc;

  size_t bytes_allocated;
  size_t next_block_size;
  size_t max_block_size;

  /* Linked list of blocks.  Points to an arena_block, defined in env.c */
  void *block_head;

  /* Cleanup entries.  Pointer to a cleanup_ent, defined in env.c */
  void *cleanup_head;

  /* For future expansion, since the size of this struct is exposed to users. */
  void *future1;
  void *future2;
646 647 648
};


649
/* upb::Environment ***********************************************************/
650

651 652 653 654 655 656 657 658 659 660 661 662 663
/* A upb::Environment provides a means for injecting malloc and an
 * error-reporting callback into encoders/decoders.  This allows them to be
 * independent of nearly all assumptions about their actual environment.
 *
 * It is also a container for allocating the encoders/decoders themselves that
 * insulates clients from knowing their actual size.  This provides ABI
 * compatibility even if the size of the objects change.  And this allows the
 * structure definitions to be in the .c files instead of the .h files, making
 * the .h files smaller and more readable.
 *
 * We might want to consider renaming this to "Pipeline" if/when the concept of
 * a pipeline element becomes more formalized. */
UPB_DECLARE_TYPE(upb::Environment, upb_env)
664

665 666 667 668
/* A function that receives an error report from an encoder or decoder.  The
 * callback can return true to request that the error should be recovered, but
 * if the error is not recoverable this has no effect. */
typedef bool upb_error_func(void *ud, const upb_status *status);
669

670
UPB_BEGIN_EXTERN_C
671

672 673 674
void upb_env_init(upb_env *e);
void upb_env_init2(upb_env *e, void *mem, size_t n, upb_alloc *alloc);
void upb_env_uninit(upb_env *e);
675

676
void upb_env_initonly(upb_env *e);
677

678 679 680
upb_arena *upb_env_arena(upb_env *e);
bool upb_env_ok(const upb_env *e);
void upb_env_seterrorfunc(upb_env *e, upb_error_func *func, void *ud);
681

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
/* Convenience wrappers around the methods of the contained arena. */
void upb_env_reporterrorsto(upb_env *e, upb_status *s);
bool upb_env_reporterror(upb_env *e, const upb_status *s);
void *upb_env_malloc(upb_env *e, size_t size);
void *upb_env_realloc(upb_env *e, void *ptr, size_t oldsize, size_t size);
void upb_env_free(upb_env *e, void *ptr);
bool upb_env_addcleanup(upb_env *e, upb_cleanup_func *func, void *ud);
size_t upb_env_bytesallocated(const upb_env *e);

UPB_END_EXTERN_C

#ifdef __cplusplus

class upb::Environment {
 public:
  /* The given Arena must outlive this environment. */
  Environment() { upb_env_initonly(this); }

  Environment(void *mem, size_t len, Allocator *a) : arena_(mem, len, a) {
    upb_env_initonly(this);
  }
703

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
  Arena* arena() { return upb_env_arena(this); }

  /* Set a custom error reporting function. */
  void SetErrorFunction(upb_error_func* func, void* ud) {
    upb_env_seterrorfunc(this, func, ud);
  }

  /* Set the error reporting function to simply copy the status to the given
   * status and abort. */
  void ReportErrorsTo(Status* status) { upb_env_reporterrorsto(this, status); }

  /* Returns true if all allocations and AddCleanup() calls have succeeded,
   * and no errors were reported with ReportError() (except ones that recovered
   * successfully). */
  bool ok() const { return upb_env_ok(this); }

  /* Reports an error to this environment's callback, returning true if
   * the caller should try to recover. */
  bool ReportError(const Status* status) {
    return upb_env_reporterror(this, status);
  }
725 726

 private:
727 728
  UPB_DISALLOW_COPY_AND_ASSIGN(Environment)

729
#else
730 731 732 733 734
struct upb_env {
#endif  /* __cplusplus */
  upb_arena arena_;
  upb_error_func *error_func_;
  void *error_ud_;
735
  bool ok_;
736
};
737 738


739 740
/* upb::InlinedArena **********************************************************/
/* upb::InlinedEnvironment ****************************************************/
741

742 743 744 745 746
/* upb::InlinedArena and upb::InlinedEnvironment seed their arenas with a
 * predefined amount of memory.  No heap memory will be allocated until the
 * initial block is exceeded.
 *
 * These types only exist in C++ */
747 748 749

#ifdef __cplusplus

750 751 752 753
template <int N> class upb::InlinedArena : public upb::Arena {
 public:
  InlinedArena() : Arena(initial_block_, N, NULL) {}
  explicit InlinedArena(Allocator* a) : Arena(initial_block_, N, a) {}
754

755 756
 private:
  UPB_DISALLOW_COPY_AND_ASSIGN(InlinedArena)
757

758 759
  char initial_block_[N + UPB_ARENA_BLOCK_OVERHEAD];
};
760

761 762 763 764 765
template <int N> class upb::InlinedEnvironment : public upb::Environment {
 public:
  InlinedEnvironment() : Environment(initial_block_, N, NULL) {}
  explicit InlinedEnvironment(Allocator *a)
      : Environment(initial_block_, N, a) {}
766

767 768 769 770 771 772 773
 private:
  UPB_DISALLOW_COPY_AND_ASSIGN(InlinedEnvironment)

  char initial_block_[N + UPB_ARENA_BLOCK_OVERHEAD];
};

#endif  /* __cplusplus */
774 775 776 777 778 779 780 781 782 783 784 785



#endif  /* UPB_H_ */

#ifdef __cplusplus
extern "C" {
#endif


/* upb_value ******************************************************************/

786 787 788
/* A tagged union (stored untagged inside the table) so that we can check that
 * clients calling table accessors are correctly typed without having to have
 * an explosion of accessors. */
789 790 791 792 793 794 795 796 797
typedef enum {
  UPB_CTYPE_INT32    = 1,
  UPB_CTYPE_INT64    = 2,
  UPB_CTYPE_UINT32   = 3,
  UPB_CTYPE_UINT64   = 4,
  UPB_CTYPE_BOOL     = 5,
  UPB_CTYPE_CSTR     = 6,
  UPB_CTYPE_PTR      = 7,
  UPB_CTYPE_CONSTPTR = 8,
798
  UPB_CTYPE_FPTR     = 9
799 800 801
} upb_ctype_t;

typedef struct {
802
  uint64_t val;
803
#ifndef NDEBUG
804 805
  /* In debug mode we carry the value type around also so we can check accesses
   * to be sure the right member is being read. */
806 807 808 809 810 811 812 813 814 815
  upb_ctype_t ctype;
#endif
} upb_value;

#ifdef NDEBUG
#define SET_TYPE(dest, val)      UPB_UNUSED(val)
#else
#define SET_TYPE(dest, val) dest = val
#endif

816
/* Like strdup(), which isn't always available since it's not ANSI C. */
817
char *upb_strdup(const char *s, upb_alloc *a);
818 819
/* Variant that works with a length-delimited rather than NULL-delimited string,
 * as supported by strtable. */
820 821 822 823 824
char *upb_strdup2(const char *s, size_t len, upb_alloc *a);

UPB_INLINE char *upb_gstrdup(const char *s) {
  return upb_strdup(s, &upb_alloc_global);
}
825

826
UPB_INLINE void _upb_value_setval(upb_value *v, uint64_t val,
827 828 829 830 831
                                  upb_ctype_t ctype) {
  v->val = val;
  SET_TYPE(v->ctype, ctype);
}

832
UPB_INLINE upb_value _upb_value_val(uint64_t val, upb_ctype_t ctype) {
833 834 835 836 837
  upb_value ret;
  _upb_value_setval(&ret, val, ctype);
  return ret;
}

838 839 840 841 842 843 844 845 846
/* For each value ctype, define the following set of functions:
 *
 * // Get/set an int32 from a upb_value.
 * int32_t upb_value_getint32(upb_value val);
 * void upb_value_setint32(upb_value *val, int32_t cval);
 *
 * // Construct a new upb_value from an int32.
 * upb_value upb_value_int32(int32_t val); */
#define FUNCS(name, membername, type_t, converter, proto_type) \
847
  UPB_INLINE void upb_value_set ## name(upb_value *val, type_t cval) { \
848
    val->val = (converter)cval; \
849 850 851 852 853 854 855 856 857
    SET_TYPE(val->ctype, proto_type); \
  } \
  UPB_INLINE upb_value upb_value_ ## name(type_t val) { \
    upb_value ret; \
    upb_value_set ## name(&ret, val); \
    return ret; \
  } \
  UPB_INLINE type_t upb_value_get ## name(upb_value val) { \
    assert(val.ctype == proto_type); \
858
    return (type_t)(converter)val.val; \
859 860
  }

861 862 863 864 865 866 867 868 869
FUNCS(int32,    int32,        int32_t,      int32_t,    UPB_CTYPE_INT32)
FUNCS(int64,    int64,        int64_t,      int64_t,    UPB_CTYPE_INT64)
FUNCS(uint32,   uint32,       uint32_t,     uint32_t,   UPB_CTYPE_UINT32)
FUNCS(uint64,   uint64,       uint64_t,     uint64_t,   UPB_CTYPE_UINT64)
FUNCS(bool,     _bool,        bool,         bool,       UPB_CTYPE_BOOL)
FUNCS(cstr,     cstr,         char*,        uintptr_t,  UPB_CTYPE_CSTR)
FUNCS(ptr,      ptr,          void*,        uintptr_t,  UPB_CTYPE_PTR)
FUNCS(constptr, constptr,     const void*,  uintptr_t,  UPB_CTYPE_CONSTPTR)
FUNCS(fptr,     fptr,         upb_func*,    uintptr_t,  UPB_CTYPE_FPTR)
870 871

#undef FUNCS
872
#undef SET_TYPE
873 874


875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
/* upb_tabkey *****************************************************************/

/* Either:
 *   1. an actual integer key, or
 *   2. a pointer to a string prefixed by its uint32_t length, owned by us.
 *
 * ...depending on whether this is a string table or an int table.  We would
 * make this a union of those two types, but C89 doesn't support statically
 * initializing a non-first union member. */
typedef uintptr_t upb_tabkey;

#define UPB_TABKEY_NUM(n) n
#define UPB_TABKEY_NONE 0
/* The preprocessor isn't quite powerful enough to turn the compile-time string
 * length into a byte-wise string representation, so code generation needs to
 * help it along.
 *
 * "len1" is the low byte and len4 is the high byte. */
#ifdef UPB_BIG_ENDIAN
#define UPB_TABKEY_STR(len1, len2, len3, len4, strval) \
    (uintptr_t)(len4 len3 len2 len1 strval)
#else
#define UPB_TABKEY_STR(len1, len2, len3, len4, strval) \
    (uintptr_t)(len1 len2 len3 len4 strval)
#endif

UPB_INLINE char *upb_tabstr(upb_tabkey key, uint32_t *len) {
  char* mem = (char*)key;
  if (len) memcpy(len, mem, sizeof(*len));
  return mem + sizeof(*len);
}


/* upb_tabval *****************************************************************/

#ifdef __cplusplus

/* Status initialization not supported.
 *
 * This separate definition is necessary because in C++, UINTPTR_MAX isn't
 * reliably available. */
typedef struct {
  uint64_t val;
} upb_tabval;

#else

/* C -- supports static initialization, but to support static initialization of
 * both integers and points for both 32 and 64 bit targets, it takes a little
 * bit of doing. */

#if UINTPTR_MAX == 0xffffffffffffffffULL
#define UPB_PTR_IS_64BITS
#elif UINTPTR_MAX != 0xffffffff
#error Could not determine how many bits pointers are.
#endif
931 932

typedef union {
933 934 935 936 937
  /* For static initialization.
   *
   * Unfortunately this ugliness is necessary -- it is the only way that we can,
   * with -std=c89 -pedantic, statically initialize this to either a pointer or
   * an integer on 32-bit platforms. */
938
  struct {
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
#ifdef UPB_PTR_IS_64BITS
    uintptr_t val;
#else
    uintptr_t val1;
    uintptr_t val2;
#endif
  } staticinit;

  /* The normal accessor that we use for everything at runtime. */
  uint64_t val;
} upb_tabval;

#ifdef UPB_PTR_IS_64BITS
#define UPB_TABVALUE_INT_INIT(v) {{v}}
#define UPB_TABVALUE_EMPTY_INIT  {{-1}}
#else

/* 32-bit pointers */

#ifdef UPB_BIG_ENDIAN
#define UPB_TABVALUE_INT_INIT(v) {{0, v}}
#define UPB_TABVALUE_EMPTY_INIT  {{-1, -1}}
#else
#define UPB_TABVALUE_INT_INIT(v) {{v, 0}}
#define UPB_TABVALUE_EMPTY_INIT  {{-1, -1}}
#endif

966
#endif
967 968 969 970 971 972 973 974 975

#define UPB_TABVALUE_PTR_INIT(v) UPB_TABVALUE_INT_INIT((uintptr_t)v)

#undef UPB_PTR_IS_64BITS

#endif  /* __cplusplus */


/* upb_table ******************************************************************/
976 977 978

typedef struct _upb_tabent {
  upb_tabkey key;
979 980 981 982 983 984
  upb_tabval val;

  /* Internal chaining.  This is const so we can create static initializers for
   * tables.  We cast away const sometimes, but *only* when the containing
   * upb_table is known to be non-const.  This requires a bit of care, but
   * the subtlety is confined to table.c. */
985 986 987 988
  const struct _upb_tabent *next;
} upb_tabent;

typedef struct {
989 990 991 992 993 994 995 996 997 998 999
  size_t count;          /* Number of entries in the hash part. */
  size_t mask;           /* Mask to turn hash value -> bucket. */
  upb_ctype_t ctype;     /* Type of all values. */
  uint8_t size_lg2;      /* Size of the hashtable part is 2^size_lg2 entries. */

  /* Hash table entries.
   * Making this const isn't entirely accurate; what we really want is for it to
   * have the same const-ness as the table it's inside.  But there's no way to
   * declare that in C.  So we have to make it const so that we can statically
   * initialize const hash tables.  Then we cast away const when we have to.
   */
1000
  const upb_tabent *entries;
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

#ifndef NDEBUG
  /* This table's allocator.  We make the user pass it in to every relevant
   * function and only use this to check it in debug mode.  We do this solely
   * to keep upb_table as small as possible.  This might seem slightly paranoid
   * but the plan is to use upb_table for all map fields and extension sets in
   * a forthcoming message representation, so there could be a lot of these.
   * If this turns out to be too annoying later, we can change it (since this
   * is an internal-only header file). */
  upb_alloc *alloc;
#endif
1012 1013
} upb_table;

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
#ifdef NDEBUG
#  define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \
     {count, mask, ctype, size_lg2, entries}
#else
#  ifdef UPB_DEBUG_REFS
/* At the moment the only mutable tables we statically initialize are debug
 * ref tables. */
#    define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \
       {count, mask, ctype, size_lg2, entries, &upb_alloc_debugrefs}
#  else
#    define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \
       {count, mask, ctype, size_lg2, entries, NULL}
#  endif
#endif

1029 1030 1031 1032 1033
typedef struct {
  upb_table t;
} upb_strtable;

#define UPB_STRTABLE_INIT(count, mask, ctype, size_lg2, entries) \
1034
  {UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries)}
1035

1036 1037 1038
#define UPB_EMPTY_STRTABLE_INIT(ctype)                           \
  UPB_STRTABLE_INIT(0, 0, ctype, 0, NULL)

1039
typedef struct {
1040 1041 1042 1043
  upb_table t;              /* For entries that don't fit in the array part. */
  const upb_tabval *array;  /* Array part of the table. See const note above. */
  size_t array_size;        /* Array part size. */
  size_t array_count;       /* Array part number of elements. */
1044 1045 1046
} upb_inttable;

#define UPB_INTTABLE_INIT(count, mask, ctype, size_lg2, ent, a, asize, acount) \
1047
  {UPB_TABLE_INIT(count, mask, ctype, size_lg2, ent), a, asize, acount}
1048 1049 1050 1051

#define UPB_EMPTY_INTTABLE_INIT(ctype) \
  UPB_INTTABLE_INIT(0, 0, ctype, 0, NULL, NULL, 0, 0)

1052
#define UPB_ARRAY_EMPTYENT -1
1053 1054 1055 1056 1057 1058 1059 1060

UPB_INLINE size_t upb_table_size(const upb_table *t) {
  if (t->size_lg2 == 0)
    return 0;
  else
    return 1 << t->size_lg2;
}

1061
/* Internal-only functions, in .h file only out of necessity. */
1062
UPB_INLINE bool upb_tabent_isempty(const upb_tabent *e) {
1063
  return e->key == 0;
1064 1065
}

1066
/* Used by some of the unit tests for generic hashing functionality. */
1067 1068
uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed);

1069 1070
UPB_INLINE uintptr_t upb_intkey(uintptr_t key) {
  return key;
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
}

UPB_INLINE uint32_t upb_inthash(uintptr_t key) {
  return (uint32_t)key;
}

static const upb_tabent *upb_getentry(const upb_table *t, uint32_t hash) {
  return t->entries + (hash & t->mask);
}

1081 1082
UPB_INLINE bool upb_arrhas(upb_tabval key) {
  return key.val != (uint64_t)-1;
1083 1084
}

1085 1086
/* Initialize and uninitialize a table, respectively.  If memory allocation
 * failed, false is returned that the table is uninitialized. */
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
bool upb_inttable_init2(upb_inttable *table, upb_ctype_t ctype, upb_alloc *a);
bool upb_strtable_init2(upb_strtable *table, upb_ctype_t ctype, upb_alloc *a);
void upb_inttable_uninit2(upb_inttable *table, upb_alloc *a);
void upb_strtable_uninit2(upb_strtable *table, upb_alloc *a);

UPB_INLINE bool upb_inttable_init(upb_inttable *table, upb_ctype_t ctype) {
  return upb_inttable_init2(table, ctype, &upb_alloc_global);
}

UPB_INLINE bool upb_strtable_init(upb_strtable *table, upb_ctype_t ctype) {
  return upb_strtable_init2(table, ctype, &upb_alloc_global);
}

UPB_INLINE void upb_inttable_uninit(upb_inttable *table) {
  upb_inttable_uninit2(table, &upb_alloc_global);
}

UPB_INLINE void upb_strtable_uninit(upb_strtable *table) {
  upb_strtable_uninit2(table, &upb_alloc_global);
}
1107

1108
/* Returns the number of values in the table. */
1109 1110 1111 1112 1113
size_t upb_inttable_count(const upb_inttable *t);
UPB_INLINE size_t upb_strtable_count(const upb_strtable *t) {
  return t->t.count;
}

1114 1115 1116 1117 1118 1119 1120
/* Inserts the given key into the hashtable with the given value.  The key must
 * not already exist in the hash table.  For string tables, the key must be
 * NULL-terminated, and the table will make an internal copy of the key.
 * Inttables must not insert a value of UINTPTR_MAX.
 *
 * If a table resize was required but memory allocation failed, false is
 * returned and the table is unchanged. */
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
bool upb_inttable_insert2(upb_inttable *t, uintptr_t key, upb_value val,
                          upb_alloc *a);
bool upb_strtable_insert3(upb_strtable *t, const char *key, size_t len,
                          upb_value val, upb_alloc *a);

UPB_INLINE bool upb_inttable_insert(upb_inttable *t, uintptr_t key,
                                    upb_value val) {
  return upb_inttable_insert2(t, key, val, &upb_alloc_global);
}

UPB_INLINE bool upb_strtable_insert2(upb_strtable *t, const char *key,
                                     size_t len, upb_value val) {
  return upb_strtable_insert3(t, key, len, val, &upb_alloc_global);
}
1135

1136
/* For NULL-terminated strings. */
1137 1138 1139 1140
UPB_INLINE bool upb_strtable_insert(upb_strtable *t, const char *key,
                                    upb_value val) {
  return upb_strtable_insert2(t, key, strlen(key), val);
}
1141

1142 1143
/* Looks up key in this table, returning "true" if the key was found.
 * If v is non-NULL, copies the value for this key into *v. */
1144 1145 1146 1147
bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v);
bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len,
                          upb_value *v);

1148
/* For NULL-terminated strings. */
1149 1150 1151 1152 1153
UPB_INLINE bool upb_strtable_lookup(const upb_strtable *t, const char *key,
                                    upb_value *v) {
  return upb_strtable_lookup2(t, key, strlen(key), v);
}

1154 1155
/* Removes an item from the table.  Returns true if the remove was successful,
 * and stores the removed item in *val if non-NULL. */
1156
bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val);
1157 1158 1159 1160 1161 1162 1163
bool upb_strtable_remove3(upb_strtable *t, const char *key, size_t len,
                          upb_value *val, upb_alloc *alloc);

UPB_INLINE bool upb_strtable_remove2(upb_strtable *t, const char *key,
                                     size_t len, upb_value *val) {
  return upb_strtable_remove3(t, key, len, val, &upb_alloc_global);
}
1164

1165
/* For NULL-terminated strings. */
1166 1167 1168 1169
UPB_INLINE bool upb_strtable_remove(upb_strtable *t, const char *key,
                                    upb_value *v) {
  return upb_strtable_remove2(t, key, strlen(key), v);
}
1170

1171 1172 1173
/* Updates an existing entry in an inttable.  If the entry does not exist,
 * returns false and does nothing.  Unlike insert/remove, this does not
 * invalidate iterators. */
1174 1175
bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val);

1176 1177
/* Handy routines for treating an inttable like a stack.  May not be mixed with
 * other insert/remove calls. */
1178
bool upb_inttable_push2(upb_inttable *t, upb_value val, upb_alloc *a);
1179 1180
upb_value upb_inttable_pop(upb_inttable *t);

1181 1182 1183 1184
UPB_INLINE bool upb_inttable_push(upb_inttable *t, upb_value val) {
  return upb_inttable_push2(t, val, &upb_alloc_global);
}

1185
/* Convenience routines for inttables with pointer keys. */
1186 1187
bool upb_inttable_insertptr2(upb_inttable *t, const void *key, upb_value val,
                             upb_alloc *a);
1188 1189 1190 1191
bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val);
bool upb_inttable_lookupptr(
    const upb_inttable *t, const void *key, upb_value *val);

1192 1193 1194 1195 1196
UPB_INLINE bool upb_inttable_insertptr(upb_inttable *t, const void *key,
                                       upb_value val) {
  return upb_inttable_insertptr2(t, key, val, &upb_alloc_global);
}

1197 1198 1199
/* Optimizes the table for the current set of entries, for both memory use and
 * lookup time.  Client should call this after all entries have been inserted;
 * inserting more entries is legal, but will likely require a table resize. */
1200 1201 1202 1203 1204
void upb_inttable_compact2(upb_inttable *t, upb_alloc *a);

UPB_INLINE void upb_inttable_compact(upb_inttable *t) {
  upb_inttable_compact2(t, &upb_alloc_global);
}
1205

1206 1207
/* A special-case inlinable version of the lookup routine for 32-bit
 * integers. */
1208 1209
UPB_INLINE bool upb_inttable_lookup32(const upb_inttable *t, uint32_t key,
                                      upb_value *v) {
1210
  *v = upb_value_int32(0);  /* Silence compiler warnings. */
1211
  if (key < t->array_size) {
1212
    upb_tabval arrval = t->array[key];
1213
    if (upb_arrhas(arrval)) {
1214
      _upb_value_setval(v, arrval.val, t->t.ctype);
1215 1216 1217 1218 1219 1220 1221 1222
      return true;
    } else {
      return false;
    }
  } else {
    const upb_tabent *e;
    if (t->t.entries == NULL) return false;
    for (e = upb_getentry(&t->t, upb_inthash(key)); true; e = e->next) {
1223 1224
      if ((uint32_t)e->key == key) {
        _upb_value_setval(v, e->val.val, t->t.ctype);
1225 1226 1227 1228 1229 1230 1231
        return true;
      }
      if (e->next == NULL) return false;
    }
  }
}

1232
/* Exposed for testing only. */
1233
bool upb_strtable_resize(upb_strtable *t, size_t size_lg2, upb_alloc *a);
1234 1235 1236

/* Iterators ******************************************************************/

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
/* Iterators for int and string tables.  We are subject to some kind of unusual
 * design constraints:
 *
 * For high-level languages:
 *  - we must be able to guarantee that we don't crash or corrupt memory even if
 *    the program accesses an invalidated iterator.
 *
 * For C++11 range-based for:
 *  - iterators must be copyable
 *  - iterators must be comparable
 *  - it must be possible to construct an "end" value.
 *
 * Iteration order is undefined.
 *
 * Modifying the table invalidates iterators.  upb_{str,int}table_done() is
 * guaranteed to work even on an invalidated iterator, as long as the table it
 * is iterating over has not been freed.  Calling next() or accessing data from
 * an invalidated iterator yields unspecified elements from the table, but it is
 * guaranteed not to crash and to return real table elements (except when done()
 * is true). */
1257 1258 1259 1260


/* upb_strtable_iter **********************************************************/

1261 1262 1263 1264 1265 1266 1267 1268
/*   upb_strtable_iter i;
 *   upb_strtable_begin(&i, t);
 *   for(; !upb_strtable_done(&i); upb_strtable_next(&i)) {
 *     const char *key = upb_strtable_iter_key(&i);
 *     const upb_value val = upb_strtable_iter_value(&i);
 *     // ...
 *   }
 */
1269 1270 1271 1272 1273 1274 1275 1276 1277

typedef struct {
  const upb_strtable *t;
  size_t index;
} upb_strtable_iter;

void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t);
void upb_strtable_next(upb_strtable_iter *i);
bool upb_strtable_done(const upb_strtable_iter *i);
1278 1279
const char *upb_strtable_iter_key(const upb_strtable_iter *i);
size_t upb_strtable_iter_keylength(const upb_strtable_iter *i);
1280 1281 1282 1283 1284 1285 1286 1287
upb_value upb_strtable_iter_value(const upb_strtable_iter *i);
void upb_strtable_iter_setdone(upb_strtable_iter *i);
bool upb_strtable_iter_isequal(const upb_strtable_iter *i1,
                               const upb_strtable_iter *i2);


/* upb_inttable_iter **********************************************************/

1288 1289 1290 1291 1292 1293 1294 1295
/*   upb_inttable_iter i;
 *   upb_inttable_begin(&i, t);
 *   for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
 *     uintptr_t key = upb_inttable_iter_key(&i);
 *     upb_value val = upb_inttable_iter_value(&i);
 *     // ...
 *   }
 */
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318

typedef struct {
  const upb_inttable *t;
  size_t index;
  bool array_part;
} upb_inttable_iter;

void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t);
void upb_inttable_next(upb_inttable_iter *i);
bool upb_inttable_done(const upb_inttable_iter *i);
uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i);
upb_value upb_inttable_iter_value(const upb_inttable_iter *i);
void upb_inttable_iter_setdone(upb_inttable_iter *i);
bool upb_inttable_iter_isequal(const upb_inttable_iter *i1,
                               const upb_inttable_iter *i2);


#ifdef __cplusplus
}  /* extern "C" */
#endif

#endif  /* UPB_TABLE_H_ */

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
/* Reference tracking will check ref()/unref() operations to make sure the
 * ref ownership is correct.  Where possible it will also make tools like
 * Valgrind attribute ref leaks to the code that took the leaked ref, not
 * the code that originally created the object.
 *
 * Enabling this requires the application to define upb_lock()/upb_unlock()
 * functions that acquire/release a global mutex (or #define UPB_THREAD_UNSAFE).
 * For this reason we don't enable it by default, even in debug builds.
 */

/* #define UPB_DEBUG_REFS */
1330 1331

#ifdef __cplusplus
1332 1333 1334 1335
namespace upb {
class RefCounted;
template <class T> class reffed_ptr;
}
1336 1337
#endif

1338
UPB_DECLARE_TYPE(upb::RefCounted, upb_refcounted)
1339 1340 1341

struct upb_refcounted_vtbl;

1342 1343 1344
#ifdef __cplusplus

class upb::RefCounted {
1345
 public:
1346
  /* Returns true if the given object is frozen. */
1347 1348
  bool IsFrozen() const;

1349 1350 1351 1352
  /* Increases the ref count, the new ref is owned by "owner" which must not
   * already own a ref (and should not itself be a refcounted object if the ref
   * could possibly be circular; see below).
   * Thread-safe iff "this" is frozen. */
1353 1354
  void Ref(const void *owner) const;

1355 1356
  /* Release a ref that was acquired from upb_refcounted_ref() and collects any
   * objects it can. */
1357 1358
  void Unref(const void *owner) const;

1359 1360 1361
  /* Moves an existing ref from "from" to "to", without changing the overall
   * ref count.  DonateRef(foo, NULL, owner) is the same as Ref(foo, owner),
   * but "to" may not be NULL. */
1362 1363
  void DonateRef(const void *from, const void *to) const;

1364 1365
  /* Verifies that a ref to the given object is currently held by the given
   * owner.  Only effective in UPB_DEBUG_REFS builds. */
1366 1367 1368
  void CheckRef(const void *owner) const;

 private:
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
  UPB_DISALLOW_POD_OPS(RefCounted, upb::RefCounted)
#else
struct upb_refcounted {
#endif
  /* TODO(haberman): move the actual structure definition to structdefs.int.h.
   * The only reason they are here is because inline functions need to see the
   * definition of upb_handlers, which needs to see this definition.  But we
   * can change the upb_handlers inline functions to deal in raw offsets
   * instead.
   */

  /* A single reference count shared by all objects in the group. */
1381 1382
  uint32_t *group;

1383
  /* A singly-linked list of all objects in the group. */
1384 1385
  upb_refcounted *next;

1386
  /* Table of function pointers for this type. */
1387 1388
  const struct upb_refcounted_vtbl *vtbl;

1389 1390 1391
  /* Maintained only when mutable, this tracks the number of refs (but not
   * ref2's) to this object.  *group should be the sum of all individual_count
   * in the group. */
1392 1393 1394 1395 1396
  uint32_t individual_count;

  bool is_frozen;

#ifdef UPB_DEBUG_REFS
1397 1398 1399 1400 1401 1402
  upb_inttable *refs;  /* Maps owner -> trackedref for incoming refs. */
  upb_inttable *ref2s; /* Set of targets for outgoing ref2s. */
#endif
};

#ifdef UPB_DEBUG_REFS
1403 1404 1405
extern upb_alloc upb_alloc_debugrefs;
#define UPB_REFCOUNT_INIT(vtbl, refs, ref2s) \
    {&static_refcount, NULL, vtbl, 0, true, refs, ref2s}
1406
#else
1407 1408
#define UPB_REFCOUNT_INIT(vtbl, refs, ref2s) \
    {&static_refcount, NULL, vtbl, 0, true}
1409 1410
#endif

1411
UPB_BEGIN_EXTERN_C
1412

1413 1414 1415 1416
/* It is better to use tracked refs when possible, for the extra debugging
 * capability.  But if this is not possible (because you don't have easy access
 * to a stable pointer value that is associated with the ref), you can pass
 * UPB_UNTRACKED_REF instead.  */
1417 1418
extern const void *UPB_UNTRACKED_REF;

1419
/* Native C API. */
1420 1421 1422 1423 1424 1425 1426
bool upb_refcounted_isfrozen(const upb_refcounted *r);
void upb_refcounted_ref(const upb_refcounted *r, const void *owner);
void upb_refcounted_unref(const upb_refcounted *r, const void *owner);
void upb_refcounted_donateref(
    const upb_refcounted *r, const void *from, const void *to);
void upb_refcounted_checkref(const upb_refcounted *r, const void *owner);

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
#define UPB_REFCOUNTED_CMETHODS(type, upcastfunc) \
  UPB_INLINE bool type ## _isfrozen(const type *v) { \
    return upb_refcounted_isfrozen(upcastfunc(v)); \
  } \
  UPB_INLINE void type ## _ref(const type *v, const void *owner) { \
    upb_refcounted_ref(upcastfunc(v), owner); \
  } \
  UPB_INLINE void type ## _unref(const type *v, const void *owner) { \
    upb_refcounted_unref(upcastfunc(v), owner); \
  } \
  UPB_INLINE void type ## _donateref(const type *v, const void *from, const void *to) { \
    upb_refcounted_donateref(upcastfunc(v), from, to); \
  } \
  UPB_INLINE void type ## _checkref(const type *v, const void *owner) { \
    upb_refcounted_checkref(upcastfunc(v), owner); \
  }

#define UPB_REFCOUNTED_CPPMETHODS \
  bool IsFrozen() const { \
    return upb::upcast_to<const upb::RefCounted>(this)->IsFrozen(); \
  } \
  void Ref(const void *owner) const { \
    return upb::upcast_to<const upb::RefCounted>(this)->Ref(owner); \
  } \
  void Unref(const void *owner) const { \
    return upb::upcast_to<const upb::RefCounted>(this)->Unref(owner); \
  } \
  void DonateRef(const void *from, const void *to) const { \
    return upb::upcast_to<const upb::RefCounted>(this)->DonateRef(from, to); \
  } \
  void CheckRef(const void *owner) const { \
    return upb::upcast_to<const upb::RefCounted>(this)->CheckRef(owner); \
  }
1460

1461
/* Internal-to-upb Interface **************************************************/
1462 1463 1464 1465 1466 1467

typedef void upb_refcounted_visit(const upb_refcounted *r,
                                  const upb_refcounted *subobj,
                                  void *closure);

struct upb_refcounted_vtbl {
1468 1469
  /* Must visit all subobjects that are currently ref'd via upb_refcounted_ref2.
   * Must be longjmp()-safe. */
1470 1471
  void (*visit)(const upb_refcounted *r, upb_refcounted_visit *visit, void *c);

1472
  /* Must free the object and release all references to other objects. */
1473 1474 1475
  void (*free)(upb_refcounted *r);
};

1476 1477
/* Initializes the refcounted with a single ref for the given owner.  Returns
 * false if memory could not be allocated. */
1478 1479 1480 1481
bool upb_refcounted_init(upb_refcounted *r,
                         const struct upb_refcounted_vtbl *vtbl,
                         const void *owner);

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
/* Adds a ref from one refcounted object to another ("from" must not already
 * own a ref).  These refs may be circular; cycles will be collected correctly
 * (if conservatively).  These refs do not need to be freed in from's free()
 * function. */
void upb_refcounted_ref2(const upb_refcounted *r, upb_refcounted *from);

/* Removes a ref that was acquired from upb_refcounted_ref2(), and collects any
 * object it can.  This is only necessary when "from" no longer points to "r",
 * and not from from's "free" function. */
void upb_refcounted_unref2(const upb_refcounted *r, upb_refcounted *from);

#define upb_ref2(r, from) \
    upb_refcounted_ref2((const upb_refcounted*)r, (upb_refcounted*)from)
#define upb_unref2(r, from) \
    upb_refcounted_unref2((const upb_refcounted*)r, (upb_refcounted*)from)

/* Freezes all mutable object reachable by ref2() refs from the given roots.
 * This will split refcounting groups into precise SCC groups, so that
 * refcounting of frozen objects can be more aggressive.  If memory allocation
 * fails, or if more than 2**31 mutable objects are reachable from "roots", or
 * if the maximum depth of the graph exceeds "maxdepth", false is returned and
 * the objects are unchanged.
 *
 * After this operation succeeds, the objects are frozen/const, and may not be
 * used through non-const pointers.  In particular, they may not be passed as
 * the second parameter of upb_refcounted_{ref,unref}2().  On the upside, all
 * operations on frozen refcounteds are threadsafe, and objects will be freed
 * at the precise moment that they become unreachable.
 *
 * Caller must own refs on each object in the "roots" list. */
bool upb_refcounted_freeze(upb_refcounted *const*roots, int n, upb_status *s,
                           int maxdepth);

/* Shared by all compiled-in refcounted objects. */
extern uint32_t static_refcount;

UPB_END_EXTERN_C

#ifdef __cplusplus
/* C++ Wrappers. */
namespace upb {
inline bool RefCounted::IsFrozen() const {
  return upb_refcounted_isfrozen(this);
}
inline void RefCounted::Ref(const void *owner) const {
  upb_refcounted_ref(this, owner);
}
inline void RefCounted::Unref(const void *owner) const {
  upb_refcounted_unref(this, owner);
}
inline void RefCounted::DonateRef(const void *from, const void *to) const {
  upb_refcounted_donateref(this, from, to);
}
inline void RefCounted::CheckRef(const void *owner) const {
  upb_refcounted_checkref(this, owner);
}
}  /* namespace upb */
#endif


/* upb::reffed_ptr ************************************************************/

#ifdef __cplusplus

#include <algorithm>  /* For std::swap(). */

/* Provides RAII semantics for upb refcounted objects.  Each reffed_ptr owns a
 * ref on whatever object it points to (if any). */
template <class T> class upb::reffed_ptr {
 public:
  reffed_ptr() : ptr_(NULL) {}

  /* If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor. */
  template <class U>
  reffed_ptr(U* val, const void* ref_donor = NULL)
      : ptr_(upb::upcast(val)) {
    if (ref_donor) {
      assert(ptr_);
      ptr_->DonateRef(ref_donor, this);
    } else if (ptr_) {
      ptr_->Ref(this);
    }
  }

  template <class U>
  reffed_ptr(const reffed_ptr<U>& other)
      : ptr_(upb::upcast(other.get())) {
    if (ptr_) ptr_->Ref(this);
  }

  reffed_ptr(const reffed_ptr& other)
      : ptr_(upb::upcast(other.get())) {
    if (ptr_) ptr_->Ref(this);
  }

  ~reffed_ptr() { if (ptr_) ptr_->Unref(this); }

  template <class U>
  reffed_ptr& operator=(const reffed_ptr<U>& other) {
    reset(other.get());
    return *this;
  }

  reffed_ptr& operator=(const reffed_ptr& other) {
    reset(other.get());
    return *this;
  }

  /* TODO(haberman): add C++11 move construction/assignment for greater
   * efficiency. */

  void swap(reffed_ptr& other) {
    if (ptr_ == other.ptr_) {
      return;
    }

    if (ptr_) ptr_->DonateRef(this, &other);
    if (other.ptr_) other.ptr_->DonateRef(&other, this);
    std::swap(ptr_, other.ptr_);
  }

  T& operator*() const {
    assert(ptr_);
    return *ptr_;
  }

  T* operator->() const {
    assert(ptr_);
    return ptr_;
  }

  T* get() const { return ptr_; }
1614

1615 1616 1617 1618 1619
  /* If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor. */
  template <class U>
  void reset(U* ptr = NULL, const void* ref_donor = NULL) {
    reffed_ptr(ptr, ref_donor).swap(*this);
  }
1620

1621 1622 1623 1624
  template <class U>
  reffed_ptr<U> down_cast() {
    return reffed_ptr<U>(upb::down_cast<U*>(get()));
  }
1625

1626 1627 1628 1629
  template <class U>
  reffed_ptr<U> dyn_cast() {
    return reffed_ptr<U>(upb::dyn_cast<U*>(get()));
  }
1630

1631 1632 1633 1634 1635 1636 1637 1638
  /* Plain release() is unsafe; if we were the only owner, it would leak the
   * object.  Instead we provide this: */
  T* ReleaseTo(const void* new_owner) {
    T* ret = NULL;
    ptr_->DonateRef(this, new_owner);
    std::swap(ret, ptr_);
    return ret;
  }
1639

1640 1641 1642
 private:
  T* ptr_;
};
1643

1644
#endif  /* __cplusplus */
1645

1646
#endif  /* UPB_REFCOUNT_H_ */
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656

#ifdef __cplusplus
#include <cstring>
#include <string>
#include <vector>

namespace upb {
class Def;
class EnumDef;
class FieldDef;
1657
class FileDef;
1658
class MessageDef;
1659
class OneofDef;
1660 1661 1662
}
#endif

1663
UPB_DECLARE_DERIVED_TYPE(upb::Def, upb::RefCounted, upb_def, upb_refcounted)
1664 1665 1666 1667
UPB_DECLARE_DERIVED_TYPE(upb::OneofDef, upb::RefCounted, upb_oneofdef,
                         upb_refcounted)
UPB_DECLARE_DERIVED_TYPE(upb::FileDef, upb::RefCounted, upb_filedef,
                         upb_refcounted)
1668

1669 1670 1671 1672 1673 1674 1675
/* The maximum message depth that the type graph can have.  This is a resource
 * limit for the C stack since we sometimes need to recursively traverse the
 * graph.  Cycles are ok; the traversal will stop when it detects a cycle, but
 * we must hit the cycle before the maximum depth is reached.
 *
 * If having a single static limit is too inflexible, we can add another variant
 * of Def::Freeze that allows specifying this as a parameter. */
1676 1677 1678
#define UPB_MAX_MESSAGE_DEPTH 64


1679
/* upb::Def: base class for top-level defs  ***********************************/
1680

1681 1682 1683 1684
/* All the different kind of defs that can be defined at the top-level and put
 * in a SymbolTable or appear in a FileDef::defs() list.  This excludes some
 * defs (like oneofs and files).  It only includes fields because they can be
 * defined as extensions. */
1685 1686 1687 1688
typedef enum {
  UPB_DEF_MSG,
  UPB_DEF_FIELD,
  UPB_DEF_ENUM,
1689 1690
  UPB_DEF_SERVICE,   /* Not yet implemented. */
  UPB_DEF_ANY = -1   /* Wildcard for upb_symtab_get*() */
1691 1692
} upb_deftype_t;

1693 1694 1695 1696 1697
#ifdef __cplusplus

/* The base class of all defs.  Its base is upb::RefCounted (use upb::upcast()
 * to convert). */
class upb::Def {
1698 1699 1700 1701 1702
 public:
  typedef upb_deftype_t Type;

  Def* Dup(const void *owner) const;

1703 1704
  /* upb::RefCounted methods like Ref()/Unref(). */
  UPB_REFCOUNTED_CPPMETHODS
1705 1706 1707

  Type def_type() const;

1708
  /* "fullname" is the def's fully-qualified name (eg. foo.bar.Message). */
1709 1710
  const char *full_name() const;

1711 1712 1713
  /* The final part of a def's name (eg. Message). */
  const char *name() const;

1714 1715 1716 1717
  /* The def must be mutable.  Caller retains ownership of fullname.  Defs are
   * not required to have a name; if a def has no name when it is frozen, it
   * will remain an anonymous def.  On failure, returns false and details in "s"
   * if non-NULL. */
1718 1719 1720
  bool set_full_name(const char* fullname, upb::Status* s);
  bool set_full_name(const std::string &fullname, upb::Status* s);

1721 1722 1723 1724 1725
  /* The file in which this def appears.  It is not necessary to add a def to a
   * file (and consequently the accessor may return NULL).  Set this by calling
   * file->Add(def). */
  FileDef* file() const;

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
  /* Freezes the given defs; this validates all constraints and marks the defs
   * as frozen (read-only).  "defs" may not contain any fielddefs, but fields
   * of any msgdefs will be frozen.
   *
   * Symbolic references to sub-types and enum defaults must have already been
   * resolved.  Any mutable defs reachable from any of "defs" must also be in
   * the list; more formally, "defs" must be a transitive closure of mutable
   * defs.
   *
   * After this operation succeeds, the finalized defs must only be accessed
   * through a const pointer! */
1737
  static bool Freeze(Def* const* defs, size_t n, Status* status);
1738 1739 1740
  static bool Freeze(const std::vector<Def*>& defs, Status* status);

 private:
1741 1742
  UPB_DISALLOW_POD_OPS(Def, upb::Def)
};
1743

1744
#endif  /* __cplusplus */
1745

1746
UPB_BEGIN_EXTERN_C
1747

1748
/* Native C API. */
1749 1750
upb_def *upb_def_dup(const upb_def *def, const void *owner);

1751 1752
/* Include upb_refcounted methods like upb_def_ref()/upb_def_unref(). */
UPB_REFCOUNTED_CMETHODS(upb_def, upb_def_upcast)
1753 1754 1755

upb_deftype_t upb_def_type(const upb_def *d);
const char *upb_def_fullname(const upb_def *d);
1756 1757
const char *upb_def_name(const upb_def *d);
const upb_filedef *upb_def_file(const upb_def *d);
1758
bool upb_def_setfullname(upb_def *def, const char *fullname, upb_status *s);
1759 1760 1761 1762
bool upb_def_freeze(upb_def *const *defs, size_t n, upb_status *s);

/* Temporary API: for internal use only. */
bool _upb_def_validate(upb_def *const*defs, size_t n, upb_status *s);
1763

1764
UPB_END_EXTERN_C
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796


/* upb::Def casts *************************************************************/

#ifdef __cplusplus
#define UPB_CPP_CASTS(cname, cpptype)                                          \
  namespace upb {                                                              \
  template <>                                                                  \
  inline cpptype *down_cast<cpptype *, Def>(Def * def) {                       \
    return upb_downcast_##cname##_mutable(def);                                \
  }                                                                            \
  template <>                                                                  \
  inline cpptype *dyn_cast<cpptype *, Def>(Def * def) {                        \
    return upb_dyncast_##cname##_mutable(def);                                 \
  }                                                                            \
  template <>                                                                  \
  inline const cpptype *down_cast<const cpptype *, const Def>(                 \
      const Def *def) {                                                        \
    return upb_downcast_##cname(def);                                          \
  }                                                                            \
  template <>                                                                  \
  inline const cpptype *dyn_cast<const cpptype *, const Def>(const Def *def) { \
    return upb_dyncast_##cname(def);                                           \
  }                                                                            \
  template <>                                                                  \
  inline const cpptype *down_cast<const cpptype *, Def>(Def * def) {           \
    return upb_downcast_##cname(def);                                          \
  }                                                                            \
  template <>                                                                  \
  inline const cpptype *dyn_cast<const cpptype *, Def>(Def * def) {            \
    return upb_dyncast_##cname(def);                                           \
  }                                                                            \
1797
  }  /* namespace upb */
1798 1799
#else
#define UPB_CPP_CASTS(cname, cpptype)
1800
#endif  /* __cplusplus */
1801

1802 1803 1804
/* Dynamic casts, for determining if a def is of a particular type at runtime.
 * Downcasts, for when some wants to assert that a def is of a particular type.
 * These are only checked if we are building debug. */
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
#define UPB_DEF_CASTS(lower, upper, cpptype)                               \
  UPB_INLINE const upb_##lower *upb_dyncast_##lower(const upb_def *def) {  \
    if (upb_def_type(def) != UPB_DEF_##upper) return NULL;                 \
    return (upb_##lower *)def;                                             \
  }                                                                        \
  UPB_INLINE const upb_##lower *upb_downcast_##lower(const upb_def *def) { \
    assert(upb_def_type(def) == UPB_DEF_##upper);                          \
    return (const upb_##lower *)def;                                       \
  }                                                                        \
  UPB_INLINE upb_##lower *upb_dyncast_##lower##_mutable(upb_def *def) {    \
    return (upb_##lower *)upb_dyncast_##lower(def);                        \
  }                                                                        \
  UPB_INLINE upb_##lower *upb_downcast_##lower##_mutable(upb_def *def) {   \
    return (upb_##lower *)upb_downcast_##lower(def);                       \
  }                                                                        \
  UPB_CPP_CASTS(lower, cpptype)

#define UPB_DEFINE_DEF(cppname, lower, upper, cppmethods, members)             \
1823
  UPB_DEFINE_CLASS2(cppname, upb::Def, upb::RefCounted, cppmethods,            \
1824 1825 1826
                   members)                                                    \
  UPB_DEF_CASTS(lower, upper, cppname)

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
#define UPB_DECLARE_DEF_TYPE(cppname, lower, upper) \
  UPB_DECLARE_DERIVED_TYPE2(cppname, upb::Def, upb::RefCounted, \
                            upb_ ## lower, upb_def, upb_refcounted) \
  UPB_DEF_CASTS(lower, upper, cppname)

UPB_DECLARE_DEF_TYPE(upb::FieldDef, fielddef, FIELD)
UPB_DECLARE_DEF_TYPE(upb::MessageDef, msgdef, MSG)
UPB_DECLARE_DEF_TYPE(upb::EnumDef, enumdef, ENUM)

#undef UPB_DECLARE_DEF_TYPE
#undef UPB_DEF_CASTS
#undef UPB_CPP_CASTS

1840 1841 1842

/* upb::FieldDef **************************************************************/

1843 1844 1845
/* The types a field can have.  Note that this list is not identical to the
 * types defined in descriptor.proto, which gives INT32 and SINT32 separate
 * types (we distinguish the two with the "integer encoding" enum below). */
1846 1847 1848 1849 1850 1851 1852
typedef enum {
  UPB_TYPE_FLOAT    = 1,
  UPB_TYPE_DOUBLE   = 2,
  UPB_TYPE_BOOL     = 3,
  UPB_TYPE_STRING   = 4,
  UPB_TYPE_BYTES    = 5,
  UPB_TYPE_MESSAGE  = 6,
1853
  UPB_TYPE_ENUM     = 7,  /* Enum values are int32. */
1854 1855 1856
  UPB_TYPE_INT32    = 8,
  UPB_TYPE_UINT32   = 9,
  UPB_TYPE_INT64    = 10,
1857
  UPB_TYPE_UINT64   = 11
1858 1859
} upb_fieldtype_t;

1860
/* The repeated-ness of each field; this matches descriptor.proto. */
1861 1862 1863
typedef enum {
  UPB_LABEL_OPTIONAL = 1,
  UPB_LABEL_REQUIRED = 2,
1864
  UPB_LABEL_REPEATED = 3
1865 1866
} upb_label_t;

1867 1868
/* How integers should be encoded in serializations that offer multiple
 * integer encoding methods. */
1869 1870 1871
typedef enum {
  UPB_INTFMT_VARIABLE = 1,
  UPB_INTFMT_FIXED = 2,
1872
  UPB_INTFMT_ZIGZAG = 3   /* Only for signed types (INT32/INT64). */
1873 1874
} upb_intfmt_t;

1875
/* Descriptor types, as defined in descriptor.proto. */
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
typedef enum {
  UPB_DESCRIPTOR_TYPE_DOUBLE   = 1,
  UPB_DESCRIPTOR_TYPE_FLOAT    = 2,
  UPB_DESCRIPTOR_TYPE_INT64    = 3,
  UPB_DESCRIPTOR_TYPE_UINT64   = 4,
  UPB_DESCRIPTOR_TYPE_INT32    = 5,
  UPB_DESCRIPTOR_TYPE_FIXED64  = 6,
  UPB_DESCRIPTOR_TYPE_FIXED32  = 7,
  UPB_DESCRIPTOR_TYPE_BOOL     = 8,
  UPB_DESCRIPTOR_TYPE_STRING   = 9,
  UPB_DESCRIPTOR_TYPE_GROUP    = 10,
  UPB_DESCRIPTOR_TYPE_MESSAGE  = 11,
  UPB_DESCRIPTOR_TYPE_BYTES    = 12,
  UPB_DESCRIPTOR_TYPE_UINT32   = 13,
  UPB_DESCRIPTOR_TYPE_ENUM     = 14,
  UPB_DESCRIPTOR_TYPE_SFIXED32 = 15,
  UPB_DESCRIPTOR_TYPE_SFIXED64 = 16,
  UPB_DESCRIPTOR_TYPE_SINT32   = 17,
1894
  UPB_DESCRIPTOR_TYPE_SINT64   = 18
1895 1896
} upb_descriptortype_t;

1897 1898 1899 1900 1901
typedef enum {
  UPB_SYNTAX_PROTO2 = 2,
  UPB_SYNTAX_PROTO3 = 3
} upb_syntax_t;

1902 1903 1904 1905 1906
/* Maximum field number allowed for FieldDefs.  This is an inherent limit of the
 * protobuf wire format. */
#define UPB_MAX_FIELDNUMBER ((1 << 29) - 1)

#ifdef __cplusplus
1907

1908 1909 1910 1911 1912 1913
/* A upb_fielddef describes a single field in a message.  It is most often
 * found as a part of a upb_msgdef, but can also stand alone to represent
 * an extension.
 *
 * Its base class is upb::Def (use upb::upcast() to convert). */
class upb::FieldDef {
1914 1915 1916 1917 1918 1919
 public:
  typedef upb_fieldtype_t Type;
  typedef upb_label_t Label;
  typedef upb_intfmt_t IntegerFormat;
  typedef upb_descriptortype_t DescriptorType;

1920
  /* These return true if the given value is a valid member of the enumeration. */
1921 1922 1923 1924 1925
  static bool CheckType(int32_t val);
  static bool CheckLabel(int32_t val);
  static bool CheckDescriptorType(int32_t val);
  static bool CheckIntegerFormat(int32_t val);

1926 1927
  /* These convert to the given enumeration; they require that the value is
   * valid. */
1928 1929 1930 1931 1932
  static Type ConvertType(int32_t val);
  static Label ConvertLabel(int32_t val);
  static DescriptorType ConvertDescriptorType(int32_t val);
  static IntegerFormat ConvertIntegerFormat(int32_t val);

1933
  /* Returns NULL if memory allocation failed. */
1934 1935
  static reffed_ptr<FieldDef> New();

1936 1937 1938 1939 1940
  /* Duplicates the given field, returning NULL if memory allocation failed.
   * When a fielddef is duplicated, the subdef (if any) is made symbolic if it
   * wasn't already.  If the subdef is set but has no name (which is possible
   * since msgdefs are not required to have a name) the new fielddef's subdef
   * will be unset. */
1941 1942
  FieldDef* Dup(const void* owner) const;

1943 1944
  /* upb::RefCounted methods like Ref()/Unref(). */
  UPB_REFCOUNTED_CPPMETHODS
1945

1946
  /* Functionality from upb::Def. */
1947 1948
  const char* full_name() const;

1949 1950 1951 1952 1953
  bool type_is_set() const;  /* set_[descriptor_]type() has been called? */
  Type type() const;         /* Requires that type_is_set() == true. */
  Label label() const;       /* Defaults to UPB_LABEL_OPTIONAL. */
  const char* name() const;  /* NULL if uninitialized. */
  uint32_t number() const;   /* Returns 0 if uninitialized. */
1954 1955
  bool is_extension() const;

1956 1957 1958 1959 1960 1961 1962 1963 1964
  /* Copies the JSON name for this field into the given buffer.  Returns the
   * actual size of the JSON name, including the NULL terminator.  If the
   * return value is 0, the JSON name is unset.  If the return value is
   * greater than len, the JSON name was truncated.  The buffer is always
   * NULL-terminated if len > 0.
   *
   * The JSON name always defaults to a camelCased version of the regular
   * name.  However if the regular name is unset, the JSON name will be unset
   * also.
1965
   */
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
  size_t GetJsonName(char* buf, size_t len) const;

  /* Convenience version of the above function which copies the JSON name
   * into the given string, returning false if the name is not set. */
  template <class T>
  bool GetJsonName(T* str) {
    str->resize(GetJsonName(NULL, 0));
    GetJsonName(&(*str)[0], str->size());
    return str->size() > 0;
  }
1976

1977 1978 1979 1980 1981 1982 1983
  /* For UPB_TYPE_MESSAGE fields only where is_tag_delimited() == false,
   * indicates whether this field should have lazy parsing handlers that yield
   * the unparsed string for the submessage.
   *
   * TODO(haberman): I think we want to move this into a FieldOptions container
   * when we add support for custom options (the FieldOptions struct will
   * contain both regular FieldOptions like "lazy" *and* custom options). */
1984 1985
  bool lazy() const;

1986 1987 1988 1989 1990
  /* For non-string, non-submessage fields, this indicates whether binary
   * protobufs are encoded in packed or non-packed format.
   *
   * TODO(haberman): see note above about putting options like this into a
   * FieldOptions container. */
1991 1992
  bool packed() const;

1993 1994 1995 1996
  /* An integer that can be used as an index into an array of fields for
   * whatever message this field belongs to.  Guaranteed to be less than
   * f->containing_type()->field_count().  May only be accessed once the def has
   * been finalized. */
1997
  uint32_t index() const;
1998

1999 2000 2001 2002 2003 2004 2005 2006
  /* The MessageDef to which this field belongs.
   *
   * If this field has been added to a MessageDef, that message can be retrieved
   * directly (this is always the case for frozen FieldDefs).
   *
   * If the field has not yet been added to a MessageDef, you can set the name
   * of the containing type symbolically instead.  This is mostly useful for
   * extensions, where the extension is declared separately from the message. */
2007 2008 2009
  const MessageDef* containing_type() const;
  const char* containing_type_name();

2010 2011
  /* The OneofDef to which this field belongs, or NULL if this field is not part
   * of a oneof. */
2012 2013
  const OneofDef* containing_oneof() const;

2014 2015 2016 2017 2018 2019
  /* The field's type according to the enum in descriptor.proto.  This is not
   * the same as UPB_TYPE_*, because it distinguishes between (for example)
   * INT32 and SINT32, whereas our "type" enum does not.  This return of
   * descriptor_type() is a function of type(), integer_format(), and
   * is_tag_delimited().  Likewise set_descriptor_type() sets all three
   * appropriately. */
2020 2021
  DescriptorType descriptor_type() const;

2022
  /* Convenient field type tests. */
2023 2024 2025 2026
  bool IsSubMessage() const;
  bool IsString() const;
  bool IsSequence() const;
  bool IsPrimitive() const;
2027
  bool IsMap() const;
2028

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
  /* Whether this field must be able to explicitly represent presence:
   *
   * * This is always false for repeated fields (an empty repeated field is
   *   equivalent to a repeated field with zero entries).
   *
   * * This is always true for submessages.
   *
   * * For other fields, it depends on the message (see
   *   MessageDef::SetPrimitivesHavePresence())
   */
  bool HasPresence() const;

2041 2042
  /* How integers are encoded.  Only meaningful for integer types.
   * Defaults to UPB_INTFMT_VARIABLE, and is reset when "type" changes. */
2043 2044
  IntegerFormat integer_format() const;

2045 2046
  /* Whether a submessage field is tag-delimited or not (if false, then
   * length-delimited).  May only be set when type() == UPB_TYPE_MESSAGE. */
2047 2048
  bool is_tag_delimited() const;

2049 2050 2051 2052 2053 2054
  /* Returns the non-string default value for this fielddef, which may either
   * be something the client set explicitly or the "default default" (0 for
   * numbers, empty for strings).  The field's type indicates the type of the
   * returned value, except for enum fields that are still mutable.
   *
   * Requires that the given function matches the field's current type. */
2055 2056 2057 2058 2059 2060 2061 2062
  int64_t default_int64() const;
  int32_t default_int32() const;
  uint64_t default_uint64() const;
  uint32_t default_uint32() const;
  bool default_bool() const;
  float default_float() const;
  double default_double() const;

2063 2064
  /* The resulting string is always NULL-terminated.  If non-NULL, the length
   * will be stored in *len. */
2065 2066
  const char *default_string(size_t* len) const;

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
  /* For frozen UPB_TYPE_ENUM fields, enum defaults can always be read as either
   * string or int32, and both of these methods will always return true.
   *
   * For mutable UPB_TYPE_ENUM fields, the story is a bit more complicated.
   * Enum defaults are unusual. They can be specified either as string or int32,
   * but to be valid the enum must have that value as a member.  And if no
   * default is specified, the "default default" comes from the EnumDef.
   *
   * We allow reading the default as either an int32 or a string, but only if
   * we have a meaningful value to report.  We have a meaningful value if it was
   * set explicitly, or if we could get the "default default" from the EnumDef.
   * Also if you explicitly set the name and we find the number in the EnumDef */
2079 2080 2081
  bool EnumHasStringDefault() const;
  bool EnumHasInt32Default() const;

2082 2083 2084 2085
  /* Submessage and enum fields must reference a "subdef", which is the
   * upb::MessageDef or upb::EnumDef that defines their type.  Note that when
   * the FieldDef is mutable it may not have a subdef *yet*, but this function
   * still returns true to indicate that the field's type requires a subdef. */
2086 2087
  bool HasSubDef() const;

2088 2089 2090 2091
  /* Returns the enum or submessage def for this field, if any.  The field's
   * type must match (ie. you may only call enum_subdef() for fields where
   * type() == UPB_TYPE_ENUM).  Returns NULL if the subdef has not been set or
   * is currently set symbolically. */
2092 2093 2094
  const EnumDef* enum_subdef() const;
  const MessageDef* message_subdef() const;

2095 2096
  /* Returns the generic subdef for this field.  Requires that HasSubDef() (ie.
   * only works for UPB_TYPE_ENUM and UPB_TYPE_MESSAGE fields). */
2097 2098
  const Def* subdef() const;

2099 2100 2101
  /* Returns the symbolic name of the subdef.  If the subdef is currently set
   * unresolved (ie. set symbolically) returns the symbolic name.  If it has
   * been resolved to a specific subdef, returns the name from that subdef. */
2102 2103
  const char* subdef_name() const;

2104
  /* Setters (non-const methods), only valid for mutable FieldDefs! ***********/
2105 2106 2107 2108

  bool set_full_name(const char* fullname, upb::Status* s);
  bool set_full_name(const std::string& fullname, upb::Status* s);

2109 2110
  /* This may only be called if containing_type() == NULL (ie. the field has not
   * been added to a message yet). */
2111 2112 2113
  bool set_containing_type_name(const char *name, Status* status);
  bool set_containing_type_name(const std::string& name, Status* status);

2114 2115 2116
  /* Defaults to false.  When we freeze, we ensure that this can only be true
   * for length-delimited message fields.  Prior to freezing this can be true or
   * false with no restrictions. */
2117 2118
  void set_lazy(bool lazy);

2119
  /* Defaults to true.  Sets whether this field is encoded in packed format. */
2120 2121
  void set_packed(bool packed);

2122 2123 2124 2125
  /* "type" or "descriptor_type" MUST be set explicitly before the fielddef is
   * finalized.  These setters require that the enum value is valid; if the
   * value did not come directly from an enum constant, the caller should
   * validate it first with the functions above (CheckFieldType(), etc). */
2126 2127 2128 2129 2130
  void set_type(Type type);
  void set_label(Label label);
  void set_descriptor_type(DescriptorType type);
  void set_is_extension(bool is_extension);

2131 2132 2133 2134 2135 2136 2137
  /* "number" and "name" must be set before the FieldDef is added to a
   * MessageDef, and may not be set after that.
   *
   * "name" is the same as full_name()/set_full_name(), but since fielddefs
   * most often use simple, non-qualified names, we provide this accessor
   * also.  Generally only extensions will want to think of this name as
   * fully-qualified. */
2138 2139 2140 2141
  bool set_number(uint32_t number, upb::Status* s);
  bool set_name(const char* name, upb::Status* s);
  bool set_name(const std::string& name, upb::Status* s);

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
  /* Sets the JSON name to the given string. */
  /* TODO(haberman): implement.  Right now only default json_name (camelCase)
   * is supported. */
  bool set_json_name(const char* json_name, upb::Status* s);
  bool set_json_name(const std::string& name, upb::Status* s);

  /* Clears the JSON name. This will make it revert to its default, which is
   * a camelCased version of the regular field name. */
  void clear_json_name();

2152 2153 2154
  void set_integer_format(IntegerFormat format);
  bool set_tag_delimited(bool tag_delimited, upb::Status* s);

2155 2156 2157 2158 2159 2160
  /* Sets default value for the field.  The call must exactly match the type
   * of the field.  Enum fields may use either setint32 or setstring to set
   * the default numerically or symbolically, respectively, but symbolic
   * defaults must be resolved before finalizing (see ResolveEnumDefault()).
   *
   * Changing the type of a field will reset its default. */
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
  void set_default_int64(int64_t val);
  void set_default_int32(int32_t val);
  void set_default_uint64(uint64_t val);
  void set_default_uint32(uint32_t val);
  void set_default_bool(bool val);
  void set_default_float(float val);
  void set_default_double(double val);
  bool set_default_string(const void *str, size_t len, Status *s);
  bool set_default_string(const std::string &str, Status *s);
  void set_default_cstr(const char *str, Status *s);

2172 2173 2174 2175 2176 2177 2178 2179 2180
  /* Before a fielddef is frozen, its subdef may be set either directly (with a
   * upb::Def*) or symbolically.  Symbolic refs must be resolved before the
   * containing msgdef can be frozen (see upb_resolve() above).  upb always
   * guarantees that any def reachable from a live def will also be kept alive.
   *
   * Both methods require that upb_hassubdef(f) (so the type must be set prior
   * to calling these methods).  Returns false if this is not the case, or if
   * the given subdef is not of the correct type.  The subdef is reset if the
   * field's type is changed.  The subdef can be set to NULL to clear it. */
2181 2182 2183 2184 2185 2186 2187
  bool set_subdef(const Def* subdef, Status* s);
  bool set_enum_subdef(const EnumDef* subdef, Status* s);
  bool set_message_subdef(const MessageDef* subdef, Status* s);
  bool set_subdef_name(const char* name, Status* s);
  bool set_subdef_name(const std::string &name, Status* s);

 private:
2188 2189
  UPB_DISALLOW_POD_OPS(FieldDef, upb::FieldDef)
};
2190

2191
# endif  /* defined(__cplusplus) */
2192

2193
UPB_BEGIN_EXTERN_C
2194

2195
/* Native C API. */
2196 2197 2198
upb_fielddef *upb_fielddef_new(const void *owner);
upb_fielddef *upb_fielddef_dup(const upb_fielddef *f, const void *owner);

2199 2200
/* Include upb_refcounted methods like upb_fielddef_ref(). */
UPB_REFCOUNTED_CMETHODS(upb_fielddef, upb_fielddef_upcast2)
2201

2202
/* Methods from upb_def. */
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
const char *upb_fielddef_fullname(const upb_fielddef *f);
bool upb_fielddef_setfullname(upb_fielddef *f, const char *fullname,
                              upb_status *s);

bool upb_fielddef_typeisset(const upb_fielddef *f);
upb_fieldtype_t upb_fielddef_type(const upb_fielddef *f);
upb_descriptortype_t upb_fielddef_descriptortype(const upb_fielddef *f);
upb_label_t upb_fielddef_label(const upb_fielddef *f);
uint32_t upb_fielddef_number(const upb_fielddef *f);
const char *upb_fielddef_name(const upb_fielddef *f);
bool upb_fielddef_isextension(const upb_fielddef *f);
bool upb_fielddef_lazy(const upb_fielddef *f);
bool upb_fielddef_packed(const upb_fielddef *f);
2216
size_t upb_fielddef_getjsonname(const upb_fielddef *f, char *buf, size_t len);
2217
const upb_msgdef *upb_fielddef_containingtype(const upb_fielddef *f);
2218
const upb_oneofdef *upb_fielddef_containingoneof(const upb_fielddef *f);
2219 2220 2221 2222 2223 2224 2225 2226 2227
upb_msgdef *upb_fielddef_containingtype_mutable(upb_fielddef *f);
const char *upb_fielddef_containingtypename(upb_fielddef *f);
upb_intfmt_t upb_fielddef_intfmt(const upb_fielddef *f);
uint32_t upb_fielddef_index(const upb_fielddef *f);
bool upb_fielddef_istagdelim(const upb_fielddef *f);
bool upb_fielddef_issubmsg(const upb_fielddef *f);
bool upb_fielddef_isstring(const upb_fielddef *f);
bool upb_fielddef_isseq(const upb_fielddef *f);
bool upb_fielddef_isprimitive(const upb_fielddef *f);
2228
bool upb_fielddef_ismap(const upb_fielddef *f);
2229
bool upb_fielddef_haspresence(const upb_fielddef *f);
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
int64_t upb_fielddef_defaultint64(const upb_fielddef *f);
int32_t upb_fielddef_defaultint32(const upb_fielddef *f);
uint64_t upb_fielddef_defaultuint64(const upb_fielddef *f);
uint32_t upb_fielddef_defaultuint32(const upb_fielddef *f);
bool upb_fielddef_defaultbool(const upb_fielddef *f);
float upb_fielddef_defaultfloat(const upb_fielddef *f);
double upb_fielddef_defaultdouble(const upb_fielddef *f);
const char *upb_fielddef_defaultstr(const upb_fielddef *f, size_t *len);
bool upb_fielddef_enumhasdefaultint32(const upb_fielddef *f);
bool upb_fielddef_enumhasdefaultstr(const upb_fielddef *f);
bool upb_fielddef_hassubdef(const upb_fielddef *f);
const upb_def *upb_fielddef_subdef(const upb_fielddef *f);
const upb_msgdef *upb_fielddef_msgsubdef(const upb_fielddef *f);
const upb_enumdef *upb_fielddef_enumsubdef(const upb_fielddef *f);
const char *upb_fielddef_subdefname(const upb_fielddef *f);

void upb_fielddef_settype(upb_fielddef *f, upb_fieldtype_t type);
void upb_fielddef_setdescriptortype(upb_fielddef *f, int type);
void upb_fielddef_setlabel(upb_fielddef *f, upb_label_t label);
bool upb_fielddef_setnumber(upb_fielddef *f, uint32_t number, upb_status *s);
bool upb_fielddef_setname(upb_fielddef *f, const char *name, upb_status *s);
2251 2252
bool upb_fielddef_setjsonname(upb_fielddef *f, const char *name, upb_status *s);
bool upb_fielddef_clearjsonname(upb_fielddef *f);
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
bool upb_fielddef_setcontainingtypename(upb_fielddef *f, const char *name,
                                        upb_status *s);
void upb_fielddef_setisextension(upb_fielddef *f, bool is_extension);
void upb_fielddef_setlazy(upb_fielddef *f, bool lazy);
void upb_fielddef_setpacked(upb_fielddef *f, bool packed);
void upb_fielddef_setintfmt(upb_fielddef *f, upb_intfmt_t fmt);
void upb_fielddef_settagdelim(upb_fielddef *f, bool tag_delim);
void upb_fielddef_setdefaultint64(upb_fielddef *f, int64_t val);
void upb_fielddef_setdefaultint32(upb_fielddef *f, int32_t val);
void upb_fielddef_setdefaultuint64(upb_fielddef *f, uint64_t val);
void upb_fielddef_setdefaultuint32(upb_fielddef *f, uint32_t val);
void upb_fielddef_setdefaultbool(upb_fielddef *f, bool val);
void upb_fielddef_setdefaultfloat(upb_fielddef *f, float val);
void upb_fielddef_setdefaultdouble(upb_fielddef *f, double val);
bool upb_fielddef_setdefaultstr(upb_fielddef *f, const void *str, size_t len,
                                upb_status *s);
void upb_fielddef_setdefaultcstr(upb_fielddef *f, const char *str,
                                 upb_status *s);
bool upb_fielddef_setsubdef(upb_fielddef *f, const upb_def *subdef,
                            upb_status *s);
bool upb_fielddef_setmsgsubdef(upb_fielddef *f, const upb_msgdef *subdef,
                               upb_status *s);
bool upb_fielddef_setenumsubdef(upb_fielddef *f, const upb_enumdef *subdef,
                                upb_status *s);
bool upb_fielddef_setsubdefname(upb_fielddef *f, const char *name,
                                upb_status *s);

bool upb_fielddef_checklabel(int32_t label);
bool upb_fielddef_checktype(int32_t type);
bool upb_fielddef_checkdescriptortype(int32_t type);
bool upb_fielddef_checkintfmt(int32_t fmt);

2285
UPB_END_EXTERN_C
2286 2287 2288 2289


/* upb::MessageDef ************************************************************/

2290 2291
typedef upb_inttable_iter upb_msg_field_iter;
typedef upb_strtable_iter upb_msg_oneof_iter;
2292

2293 2294 2295 2296
/* Well-known field tag numbers for map-entry messages. */
#define UPB_MAPENTRY_KEY   1
#define UPB_MAPENTRY_VALUE 2

2297 2298 2299 2300 2301 2302
#ifdef __cplusplus

/* Structure that describes a single .proto message type.
 *
 * Its base class is upb::Def (use upb::upcast() to convert). */
class upb::MessageDef {
2303
 public:
2304
  /* Returns NULL if memory allocation failed. */
2305 2306
  static reffed_ptr<MessageDef> New();

2307 2308
  /* upb::RefCounted methods like Ref()/Unref(). */
  UPB_REFCOUNTED_CPPMETHODS
2309

2310
  /* Functionality from upb::Def. */
2311
  const char* full_name() const;
2312
  const char* name() const;
2313 2314 2315
  bool set_full_name(const char* fullname, Status* s);
  bool set_full_name(const std::string& fullname, Status* s);

2316 2317 2318
  /* Call to freeze this MessageDef.
   * WARNING: this will fail if this message has any unfrozen submessages!
   * Messages with cycles must be frozen as a batch using upb::Def::Freeze(). */
2319 2320
  bool Freeze(Status* s);

2321
  /* The number of fields that belong to the MessageDef. */
2322 2323
  int field_count() const;

2324
  /* The number of oneofs that belong to the MessageDef. */
2325 2326
  int oneof_count() const;

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
  /* Adds a field (upb_fielddef object) to a msgdef.  Requires that the msgdef
   * and the fielddefs are mutable.  The fielddef's name and number must be
   * set, and the message may not already contain any field with this name or
   * number, and this fielddef may not be part of another message.  In error
   * cases false is returned and the msgdef is unchanged.
   *
   * If the given field is part of a oneof, this call succeeds if and only if
   * that oneof is already part of this msgdef. (Note that adding a oneof to a
   * msgdef automatically adds all of its fields to the msgdef at the time that
   * the oneof is added, so it is usually more idiomatic to add the oneof's
   * fields first then add the oneof to the msgdef. This case is supported for
   * convenience.)
   *
   * If |f| is already part of this MessageDef, this method performs no action
   * and returns true (success). Thus, this method is idempotent. */
2342 2343 2344
  bool AddField(FieldDef* f, Status* s);
  bool AddField(const reffed_ptr<FieldDef>& f, Status* s);

2345 2346 2347 2348 2349 2350 2351
  /* Adds a oneof (upb_oneofdef object) to a msgdef. Requires that the msgdef,
   * oneof, and any fielddefs are mutable, that the fielddefs contained in the
   * oneof do not have any name or number conflicts with existing fields in the
   * msgdef, and that the oneof's name is unique among all oneofs in the msgdef.
   * If the oneof is added successfully, all of its fields will be added
   * directly to the msgdef as well. In error cases, false is returned and the
   * msgdef is unchanged. */
2352 2353 2354
  bool AddOneof(OneofDef* o, Status* s);
  bool AddOneof(const reffed_ptr<OneofDef>& o, Status* s);

2355 2356 2357 2358 2359
  upb_syntax_t syntax() const;

  /* Returns false if we don't support this syntax value. */
  bool set_syntax(upb_syntax_t syntax);

2360 2361 2362 2363 2364
  /* Set this to false to indicate that primitive fields should not have
   * explicit presence information associated with them.  This will affect all
   * fields added to this message.  Defaults to true. */
  void SetPrimitivesHavePresence(bool have_presence);

2365
  /* These return NULL if the field is not found. */
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
  FieldDef* FindFieldByNumber(uint32_t number);
  FieldDef* FindFieldByName(const char *name, size_t len);
  const FieldDef* FindFieldByNumber(uint32_t number) const;
  const FieldDef* FindFieldByName(const char* name, size_t len) const;


  FieldDef* FindFieldByName(const char *name) {
    return FindFieldByName(name, strlen(name));
  }
  const FieldDef* FindFieldByName(const char *name) const {
    return FindFieldByName(name, strlen(name));
  }

  template <class T>
  FieldDef* FindFieldByName(const T& str) {
    return FindFieldByName(str.c_str(), str.size());
  }
  template <class T>
  const FieldDef* FindFieldByName(const T& str) const {
    return FindFieldByName(str.c_str(), str.size());
  }

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
  OneofDef* FindOneofByName(const char* name, size_t len);
  const OneofDef* FindOneofByName(const char* name, size_t len) const;

  OneofDef* FindOneofByName(const char* name) {
    return FindOneofByName(name, strlen(name));
  }
  const OneofDef* FindOneofByName(const char* name) const {
    return FindOneofByName(name, strlen(name));
  }

  template<class T>
  OneofDef* FindOneofByName(const T& str) {
    return FindOneofByName(str.c_str(), str.size());
  }
  template<class T>
  const OneofDef* FindOneofByName(const T& str) const {
    return FindOneofByName(str.c_str(), str.size());
  }

2407 2408 2409 2410 2411 2412 2413 2414
  /* Returns a new msgdef that is a copy of the given msgdef (and a copy of all
   * the fields) but with any references to submessages broken and replaced
   * with just the name of the submessage.  Returns NULL if memory allocation
   * failed.
   *
   * TODO(haberman): which is more useful, keeping fields resolved or
   * unresolving them?  If there's no obvious answer, Should this functionality
   * just be moved into symtab.c? */
2415 2416
  MessageDef* Dup(const void* owner) const;

2417
  /* Is this message a map entry? */
2418 2419 2420
  void setmapentry(bool map_entry);
  bool mapentry() const;

2421
  /* Iteration over fields.  The order is undefined. */
2422 2423
  class field_iterator
      : public std::iterator<std::forward_iterator_tag, FieldDef*> {
2424
   public:
2425 2426
    explicit field_iterator(MessageDef* md);
    static field_iterator end(MessageDef* md);
2427 2428 2429

    void operator++();
    FieldDef* operator*() const;
2430 2431
    bool operator!=(const field_iterator& other) const;
    bool operator==(const field_iterator& other) const;
2432 2433

   private:
2434
    upb_msg_field_iter iter_;
2435 2436
  };

2437
  class const_field_iterator
2438 2439
      : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
   public:
2440 2441
    explicit const_field_iterator(const MessageDef* md);
    static const_field_iterator end(const MessageDef* md);
2442 2443 2444

    void operator++();
    const FieldDef* operator*() const;
2445 2446
    bool operator!=(const const_field_iterator& other) const;
    bool operator==(const const_field_iterator& other) const;
2447 2448

   private:
2449
    upb_msg_field_iter iter_;
2450 2451
  };

2452
  /* Iteration over oneofs. The order is undefined. */
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
  class oneof_iterator
      : public std::iterator<std::forward_iterator_tag, FieldDef*> {
   public:
    explicit oneof_iterator(MessageDef* md);
    static oneof_iterator end(MessageDef* md);

    void operator++();
    OneofDef* operator*() const;
    bool operator!=(const oneof_iterator& other) const;
    bool operator==(const oneof_iterator& other) const;

   private:
    upb_msg_oneof_iter iter_;
  };

  class const_oneof_iterator
      : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
   public:
    explicit const_oneof_iterator(const MessageDef* md);
    static const_oneof_iterator end(const MessageDef* md);

    void operator++();
    const OneofDef* operator*() const;
    bool operator!=(const const_oneof_iterator& other) const;
    bool operator==(const const_oneof_iterator& other) const;

   private:
    upb_msg_oneof_iter iter_;
  };

  class FieldAccessor {
   public:
    explicit FieldAccessor(MessageDef* msg) : msg_(msg) {}
    field_iterator begin() { return msg_->field_begin(); }
    field_iterator end() { return msg_->field_end(); }
   private:
    MessageDef* msg_;
  };

  class ConstFieldAccessor {
   public:
    explicit ConstFieldAccessor(const MessageDef* msg) : msg_(msg) {}
    const_field_iterator begin() { return msg_->field_begin(); }
    const_field_iterator end() { return msg_->field_end(); }
   private:
    const MessageDef* msg_;
  };

  class OneofAccessor {
   public:
    explicit OneofAccessor(MessageDef* msg) : msg_(msg) {}
    oneof_iterator begin() { return msg_->oneof_begin(); }
    oneof_iterator end() { return msg_->oneof_end(); }
   private:
    MessageDef* msg_;
  };

  class ConstOneofAccessor {
   public:
    explicit ConstOneofAccessor(const MessageDef* msg) : msg_(msg) {}
    const_oneof_iterator begin() { return msg_->oneof_begin(); }
    const_oneof_iterator end() { return msg_->oneof_end(); }
   private:
    const MessageDef* msg_;
  };

  field_iterator field_begin();
  field_iterator field_end();
  const_field_iterator field_begin() const;
  const_field_iterator field_end() const;

  oneof_iterator oneof_begin();
  oneof_iterator oneof_end();
  const_oneof_iterator oneof_begin() const;
  const_oneof_iterator oneof_end() const;

  FieldAccessor fields() { return FieldAccessor(this); }
  ConstFieldAccessor fields() const { return ConstFieldAccessor(this); }
  OneofAccessor oneofs() { return OneofAccessor(this); }
  ConstOneofAccessor oneofs() const { return ConstOneofAccessor(this); }
2533 2534

 private:
2535 2536
  UPB_DISALLOW_POD_OPS(MessageDef, upb::MessageDef)
};
2537

2538
#endif  /* __cplusplus */
2539

2540
UPB_BEGIN_EXTERN_C
2541

2542
/* Returns NULL if memory allocation failed. */
2543 2544
upb_msgdef *upb_msgdef_new(const void *owner);

2545 2546 2547
/* Include upb_refcounted methods like upb_msgdef_ref(). */
UPB_REFCOUNTED_CMETHODS(upb_msgdef, upb_msgdef_upcast2)

2548 2549
bool upb_msgdef_freeze(upb_msgdef *m, upb_status *status);

2550
upb_msgdef *upb_msgdef_dup(const upb_msgdef *m, const void *owner);
2551
const char *upb_msgdef_fullname(const upb_msgdef *m);
2552
const char *upb_msgdef_name(const upb_msgdef *m);
2553 2554
int upb_msgdef_numoneofs(const upb_msgdef *m);
upb_syntax_t upb_msgdef_syntax(const upb_msgdef *m);
2555 2556 2557

bool upb_msgdef_addfield(upb_msgdef *m, upb_fielddef *f, const void *ref_donor,
                         upb_status *s);
2558 2559
bool upb_msgdef_addoneof(upb_msgdef *m, upb_oneofdef *o, const void *ref_donor,
                         upb_status *s);
2560 2561 2562 2563
bool upb_msgdef_setfullname(upb_msgdef *m, const char *fullname, upb_status *s);
void upb_msgdef_setmapentry(upb_msgdef *m, bool map_entry);
bool upb_msgdef_mapentry(const upb_msgdef *m);
bool upb_msgdef_setsyntax(upb_msgdef *m, upb_syntax_t syntax);
2564

2565 2566 2567 2568
/* Field lookup in a couple of different variations:
 *   - itof = int to field
 *   - ntof = name to field
 *   - ntofz = name to field, null-terminated string. */
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
const upb_fielddef *upb_msgdef_itof(const upb_msgdef *m, uint32_t i);
const upb_fielddef *upb_msgdef_ntof(const upb_msgdef *m, const char *name,
                                    size_t len);
int upb_msgdef_numfields(const upb_msgdef *m);

UPB_INLINE const upb_fielddef *upb_msgdef_ntofz(const upb_msgdef *m,
                                                const char *name) {
  return upb_msgdef_ntof(m, name, strlen(name));
}

UPB_INLINE upb_fielddef *upb_msgdef_itof_mutable(upb_msgdef *m, uint32_t i) {
  return (upb_fielddef*)upb_msgdef_itof(m, i);
}

UPB_INLINE upb_fielddef *upb_msgdef_ntof_mutable(upb_msgdef *m,
                                                 const char *name, size_t len) {
  return (upb_fielddef *)upb_msgdef_ntof(m, name, len);
}

2588 2589 2590
/* Oneof lookup:
 *   - ntoo = name to oneof
 *   - ntooz = name to oneof, null-terminated string. */
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
const upb_oneofdef *upb_msgdef_ntoo(const upb_msgdef *m, const char *name,
                                    size_t len);
int upb_msgdef_numoneofs(const upb_msgdef *m);

UPB_INLINE const upb_oneofdef *upb_msgdef_ntooz(const upb_msgdef *m,
                                               const char *name) {
  return upb_msgdef_ntoo(m, name, strlen(name));
}

UPB_INLINE upb_oneofdef *upb_msgdef_ntoo_mutable(upb_msgdef *m,
                                                 const char *name, size_t len) {
  return (upb_oneofdef *)upb_msgdef_ntoo(m, name, len);
}

2605 2606 2607 2608 2609
/* Lookup of either field or oneof by name.  Returns whether either was found.
 * If the return is true, then the found def will be set, and the non-found
 * one set to NULL. */
bool upb_msgdef_lookupname(const upb_msgdef *m, const char *name, size_t len,
                           const upb_fielddef **f, const upb_oneofdef **o);
2610

2611 2612 2613 2614 2615
UPB_INLINE bool upb_msgdef_lookupnamez(const upb_msgdef *m, const char *name,
                                       const upb_fielddef **f,
                                       const upb_oneofdef **o) {
  return upb_msgdef_lookupname(m, name, strlen(name), f, o);
}
2616

2617 2618 2619
/* Iteration over fields and oneofs.  For example:
 *
 * upb_msg_field_iter i;
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
 * for(upb_msg_field_begin(&i, m);
 *     !upb_msg_field_done(&i);
 *     upb_msg_field_next(&i)) {
 *   upb_fielddef *f = upb_msg_iter_field(&i);
 *   // ...
 * }
 *
 * For C we don't have separate iterators for const and non-const.
 * It is the caller's responsibility to cast the upb_fielddef* to
 * const if the upb_msgdef* is const. */
2630 2631 2632 2633 2634 2635
void upb_msg_field_begin(upb_msg_field_iter *iter, const upb_msgdef *m);
void upb_msg_field_next(upb_msg_field_iter *iter);
bool upb_msg_field_done(const upb_msg_field_iter *iter);
upb_fielddef *upb_msg_iter_field(const upb_msg_field_iter *iter);
void upb_msg_field_iter_setdone(upb_msg_field_iter *iter);

2636 2637
/* Similar to above, we also support iterating through the oneofs in a
 * msgdef. */
2638 2639 2640 2641 2642
void upb_msg_oneof_begin(upb_msg_oneof_iter *iter, const upb_msgdef *m);
void upb_msg_oneof_next(upb_msg_oneof_iter *iter);
bool upb_msg_oneof_done(const upb_msg_oneof_iter *iter);
upb_oneofdef *upb_msg_iter_oneof(const upb_msg_oneof_iter *iter);
void upb_msg_oneof_iter_setdone(upb_msg_oneof_iter *iter);
2643

2644
UPB_END_EXTERN_C
2645 2646 2647 2648 2649 2650


/* upb::EnumDef ***************************************************************/

typedef upb_strtable_iter upb_enum_iter;

2651 2652 2653 2654 2655
#ifdef __cplusplus

/* Class that represents an enum.  Its base class is upb::Def (convert with
 * upb::upcast()). */
class upb::EnumDef {
2656
 public:
2657
  /* Returns NULL if memory allocation failed. */
2658 2659
  static reffed_ptr<EnumDef> New();

2660 2661
  /* upb::RefCounted methods like Ref()/Unref(). */
  UPB_REFCOUNTED_CPPMETHODS
2662

2663
  /* Functionality from upb::Def. */
2664
  const char* full_name() const;
2665
  const char* name() const;
2666 2667 2668
  bool set_full_name(const char* fullname, Status* s);
  bool set_full_name(const std::string& fullname, Status* s);

2669
  /* Call to freeze this EnumDef. */
2670 2671
  bool Freeze(Status* s);

2672 2673 2674 2675
  /* The value that is used as the default when no field default is specified.
   * If not set explicitly, the first value that was added will be used.
   * The default value must be a member of the enum.
   * Requires that value_count() > 0. */
2676 2677
  int32_t default_value() const;

2678 2679
  /* Sets the default value.  If this value is not valid, returns false and an
   * error message in status. */
2680 2681
  bool set_default_value(int32_t val, Status* status);

2682 2683 2684
  /* Returns the number of values currently defined in the enum.  Note that
   * multiple names can refer to the same number, so this may be greater than
   * the total number of unique numbers. */
2685 2686
  int value_count() const;

2687 2688
  /* Adds a single name/number pair to the enum.  Fails if this name has
   * already been used by another value. */
2689 2690 2691
  bool AddValue(const char* name, int32_t num, Status* status);
  bool AddValue(const std::string& name, int32_t num, Status* status);

2692
  /* Lookups from name to integer, returning true if found. */
2693 2694
  bool FindValueByName(const char* name, int32_t* num) const;

2695 2696 2697
  /* Finds the name corresponding to the given number, or NULL if none was
   * found.  If more than one name corresponds to this number, returns the
   * first one that was added. */
2698 2699
  const char* FindValueByNumber(int32_t num) const;

2700 2701
  /* Returns a new EnumDef with all the same values.  The new EnumDef will be
   * owned by the given owner. */
2702 2703
  EnumDef* Dup(const void* owner) const;

2704 2705 2706 2707
  /* Iteration over name/value pairs.  The order is undefined.
   * Adding an enum val invalidates any iterators.
   *
   * TODO: make compatible with range-for, with elements as pairs? */
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
  class Iterator {
   public:
    explicit Iterator(const EnumDef*);

    int32_t number();
    const char *name();
    bool Done();
    void Next();

   private:
    upb_enum_iter iter_;
  };

 private:
2722 2723
  UPB_DISALLOW_POD_OPS(EnumDef, upb::EnumDef)
};
2724

2725
#endif  /* __cplusplus */
2726

2727
UPB_BEGIN_EXTERN_C
2728

2729
/* Native C API. */
2730 2731 2732
upb_enumdef *upb_enumdef_new(const void *owner);
upb_enumdef *upb_enumdef_dup(const upb_enumdef *e, const void *owner);

2733 2734 2735
/* Include upb_refcounted methods like upb_enumdef_ref(). */
UPB_REFCOUNTED_CMETHODS(upb_enumdef, upb_enumdef_upcast2)

2736 2737
bool upb_enumdef_freeze(upb_enumdef *e, upb_status *status);

2738
/* From upb_def. */
2739
const char *upb_enumdef_fullname(const upb_enumdef *e);
2740
const char *upb_enumdef_name(const upb_enumdef *e);
2741 2742 2743 2744 2745 2746 2747 2748 2749
bool upb_enumdef_setfullname(upb_enumdef *e, const char *fullname,
                             upb_status *s);

int32_t upb_enumdef_default(const upb_enumdef *e);
bool upb_enumdef_setdefault(upb_enumdef *e, int32_t val, upb_status *s);
int upb_enumdef_numvals(const upb_enumdef *e);
bool upb_enumdef_addval(upb_enumdef *e, const char *name, int32_t num,
                        upb_status *status);

2750 2751 2752 2753 2754
/* Enum lookups:
 * - ntoi:  look up a name with specified length.
 * - ntoiz: look up a name provided as a null-terminated string.
 * - iton:  look up an integer, returning the name as a null-terminated
 *          string. */
2755 2756 2757 2758 2759 2760 2761 2762
bool upb_enumdef_ntoi(const upb_enumdef *e, const char *name, size_t len,
                      int32_t *num);
UPB_INLINE bool upb_enumdef_ntoiz(const upb_enumdef *e,
                                  const char *name, int32_t *num) {
  return upb_enumdef_ntoi(e, name, strlen(name), num);
}
const char *upb_enumdef_iton(const upb_enumdef *e, int32_t num);

2763 2764 2765 2766 2767
/*  upb_enum_iter i;
 *  for(upb_enum_begin(&i, e); !upb_enum_done(&i); upb_enum_next(&i)) {
 *    // ...
 *  }
 */
2768 2769 2770 2771 2772 2773
void upb_enum_begin(upb_enum_iter *iter, const upb_enumdef *e);
void upb_enum_next(upb_enum_iter *iter);
bool upb_enum_done(upb_enum_iter *iter);
const char *upb_enum_iter_name(upb_enum_iter *iter);
int32_t upb_enum_iter_number(upb_enum_iter *iter);

2774
UPB_END_EXTERN_C
2775

2776 2777 2778 2779
/* upb::OneofDef **************************************************************/

typedef upb_inttable_iter upb_oneof_iter;

2780 2781
#ifdef __cplusplus

2782
/* Class that represents a oneof. */
2783
class upb::OneofDef {
2784
 public:
2785
  /* Returns NULL if memory allocation failed. */
2786 2787
  static reffed_ptr<OneofDef> New();

2788 2789
  /* upb::RefCounted methods like Ref()/Unref(). */
  UPB_REFCOUNTED_CPPMETHODS
2790

2791
  /* Returns the MessageDef that owns this OneofDef. */
2792 2793
  const MessageDef* containing_type() const;

2794 2795
  /* Returns the name of this oneof. This is the name used to look up the oneof
   * by name once added to a message def. */
2796 2797
  const char* name() const;
  bool set_name(const char* name, Status* s);
2798
  bool set_name(const std::string& name, Status* s);
2799

2800
  /* Returns the number of fields currently defined in the oneof. */
2801 2802
  int field_count() const;

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
  /* Adds a field to the oneof. The field must not have been added to any other
   * oneof or msgdef. If the oneof is not yet part of a msgdef, then when the
   * oneof is eventually added to a msgdef, all fields added to the oneof will
   * also be added to the msgdef at that time. If the oneof is already part of a
   * msgdef, the field must either be a part of that msgdef already, or must not
   * be a part of any msgdef; in the latter case, the field is added to the
   * msgdef as a part of this operation.
   *
   * The field may only have an OPTIONAL label, never REQUIRED or REPEATED.
   *
   * If |f| is already part of this MessageDef, this method performs no action
   * and returns true (success). Thus, this method is idempotent. */
2815 2816 2817
  bool AddField(FieldDef* field, Status* s);
  bool AddField(const reffed_ptr<FieldDef>& field, Status* s);

2818
  /* Looks up by name. */
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
  const FieldDef* FindFieldByName(const char* name, size_t len) const;
  FieldDef* FindFieldByName(const char* name, size_t len);
  const FieldDef* FindFieldByName(const char* name) const {
    return FindFieldByName(name, strlen(name));
  }
  FieldDef* FindFieldByName(const char* name) {
    return FindFieldByName(name, strlen(name));
  }

  template <class T>
  FieldDef* FindFieldByName(const T& str) {
    return FindFieldByName(str.c_str(), str.size());
  }
  template <class T>
  const FieldDef* FindFieldByName(const T& str) const {
    return FindFieldByName(str.c_str(), str.size());
  }

2837
  /* Looks up by tag number. */
2838 2839
  const FieldDef* FindFieldByNumber(uint32_t num) const;

2840 2841
  /* Returns a new OneofDef with all the same fields. The OneofDef will be owned
   * by the given owner. */
2842 2843
  OneofDef* Dup(const void* owner) const;

2844
  /* Iteration over fields.  The order is undefined. */
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
  class iterator : public std::iterator<std::forward_iterator_tag, FieldDef*> {
   public:
    explicit iterator(OneofDef* md);
    static iterator end(OneofDef* md);

    void operator++();
    FieldDef* operator*() const;
    bool operator!=(const iterator& other) const;
    bool operator==(const iterator& other) const;

   private:
    upb_oneof_iter iter_;
  };

  class const_iterator
      : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
   public:
    explicit const_iterator(const OneofDef* md);
    static const_iterator end(const OneofDef* md);

    void operator++();
    const FieldDef* operator*() const;
    bool operator!=(const const_iterator& other) const;
    bool operator==(const const_iterator& other) const;

   private:
    upb_oneof_iter iter_;
  };

  iterator begin();
  iterator end();
  const_iterator begin() const;
  const_iterator end() const;

 private:
2880 2881
  UPB_DISALLOW_POD_OPS(OneofDef, upb::OneofDef)
};
2882

2883
#endif  /* __cplusplus */
2884

2885
UPB_BEGIN_EXTERN_C
2886

2887
/* Native C API. */
2888 2889 2890
upb_oneofdef *upb_oneofdef_new(const void *owner);
upb_oneofdef *upb_oneofdef_dup(const upb_oneofdef *o, const void *owner);

2891
/* Include upb_refcounted methods like upb_oneofdef_ref(). */
2892
UPB_REFCOUNTED_CMETHODS(upb_oneofdef, upb_oneofdef_upcast)
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902

const char *upb_oneofdef_name(const upb_oneofdef *o);
bool upb_oneofdef_setname(upb_oneofdef *o, const char *name, upb_status *s);

const upb_msgdef *upb_oneofdef_containingtype(const upb_oneofdef *o);
int upb_oneofdef_numfields(const upb_oneofdef *o);
bool upb_oneofdef_addfield(upb_oneofdef *o, upb_fielddef *f,
                           const void *ref_donor,
                           upb_status *s);

2903 2904 2905 2906
/* Oneof lookups:
 * - ntof:  look up a field by name.
 * - ntofz: look up a field by name (as a null-terminated string).
 * - itof:  look up a field by number. */
2907 2908 2909 2910 2911 2912 2913 2914
const upb_fielddef *upb_oneofdef_ntof(const upb_oneofdef *o,
                                      const char *name, size_t length);
UPB_INLINE const upb_fielddef *upb_oneofdef_ntofz(const upb_oneofdef *o,
                                                  const char *name) {
  return upb_oneofdef_ntof(o, name, strlen(name));
}
const upb_fielddef *upb_oneofdef_itof(const upb_oneofdef *o, uint32_t num);

2915 2916 2917 2918 2919
/*  upb_oneof_iter i;
 *  for(upb_oneof_begin(&i, e); !upb_oneof_done(&i); upb_oneof_next(&i)) {
 *    // ...
 *  }
 */
2920 2921 2922 2923 2924 2925
void upb_oneof_begin(upb_oneof_iter *iter, const upb_oneofdef *o);
void upb_oneof_next(upb_oneof_iter *iter);
bool upb_oneof_done(upb_oneof_iter *iter);
upb_fielddef *upb_oneof_iter_field(const upb_oneof_iter *iter);
void upb_oneof_iter_setdone(upb_oneof_iter *iter);

2926
UPB_END_EXTERN_C
2927

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041

/* upb::FileDef ***************************************************************/

#ifdef __cplusplus

/* Class that represents a .proto file with some things defined in it.
 *
 * Many users won't care about FileDefs, but they are necessary if you want to
 * read the values of file-level options. */
class upb::FileDef {
 public:
  /* Returns NULL if memory allocation failed. */
  static reffed_ptr<FileDef> New();

  /* upb::RefCounted methods like Ref()/Unref(). */
  UPB_REFCOUNTED_CPPMETHODS

  /* Get/set name of the file (eg. "foo/bar.proto"). */
  const char* name() const;
  bool set_name(const char* name, Status* s);
  bool set_name(const std::string& name, Status* s);

  /* Package name for definitions inside the file (eg. "foo.bar"). */
  const char* package() const;
  bool set_package(const char* package, Status* s);

  /* Syntax for the file.  Defaults to proto2. */
  upb_syntax_t syntax() const;
  void set_syntax(upb_syntax_t syntax);

  /* Get the list of defs from the file.  These are returned in the order that
   * they were added to the FileDef. */
  int def_count() const;
  const Def* def(int index) const;
  Def* def(int index);

  /* Get the list of dependencies from the file.  These are returned in the
   * order that they were added to the FileDef. */
  int dependency_count() const;
  const FileDef* dependency(int index) const;

  /* Adds defs to this file.  The def must not already belong to another
   * file.
   *
   * Note: this does *not* ensure that this def's name is unique in this file!
   * Use a SymbolTable if you want to check this property.  Especially since
   * properly checking uniqueness would require a check across *all* files
   * (including dependencies). */
  bool AddDef(Def* def, Status* s);
  bool AddMessage(MessageDef* m, Status* s);
  bool AddEnum(EnumDef* e, Status* s);
  bool AddExtension(FieldDef* f, Status* s);

  /* Adds a dependency of this file. */
  bool AddDependency(const FileDef* file);

  /* Freezes this FileDef and all messages/enums under it.  All subdefs must be
   * resolved and all messages/enums must validate.  Returns true if this
   * succeeded.
   *
   * TODO(haberman): should we care whether the file's dependencies are frozen
   * already? */
  bool Freeze(Status* s);

 private:
  UPB_DISALLOW_POD_OPS(FileDef, upb::FileDef)
};

#endif

UPB_BEGIN_EXTERN_C

upb_filedef *upb_filedef_new(const void *owner);

/* Include upb_refcounted methods like upb_msgdef_ref(). */
UPB_REFCOUNTED_CMETHODS(upb_filedef, upb_filedef_upcast)

const char *upb_filedef_name(const upb_filedef *f);
const char *upb_filedef_package(const upb_filedef *f);
upb_syntax_t upb_filedef_syntax(const upb_filedef *f);
size_t upb_filedef_defcount(const upb_filedef *f);
size_t upb_filedef_depcount(const upb_filedef *f);
const upb_def *upb_filedef_def(const upb_filedef *f, size_t i);
const upb_filedef *upb_filedef_dep(const upb_filedef *f, size_t i);

bool upb_filedef_freeze(upb_filedef *f, upb_status *s);
bool upb_filedef_setname(upb_filedef *f, const char *name, upb_status *s);
bool upb_filedef_setpackage(upb_filedef *f, const char *package, upb_status *s);
bool upb_filedef_setsyntax(upb_filedef *f, upb_syntax_t syntax, upb_status *s);

bool upb_filedef_adddef(upb_filedef *f, upb_def *def, const void *ref_donor,
                        upb_status *s);
bool upb_filedef_adddep(upb_filedef *f, const upb_filedef *dep);

UPB_INLINE bool upb_filedef_addmsg(upb_filedef *f, upb_msgdef *m,
                                   const void *ref_donor, upb_status *s) {
  return upb_filedef_adddef(f, upb_msgdef_upcast_mutable(m), ref_donor, s);
}

UPB_INLINE bool upb_filedef_addenum(upb_filedef *f, upb_enumdef *e,
                                    const void *ref_donor, upb_status *s) {
  return upb_filedef_adddef(f, upb_enumdef_upcast_mutable(e), ref_donor, s);
}

UPB_INLINE bool upb_filedef_addext(upb_filedef *file, upb_fielddef *f,
                                   const void *ref_donor, upb_status *s) {
  return upb_filedef_adddef(file, upb_fielddef_upcast_mutable(f), ref_donor, s);
}
UPB_INLINE upb_def *upb_filedef_mutabledef(upb_filedef *f, int i) {
  return (upb_def*)upb_filedef_def(f, i);
}

UPB_END_EXTERN_C

3042 3043 3044 3045 3046 3047 3048
#ifdef __cplusplus

UPB_INLINE const char* upb_safecstr(const std::string& str) {
  assert(str.size() == std::strlen(str.c_str()));
  return str.c_str();
}

3049
/* Inline C++ wrappers. */
3050 3051 3052 3053 3054 3055 3056
namespace upb {

inline Def* Def::Dup(const void* owner) const {
  return upb_def_dup(this, owner);
}
inline Def::Type Def::def_type() const { return upb_def_type(this); }
inline const char* Def::full_name() const { return upb_def_fullname(this); }
3057
inline const char* Def::name() const { return upb_def_name(this); }
3058 3059 3060 3061 3062 3063
inline bool Def::set_full_name(const char* fullname, Status* s) {
  return upb_def_setfullname(this, fullname, s);
}
inline bool Def::set_full_name(const std::string& fullname, Status* s) {
  return upb_def_setfullname(this, upb_safecstr(fullname), s);
}
3064
inline bool Def::Freeze(Def* const* defs, size_t n, Status* status) {
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
  return upb_def_freeze(defs, n, status);
}
inline bool Def::Freeze(const std::vector<Def*>& defs, Status* status) {
  return upb_def_freeze((Def* const*)&defs[0], defs.size(), status);
}

inline bool FieldDef::CheckType(int32_t val) {
  return upb_fielddef_checktype(val);
}
inline bool FieldDef::CheckLabel(int32_t val) {
  return upb_fielddef_checklabel(val);
}
inline bool FieldDef::CheckDescriptorType(int32_t val) {
  return upb_fielddef_checkdescriptortype(val);
}
inline bool FieldDef::CheckIntegerFormat(int32_t val) {
  return upb_fielddef_checkintfmt(val);
}
inline FieldDef::Type FieldDef::ConvertType(int32_t val) {
  assert(CheckType(val));
  return static_cast<FieldDef::Type>(val);
}
inline FieldDef::Label FieldDef::ConvertLabel(int32_t val) {
  assert(CheckLabel(val));
  return static_cast<FieldDef::Label>(val);
}
inline FieldDef::DescriptorType FieldDef::ConvertDescriptorType(int32_t val) {
  assert(CheckDescriptorType(val));
  return static_cast<FieldDef::DescriptorType>(val);
}
inline FieldDef::IntegerFormat FieldDef::ConvertIntegerFormat(int32_t val) {
  assert(CheckIntegerFormat(val));
  return static_cast<FieldDef::IntegerFormat>(val);
}

inline reffed_ptr<FieldDef> FieldDef::New() {
  upb_fielddef *f = upb_fielddef_new(&f);
  return reffed_ptr<FieldDef>(f, &f);
}
inline FieldDef* FieldDef::Dup(const void* owner) const {
  return upb_fielddef_dup(this, owner);
}
inline const char* FieldDef::full_name() const {
  return upb_fielddef_fullname(this);
}
inline bool FieldDef::set_full_name(const char* fullname, Status* s) {
  return upb_fielddef_setfullname(this, fullname, s);
}
inline bool FieldDef::set_full_name(const std::string& fullname, Status* s) {
  return upb_fielddef_setfullname(this, upb_safecstr(fullname), s);
}
inline bool FieldDef::type_is_set() const {
  return upb_fielddef_typeisset(this);
}
inline FieldDef::Type FieldDef::type() const { return upb_fielddef_type(this); }
inline FieldDef::DescriptorType FieldDef::descriptor_type() const {
  return upb_fielddef_descriptortype(this);
}
inline FieldDef::Label FieldDef::label() const {
  return upb_fielddef_label(this);
}
inline uint32_t FieldDef::number() const { return upb_fielddef_number(this); }
inline const char* FieldDef::name() const { return upb_fielddef_name(this); }
inline bool FieldDef::is_extension() const {
  return upb_fielddef_isextension(this);
}
3131 3132 3133
inline size_t FieldDef::GetJsonName(char* buf, size_t len) const {
  return upb_fielddef_getjsonname(this, buf, len);
}
3134 3135 3136 3137 3138 3139 3140 3141 3142
inline bool FieldDef::lazy() const {
  return upb_fielddef_lazy(this);
}
inline void FieldDef::set_lazy(bool lazy) {
  upb_fielddef_setlazy(this, lazy);
}
inline bool FieldDef::packed() const {
  return upb_fielddef_packed(this);
}
3143 3144 3145
inline uint32_t FieldDef::index() const {
  return upb_fielddef_index(this);
}
3146 3147 3148 3149 3150 3151
inline void FieldDef::set_packed(bool packed) {
  upb_fielddef_setpacked(this, packed);
}
inline const MessageDef* FieldDef::containing_type() const {
  return upb_fielddef_containingtype(this);
}
3152 3153 3154
inline const OneofDef* FieldDef::containing_oneof() const {
  return upb_fielddef_containingoneof(this);
}
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
inline const char* FieldDef::containing_type_name() {
  return upb_fielddef_containingtypename(this);
}
inline bool FieldDef::set_number(uint32_t number, Status* s) {
  return upb_fielddef_setnumber(this, number, s);
}
inline bool FieldDef::set_name(const char *name, Status* s) {
  return upb_fielddef_setname(this, name, s);
}
inline bool FieldDef::set_name(const std::string& name, Status* s) {
  return upb_fielddef_setname(this, upb_safecstr(name), s);
}
3167 3168 3169 3170 3171 3172 3173 3174 3175
inline bool FieldDef::set_json_name(const char *name, Status* s) {
  return upb_fielddef_setjsonname(this, name, s);
}
inline bool FieldDef::set_json_name(const std::string& name, Status* s) {
  return upb_fielddef_setjsonname(this, upb_safecstr(name), s);
}
inline void FieldDef::clear_json_name() {
  upb_fielddef_clearjsonname(this);
}
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
inline bool FieldDef::set_containing_type_name(const char *name, Status* s) {
  return upb_fielddef_setcontainingtypename(this, name, s);
}
inline bool FieldDef::set_containing_type_name(const std::string &name,
                                               Status *s) {
  return upb_fielddef_setcontainingtypename(this, upb_safecstr(name), s);
}
inline void FieldDef::set_type(upb_fieldtype_t type) {
  upb_fielddef_settype(this, type);
}
inline void FieldDef::set_is_extension(bool is_extension) {
  upb_fielddef_setisextension(this, is_extension);
}
inline void FieldDef::set_descriptor_type(FieldDef::DescriptorType type) {
  upb_fielddef_setdescriptortype(this, type);
}
inline void FieldDef::set_label(upb_label_t label) {
  upb_fielddef_setlabel(this, label);
}
inline bool FieldDef::IsSubMessage() const {
  return upb_fielddef_issubmsg(this);
}
inline bool FieldDef::IsString() const { return upb_fielddef_isstring(this); }
inline bool FieldDef::IsSequence() const { return upb_fielddef_isseq(this); }
3200
inline bool FieldDef::IsMap() const { return upb_fielddef_ismap(this); }
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
inline int64_t FieldDef::default_int64() const {
  return upb_fielddef_defaultint64(this);
}
inline int32_t FieldDef::default_int32() const {
  return upb_fielddef_defaultint32(this);
}
inline uint64_t FieldDef::default_uint64() const {
  return upb_fielddef_defaultuint64(this);
}
inline uint32_t FieldDef::default_uint32() const {
  return upb_fielddef_defaultuint32(this);
}
inline bool FieldDef::default_bool() const {
  return upb_fielddef_defaultbool(this);
}
inline float FieldDef::default_float() const {
  return upb_fielddef_defaultfloat(this);
}
inline double FieldDef::default_double() const {
  return upb_fielddef_defaultdouble(this);
}
inline const char* FieldDef::default_string(size_t* len) const {
  return upb_fielddef_defaultstr(this, len);
}
inline void FieldDef::set_default_int64(int64_t value) {
  upb_fielddef_setdefaultint64(this, value);
}
inline void FieldDef::set_default_int32(int32_t value) {
  upb_fielddef_setdefaultint32(this, value);
}
inline void FieldDef::set_default_uint64(uint64_t value) {
  upb_fielddef_setdefaultuint64(this, value);
}
inline void FieldDef::set_default_uint32(uint32_t value) {
  upb_fielddef_setdefaultuint32(this, value);
}
inline void FieldDef::set_default_bool(bool value) {
  upb_fielddef_setdefaultbool(this, value);
}
inline void FieldDef::set_default_float(float value) {
  upb_fielddef_setdefaultfloat(this, value);
}
inline void FieldDef::set_default_double(double value) {
  upb_fielddef_setdefaultdouble(this, value);
}
inline bool FieldDef::set_default_string(const void *str, size_t len,
                                         Status *s) {
  return upb_fielddef_setdefaultstr(this, str, len, s);
}
inline bool FieldDef::set_default_string(const std::string& str, Status* s) {
  return upb_fielddef_setdefaultstr(this, str.c_str(), str.size(), s);
}
inline void FieldDef::set_default_cstr(const char* str, Status* s) {
  return upb_fielddef_setdefaultcstr(this, str, s);
}
inline bool FieldDef::HasSubDef() const { return upb_fielddef_hassubdef(this); }
inline const Def* FieldDef::subdef() const { return upb_fielddef_subdef(this); }
inline const MessageDef *FieldDef::message_subdef() const {
  return upb_fielddef_msgsubdef(this);
}
inline const EnumDef *FieldDef::enum_subdef() const {
  return upb_fielddef_enumsubdef(this);
}
inline const char* FieldDef::subdef_name() const {
  return upb_fielddef_subdefname(this);
}
inline bool FieldDef::set_subdef(const Def* subdef, Status* s) {
  return upb_fielddef_setsubdef(this, subdef, s);
}
inline bool FieldDef::set_enum_subdef(const EnumDef* subdef, Status* s) {
  return upb_fielddef_setenumsubdef(this, subdef, s);
}
inline bool FieldDef::set_message_subdef(const MessageDef* subdef, Status* s) {
  return upb_fielddef_setmsgsubdef(this, subdef, s);
}
inline bool FieldDef::set_subdef_name(const char* name, Status* s) {
  return upb_fielddef_setsubdefname(this, name, s);
}
inline bool FieldDef::set_subdef_name(const std::string& name, Status* s) {
  return upb_fielddef_setsubdefname(this, upb_safecstr(name), s);
}

inline reffed_ptr<MessageDef> MessageDef::New() {
  upb_msgdef *m = upb_msgdef_new(&m);
  return reffed_ptr<MessageDef>(m, &m);
}
inline const char *MessageDef::full_name() const {
  return upb_msgdef_fullname(this);
}
3290 3291 3292
inline const char *MessageDef::name() const {
  return upb_msgdef_name(this);
}
3293 3294 3295
inline upb_syntax_t MessageDef::syntax() const {
  return upb_msgdef_syntax(this);
}
3296 3297 3298 3299 3300 3301
inline bool MessageDef::set_full_name(const char* fullname, Status* s) {
  return upb_msgdef_setfullname(this, fullname, s);
}
inline bool MessageDef::set_full_name(const std::string& fullname, Status* s) {
  return upb_msgdef_setfullname(this, upb_safecstr(fullname), s);
}
3302 3303 3304
inline bool MessageDef::set_syntax(upb_syntax_t syntax) {
  return upb_msgdef_setsyntax(this, syntax);
}
3305 3306 3307 3308 3309 3310
inline bool MessageDef::Freeze(Status* status) {
  return upb_msgdef_freeze(this, status);
}
inline int MessageDef::field_count() const {
  return upb_msgdef_numfields(this);
}
3311 3312 3313
inline int MessageDef::oneof_count() const {
  return upb_msgdef_numoneofs(this);
}
3314 3315 3316 3317 3318 3319
inline bool MessageDef::AddField(upb_fielddef* f, Status* s) {
  return upb_msgdef_addfield(this, f, NULL, s);
}
inline bool MessageDef::AddField(const reffed_ptr<FieldDef>& f, Status* s) {
  return upb_msgdef_addfield(this, f.get(), NULL, s);
}
3320 3321 3322 3323 3324 3325
inline bool MessageDef::AddOneof(upb_oneofdef* o, Status* s) {
  return upb_msgdef_addoneof(this, o, NULL, s);
}
inline bool MessageDef::AddOneof(const reffed_ptr<OneofDef>& o, Status* s) {
  return upb_msgdef_addoneof(this, o.get(), NULL, s);
}
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
inline FieldDef* MessageDef::FindFieldByNumber(uint32_t number) {
  return upb_msgdef_itof_mutable(this, number);
}
inline FieldDef* MessageDef::FindFieldByName(const char* name, size_t len) {
  return upb_msgdef_ntof_mutable(this, name, len);
}
inline const FieldDef* MessageDef::FindFieldByNumber(uint32_t number) const {
  return upb_msgdef_itof(this, number);
}
inline const FieldDef *MessageDef::FindFieldByName(const char *name,
                                                   size_t len) const {
  return upb_msgdef_ntof(this, name, len);
}
3339 3340 3341 3342 3343 3344 3345
inline OneofDef* MessageDef::FindOneofByName(const char* name, size_t len) {
  return upb_msgdef_ntoo_mutable(this, name, len);
}
inline const OneofDef* MessageDef::FindOneofByName(const char* name,
                                                   size_t len) const {
  return upb_msgdef_ntoo(this, name, len);
}
3346 3347 3348
inline MessageDef* MessageDef::Dup(const void *owner) const {
  return upb_msgdef_dup(this, owner);
}
3349 3350 3351 3352 3353 3354
inline void MessageDef::setmapentry(bool map_entry) {
  upb_msgdef_setmapentry(this, map_entry);
}
inline bool MessageDef::mapentry() const {
  return upb_msgdef_mapentry(this);
}
3355 3356
inline MessageDef::field_iterator MessageDef::field_begin() {
  return field_iterator(this);
3357
}
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
inline MessageDef::field_iterator MessageDef::field_end() {
  return field_iterator::end(this);
}
inline MessageDef::const_field_iterator MessageDef::field_begin() const {
  return const_field_iterator(this);
}
inline MessageDef::const_field_iterator MessageDef::field_end() const {
  return const_field_iterator::end(this);
}

inline MessageDef::oneof_iterator MessageDef::oneof_begin() {
  return oneof_iterator(this);
}
inline MessageDef::oneof_iterator MessageDef::oneof_end() {
  return oneof_iterator::end(this);
}
inline MessageDef::const_oneof_iterator MessageDef::oneof_begin() const {
  return const_oneof_iterator(this);
}
inline MessageDef::const_oneof_iterator MessageDef::oneof_end() const {
  return const_oneof_iterator::end(this);
3379 3380
}

3381 3382
inline MessageDef::field_iterator::field_iterator(MessageDef* md) {
  upb_msg_field_begin(&iter_, md);
3383
}
3384 3385 3386 3387
inline MessageDef::field_iterator MessageDef::field_iterator::end(
    MessageDef* md) {
  MessageDef::field_iterator iter(md);
  upb_msg_field_iter_setdone(&iter.iter_);
3388 3389
  return iter;
}
3390
inline FieldDef* MessageDef::field_iterator::operator*() const {
3391 3392
  return upb_msg_iter_field(&iter_);
}
3393 3394 3395 3396 3397
inline void MessageDef::field_iterator::operator++() {
  return upb_msg_field_next(&iter_);
}
inline bool MessageDef::field_iterator::operator==(
    const field_iterator &other) const {
3398 3399
  return upb_inttable_iter_isequal(&iter_, &other.iter_);
}
3400 3401
inline bool MessageDef::field_iterator::operator!=(
    const field_iterator &other) const {
3402 3403 3404
  return !(*this == other);
}

3405 3406 3407
inline MessageDef::const_field_iterator::const_field_iterator(
    const MessageDef* md) {
  upb_msg_field_begin(&iter_, md);
3408
}
3409
inline MessageDef::const_field_iterator MessageDef::const_field_iterator::end(
3410
    const MessageDef *md) {
3411 3412
  MessageDef::const_field_iterator iter(md);
  upb_msg_field_iter_setdone(&iter.iter_);
3413 3414
  return iter;
}
3415
inline const FieldDef* MessageDef::const_field_iterator::operator*() const {
3416 3417
  return upb_msg_iter_field(&iter_);
}
3418 3419
inline void MessageDef::const_field_iterator::operator++() {
  return upb_msg_field_next(&iter_);
3420
}
3421 3422
inline bool MessageDef::const_field_iterator::operator==(
    const const_field_iterator &other) const {
3423 3424
  return upb_inttable_iter_isequal(&iter_, &other.iter_);
}
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
inline bool MessageDef::const_field_iterator::operator!=(
    const const_field_iterator &other) const {
  return !(*this == other);
}

inline MessageDef::oneof_iterator::oneof_iterator(MessageDef* md) {
  upb_msg_oneof_begin(&iter_, md);
}
inline MessageDef::oneof_iterator MessageDef::oneof_iterator::end(
    MessageDef* md) {
  MessageDef::oneof_iterator iter(md);
  upb_msg_oneof_iter_setdone(&iter.iter_);
  return iter;
}
inline OneofDef* MessageDef::oneof_iterator::operator*() const {
  return upb_msg_iter_oneof(&iter_);
}
inline void MessageDef::oneof_iterator::operator++() {
  return upb_msg_oneof_next(&iter_);
}
inline bool MessageDef::oneof_iterator::operator==(
    const oneof_iterator &other) const {
  return upb_strtable_iter_isequal(&iter_, &other.iter_);
}
inline bool MessageDef::oneof_iterator::operator!=(
    const oneof_iterator &other) const {
  return !(*this == other);
}

inline MessageDef::const_oneof_iterator::const_oneof_iterator(
    const MessageDef* md) {
  upb_msg_oneof_begin(&iter_, md);
}
inline MessageDef::const_oneof_iterator MessageDef::const_oneof_iterator::end(
    const MessageDef *md) {
  MessageDef::const_oneof_iterator iter(md);
  upb_msg_oneof_iter_setdone(&iter.iter_);
  return iter;
}
inline const OneofDef* MessageDef::const_oneof_iterator::operator*() const {
  return upb_msg_iter_oneof(&iter_);
}
inline void MessageDef::const_oneof_iterator::operator++() {
  return upb_msg_oneof_next(&iter_);
}
inline bool MessageDef::const_oneof_iterator::operator==(
    const const_oneof_iterator &other) const {
  return upb_strtable_iter_isequal(&iter_, &other.iter_);
}
inline bool MessageDef::const_oneof_iterator::operator!=(
    const const_oneof_iterator &other) const {
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
  return !(*this == other);
}

inline reffed_ptr<EnumDef> EnumDef::New() {
  upb_enumdef *e = upb_enumdef_new(&e);
  return reffed_ptr<EnumDef>(e, &e);
}
inline const char* EnumDef::full_name() const {
  return upb_enumdef_fullname(this);
}
3486 3487 3488
inline const char* EnumDef::name() const {
  return upb_enumdef_name(this);
}
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
inline bool EnumDef::set_full_name(const char* fullname, Status* s) {
  return upb_enumdef_setfullname(this, fullname, s);
}
inline bool EnumDef::set_full_name(const std::string& fullname, Status* s) {
  return upb_enumdef_setfullname(this, upb_safecstr(fullname), s);
}
inline bool EnumDef::Freeze(Status* status) {
  return upb_enumdef_freeze(this, status);
}
inline int32_t EnumDef::default_value() const {
  return upb_enumdef_default(this);
}
inline bool EnumDef::set_default_value(int32_t val, Status* status) {
  return upb_enumdef_setdefault(this, val, status);
}
inline int EnumDef::value_count() const { return upb_enumdef_numvals(this); }
inline bool EnumDef::AddValue(const char* name, int32_t num, Status* status) {
  return upb_enumdef_addval(this, name, num, status);
}
inline bool EnumDef::AddValue(const std::string& name, int32_t num,
                              Status* status) {
  return upb_enumdef_addval(this, upb_safecstr(name), num, status);
}
inline bool EnumDef::FindValueByName(const char* name, int32_t *num) const {
  return upb_enumdef_ntoiz(this, name, num);
}
inline const char* EnumDef::FindValueByNumber(int32_t num) const {
  return upb_enumdef_iton(this, num);
}
inline EnumDef* EnumDef::Dup(const void* owner) const {
  return upb_enumdef_dup(this, owner);
}

inline EnumDef::Iterator::Iterator(const EnumDef* e) {
  upb_enum_begin(&iter_, e);
}
inline int32_t EnumDef::Iterator::number() {
  return upb_enum_iter_number(&iter_);
}
inline const char* EnumDef::Iterator::name() {
  return upb_enum_iter_name(&iter_);
}
inline bool EnumDef::Iterator::Done() { return upb_enum_done(&iter_); }
inline void EnumDef::Iterator::Next() { return upb_enum_next(&iter_); }
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547

inline reffed_ptr<OneofDef> OneofDef::New() {
  upb_oneofdef *o = upb_oneofdef_new(&o);
  return reffed_ptr<OneofDef>(o, &o);
}

inline const MessageDef* OneofDef::containing_type() const {
  return upb_oneofdef_containingtype(this);
}
inline const char* OneofDef::name() const {
  return upb_oneofdef_name(this);
}
inline bool OneofDef::set_name(const char* name, Status* s) {
  return upb_oneofdef_setname(this, name, s);
}
3548 3549 3550
inline bool OneofDef::set_name(const std::string& name, Status* s) {
  return upb_oneofdef_setname(this, upb_safecstr(name), s);
}
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
inline int OneofDef::field_count() const {
  return upb_oneofdef_numfields(this);
}
inline bool OneofDef::AddField(FieldDef* field, Status* s) {
  return upb_oneofdef_addfield(this, field, NULL, s);
}
inline bool OneofDef::AddField(const reffed_ptr<FieldDef>& field, Status* s) {
  return upb_oneofdef_addfield(this, field.get(), NULL, s);
}
inline const FieldDef* OneofDef::FindFieldByName(const char* name,
                                                 size_t len) const {
  return upb_oneofdef_ntof(this, name, len);
}
inline const FieldDef* OneofDef::FindFieldByNumber(uint32_t num) const {
  return upb_oneofdef_itof(this, num);
}
inline OneofDef::iterator OneofDef::begin() { return iterator(this); }
inline OneofDef::iterator OneofDef::end() { return iterator::end(this); }
inline OneofDef::const_iterator OneofDef::begin() const {
  return const_iterator(this);
}
inline OneofDef::const_iterator OneofDef::end() const {
  return const_iterator::end(this);
}

inline OneofDef::iterator::iterator(OneofDef* o) {
  upb_oneof_begin(&iter_, o);
}
inline OneofDef::iterator OneofDef::iterator::end(OneofDef* o) {
  OneofDef::iterator iter(o);
  upb_oneof_iter_setdone(&iter.iter_);
  return iter;
}
inline FieldDef* OneofDef::iterator::operator*() const {
  return upb_oneof_iter_field(&iter_);
}
inline void OneofDef::iterator::operator++() { return upb_oneof_next(&iter_); }
inline bool OneofDef::iterator::operator==(const iterator &other) const {
  return upb_inttable_iter_isequal(&iter_, &other.iter_);
}
inline bool OneofDef::iterator::operator!=(const iterator &other) const {
  return !(*this == other);
}

inline OneofDef::const_iterator::const_iterator(const OneofDef* md) {
  upb_oneof_begin(&iter_, md);
}
inline OneofDef::const_iterator OneofDef::const_iterator::end(
    const OneofDef *md) {
  OneofDef::const_iterator iter(md);
  upb_oneof_iter_setdone(&iter.iter_);
  return iter;
}
inline const FieldDef* OneofDef::const_iterator::operator*() const {
  return upb_msg_iter_field(&iter_);
}
inline void OneofDef::const_iterator::operator++() {
  return upb_oneof_next(&iter_);
}
inline bool OneofDef::const_iterator::operator==(
    const const_iterator &other) const {
  return upb_inttable_iter_isequal(&iter_, &other.iter_);
}
inline bool OneofDef::const_iterator::operator!=(
    const const_iterator &other) const {
  return !(*this == other);
}

3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
inline reffed_ptr<FileDef> FileDef::New() {
  upb_filedef *f = upb_filedef_new(&f);
  return reffed_ptr<FileDef>(f, &f);
}

inline const char* FileDef::name() const {
  return upb_filedef_name(this);
}
inline bool FileDef::set_name(const char* name, Status* s) {
  return upb_filedef_setname(this, name, s);
}
inline bool FileDef::set_name(const std::string& name, Status* s) {
  return upb_filedef_setname(this, upb_safecstr(name), s);
}
inline const char* FileDef::package() const {
  return upb_filedef_package(this);
}
inline bool FileDef::set_package(const char* package, Status* s) {
  return upb_filedef_setpackage(this, package, s);
}
inline int FileDef::def_count() const {
  return upb_filedef_defcount(this);
}
inline const Def* FileDef::def(int index) const {
  return upb_filedef_def(this, index);
}
inline Def* FileDef::def(int index) {
  return const_cast<Def*>(upb_filedef_def(this, index));
}
inline int FileDef::dependency_count() const {
  return upb_filedef_depcount(this);
}
inline const FileDef* FileDef::dependency(int index) const {
  return upb_filedef_dep(this, index);
}
inline bool FileDef::AddDef(Def* def, Status* s) {
  return upb_filedef_adddef(this, def, NULL, s);
}
inline bool FileDef::AddMessage(MessageDef* m, Status* s) {
  return upb_filedef_addmsg(this, m, NULL, s);
}
inline bool FileDef::AddEnum(EnumDef* e, Status* s) {
  return upb_filedef_addenum(this, e, NULL, s);
}
inline bool FileDef::AddExtension(FieldDef* f, Status* s) {
  return upb_filedef_addext(this, f, NULL, s);
}
inline bool FileDef::AddDependency(const FileDef* file) {
  return upb_filedef_adddep(this, file);
}

3670
}  /* namespace upb */
3671 3672 3673 3674
#endif

#endif /* UPB_DEF_H_ */
/*
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
** This file contains definitions of structs that should be considered private
** and NOT stable across versions of upb.
**
** The only reason they are declared here and not in .c files is to allow upb
** and the application (if desired) to embed statically-initialized instances
** of structures like defs.
**
** If you include this file, all guarantees of ABI compatibility go out the
** window!  Any code that includes this file needs to recompile against the
** exact same version of upb that they are linking against.
**
** You also need to recompile if you change the value of the UPB_DEBUG_REFS
** flag.
*/
3689 3690


3691 3692
#ifndef UPB_STATICINIT_H_
#define UPB_STATICINIT_H_
3693 3694

#ifdef __cplusplus
3695 3696
/* Because of how we do our typedefs, this header can't be included from C++. */
#error This file cannot be included from C++
3697 3698
#endif

3699
/* upb_refcounted *************************************************************/
3700 3701


3702
/* upb_def ********************************************************************/
3703

3704 3705
struct upb_def {
  upb_refcounted base;
3706

3707
  const char *fullname;
3708
  const upb_filedef* file;
3709
  char type;  /* A upb_deftype_t (char to save space) */
3710

3711 3712 3713 3714 3715 3716
  /* Used as a flag during the def's mutable stage.  Must be false unless
   * it is currently being used by a function on the stack.  This allows
   * us to easily determine which defs were passed into the function's
   * current invocation. */
  bool came_from_user;
};
3717

3718 3719
#define UPB_DEF_INIT(name, type, vtbl, refs, ref2s) \
    { UPB_REFCOUNT_INIT(vtbl, refs, ref2s), name, NULL, type, false }
3720 3721


3722
/* upb_fielddef ***************************************************************/
3723

3724 3725
struct upb_fielddef {
  upb_def base;
3726

3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
  union {
    int64_t sint;
    uint64_t uint;
    double dbl;
    float flt;
    void *bytes;
  } defaultval;
  union {
    const upb_msgdef *def;  /* If !msg_is_symbolic. */
    char *name;             /* If msg_is_symbolic. */
  } msg;
  union {
    const upb_def *def;  /* If !subdef_is_symbolic. */
    char *name;          /* If subdef_is_symbolic. */
  } sub;  /* The msgdef or enumdef for this field, if upb_hassubdef(f). */
  bool subdef_is_symbolic;
  bool msg_is_symbolic;
  const upb_oneofdef *oneof;
  bool default_is_string;
  bool type_is_set_;     /* False until type is explicitly set. */
  bool is_extension_;
  bool lazy_;
  bool packed_;
  upb_intfmt_t intfmt;
  bool tagdelim;
  upb_fieldtype_t type_;
  upb_label_t label_;
  uint32_t number_;
  uint32_t selector_base;  /* Used to index into a upb::Handlers table. */
  uint32_t index_;
};
3758

3759 3760
extern const struct upb_refcounted_vtbl upb_fielddef_vtbl;

3761 3762 3763 3764
#define UPB_FIELDDEF_INIT(label, type, intfmt, tagdelim, is_extension, lazy,   \
                          packed, name, num, msgdef, subdef, selector_base,    \
                          index, defaultval, refs, ref2s)                      \
  {                                                                            \
3765 3766
    UPB_DEF_INIT(name, UPB_DEF_FIELD, &upb_fielddef_vtbl, refs, ref2s),        \
        defaultval, {msgdef}, {subdef}, NULL, false, false,                    \
3767 3768 3769
        type == UPB_TYPE_STRING || type == UPB_TYPE_BYTES, true, is_extension, \
        lazy, packed, intfmt, tagdelim, type, label, num, selector_base, index \
  }
3770 3771


3772
/* upb_msgdef *****************************************************************/
3773

3774 3775
struct upb_msgdef {
  upb_def base;
3776

3777 3778
  size_t selector_count;
  uint32_t submsg_field_count;
3779

3780 3781
  /* Tables for looking up fields by number and name. */
  upb_inttable itof;  /* int to field */
3782
  upb_strtable ntof;  /* name to field/oneof */
3783

3784
  /* Is this a map-entry message? */
3785
  bool map_entry;
3786

3787
  /* Whether this message has proto2 or proto3 semantics. */
3788
  upb_syntax_t syntax;
3789

3790 3791
  /* TODO(haberman): proper extension ranges (there can be multiple). */
};
3792

3793 3794
extern const struct upb_refcounted_vtbl upb_msgdef_vtbl;

3795 3796 3797
/* TODO: also support static initialization of the oneofs table. This will be
 * needed if we compile in descriptors that contain oneofs. */
#define UPB_MSGDEF_INIT(name, selector_count, submsg_field_count, itof, ntof, \
3798
                        map_entry, syntax, refs, ref2s)                       \
3799
  {                                                                           \
3800 3801
    UPB_DEF_INIT(name, UPB_DEF_MSG, &upb_fielddef_vtbl, refs, ref2s),         \
        selector_count, submsg_field_count, itof, ntof, map_entry, syntax     \
3802
  }
3803 3804


3805
/* upb_enumdef ****************************************************************/
3806

3807 3808
struct upb_enumdef {
  upb_def base;
3809

3810 3811 3812 3813
  upb_strtable ntoi;
  upb_inttable iton;
  int32_t defaultval;
};
3814

3815 3816
extern const struct upb_refcounted_vtbl upb_enumdef_vtbl;

3817
#define UPB_ENUMDEF_INIT(name, ntoi, iton, defaultval, refs, ref2s) \
3818 3819
  { UPB_DEF_INIT(name, UPB_DEF_ENUM, &upb_enumdef_vtbl, refs, ref2s), ntoi,    \
    iton, defaultval }
3820 3821


3822
/* upb_oneofdef ***************************************************************/
3823

3824
struct upb_oneofdef {
3825
  upb_refcounted base;
3826

3827
  const char *name;
3828 3829 3830 3831
  upb_strtable ntof;
  upb_inttable itof;
  const upb_msgdef *parent;
};
3832

3833 3834
extern const struct upb_refcounted_vtbl upb_oneofdef_vtbl;

3835
#define UPB_ONEOFDEF_INIT(name, ntof, itof, refs, ref2s) \
3836
  { UPB_REFCOUNT_INIT(&upb_oneofdef_vtbl, refs, ref2s), name, ntof, itof }
3837 3838


3839
/* upb_symtab *****************************************************************/
3840

3841 3842
struct upb_symtab {
  upb_refcounted base;
3843

3844 3845
  upb_strtable symtab;
};
3846

3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
struct upb_filedef {
  upb_refcounted base;

  const char *name;
  const char *package;
  upb_syntax_t syntax;

  upb_inttable defs;
  upb_inttable deps;
};
3857

3858 3859
extern const struct upb_refcounted_vtbl upb_filedef_vtbl;

3860 3861
#endif  /* UPB_STATICINIT_H_ */
/*
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
** upb::Handlers (upb_handlers)
**
** A upb_handlers is like a virtual table for a upb_msgdef.  Each field of the
** message can have associated functions that will be called when we are
** parsing or visiting a stream of data.  This is similar to how handlers work
** in SAX (the Simple API for XML).
**
** The handlers have no idea where the data is coming from, so a single set of
** handlers could be used with two completely different data sources (for
** example, a parser and a visitor over in-memory objects).  This decoupling is
** the most important feature of upb, because it allows parsers and serializers
** to be highly reusable.
**
** This is a mixed C/C++ interface that offers a full API to both languages.
** See the top-level README for more information.
*/
3878

3879 3880
#ifndef UPB_HANDLERS_H
#define UPB_HANDLERS_H
3881 3882


3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
#ifdef __cplusplus
namespace upb {
class BufferHandle;
class BytesHandler;
class HandlerAttributes;
class Handlers;
template <class T> class Handler;
template <class T> struct CanonicalType;
}  /* namespace upb */
#endif
3893

3894 3895 3896 3897 3898
UPB_DECLARE_TYPE(upb::BufferHandle, upb_bufhandle)
UPB_DECLARE_TYPE(upb::BytesHandler, upb_byteshandler)
UPB_DECLARE_TYPE(upb::HandlerAttributes, upb_handlerattr)
UPB_DECLARE_DERIVED_TYPE(upb::Handlers, upb::RefCounted,
                         upb_handlers, upb_refcounted)
3899

3900 3901 3902 3903 3904 3905 3906 3907
/* The maximum depth that the handler graph can have.  This is a resource limit
 * for the C stack since we sometimes need to recursively traverse the graph.
 * Cycles are ok; the traversal will stop when it detects a cycle, but we must
 * hit the cycle before the maximum depth is reached.
 *
 * If having a single static limit is too inflexible, we can add another variant
 * of Handlers::Freeze that allows specifying this as a parameter. */
#define UPB_MAX_HANDLER_DEPTH 64
3908

3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
/* All the different types of handlers that can be registered.
 * Only needed for the advanced functions in upb::Handlers. */
typedef enum {
  UPB_HANDLER_INT32,
  UPB_HANDLER_INT64,
  UPB_HANDLER_UINT32,
  UPB_HANDLER_UINT64,
  UPB_HANDLER_FLOAT,
  UPB_HANDLER_DOUBLE,
  UPB_HANDLER_BOOL,
  UPB_HANDLER_STARTSTR,
  UPB_HANDLER_STRING,
  UPB_HANDLER_ENDSTR,
  UPB_HANDLER_STARTSUBMSG,
  UPB_HANDLER_ENDSUBMSG,
  UPB_HANDLER_STARTSEQ,
  UPB_HANDLER_ENDSEQ
} upb_handlertype_t;
3927

3928
#define UPB_HANDLER_MAX (UPB_HANDLER_ENDSEQ+1)
3929

3930
#define UPB_BREAK NULL
3931

3932 3933 3934
/* A convenient definition for when no closure is needed. */
extern char _upb_noclosure;
#define UPB_NO_CLOSURE &_upb_noclosure
3935

3936 3937 3938
/* A selector refers to a specific field handler in the Handlers object
 * (for example: the STARTSUBMSG handler for field "field15"). */
typedef int32_t upb_selector_t;
3939

3940
UPB_BEGIN_EXTERN_C
3941

3942 3943 3944 3945 3946 3947 3948
/* Forward-declares for C inline accessors.  We need to declare these here
 * so we can "friend" them in the class declarations in C++. */
UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h,
                                             upb_selector_t s);
UPB_INLINE const void *upb_handlerattr_handlerdata(const upb_handlerattr *attr);
UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h,
                                                   upb_selector_t s);
3949

3950 3951 3952 3953 3954 3955 3956 3957
UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h);
UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj,
                                     const void *type);
UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf,
                                     size_t ofs);
UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h);
UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h);
UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h);
3958

3959
UPB_END_EXTERN_C
3960 3961


3962 3963 3964 3965
/* Static selectors for upb::Handlers. */
#define UPB_STARTMSG_SELECTOR 0
#define UPB_ENDMSG_SELECTOR 1
#define UPB_STATIC_SELECTOR_COUNT 2
3966

3967 3968 3969 3970
/* Static selectors for upb::BytesHandler. */
#define UPB_STARTSTR_SELECTOR 0
#define UPB_STRING_SELECTOR 1
#define UPB_ENDSTR_SELECTOR 2
3971

3972
typedef void upb_handlerfree(void *d);
3973

3974
#ifdef __cplusplus
3975

3976 3977 3978 3979 3980
/* A set of attributes that accompanies a handler's function pointer. */
class upb::HandlerAttributes {
 public:
  HandlerAttributes();
  ~HandlerAttributes();
3981

3982 3983 3984 3985 3986
  /* Sets the handler data that will be passed as the second parameter of the
   * handler.  To free this pointer when the handlers are freed, call
   * Handlers::AddCleanup(). */
  bool SetHandlerData(const void *handler_data);
  const void* handler_data() const;
3987

3988 3989 3990 3991 3992 3993
  /* Use this to specify the type of the closure.  This will be checked against
   * all other closure types for handler that use the same closure.
   * Registration will fail if this does not match all other non-NULL closure
   * types. */
  bool SetClosureType(const void *closure_type);
  const void* closure_type() const;
3994

3995 3996 3997 3998 3999 4000
  /* Use this to specify the type of the returned closure.  Only used for
   * Start*{String,SubMessage,Sequence} handlers.  This must match the closure
   * type of any handlers that use it (for example, the StringBuf handler must
   * match the closure returned from StartString). */
  bool SetReturnClosureType(const void *return_closure_type);
  const void* return_closure_type() const;
4001

4002 4003 4004 4005 4006
  /* Set to indicate that the handler always returns "ok" (either "true" or a
   * non-NULL closure).  This is a hint that can allow code generators to
   * generate more efficient code. */
  bool SetAlwaysOk(bool always_ok);
  bool always_ok() const;
4007

4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
 private:
  friend UPB_INLINE const void * ::upb_handlerattr_handlerdata(
      const upb_handlerattr *attr);
#else
struct upb_handlerattr {
#endif
  const void *handler_data_;
  const void *closure_type_;
  const void *return_closure_type_;
  bool alwaysok_;
};
4019

4020
#define UPB_HANDLERATTR_INITIALIZER {NULL, NULL, NULL, false}
4021

4022 4023
typedef struct {
  upb_func *func;
4024

4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
  /* It is wasteful to include the entire attributes here:
   *
   * * Some of the information is redundant (like storing the closure type
   *   separately for each handler that must match).
   * * Some of the info is only needed prior to freeze() (like closure types).
   * * alignment padding wastes a lot of space for alwaysok_.
   *
   * If/when the size and locality of handlers is an issue, we can optimize this
   * not to store the entire attr like this.  We do not expose the table's
   * layout to allow this optimization in the future. */
  upb_handlerattr attr;
} upb_handlers_tabent;
4037

4038
#ifdef __cplusplus
4039

4040 4041 4042 4043 4044 4045 4046
/* Extra information about a buffer that is passed to a StringBuf handler.
 * TODO(haberman): allow the handle to be pinned so that it will outlive
 * the handler invocation. */
class upb::BufferHandle {
 public:
  BufferHandle();
  ~BufferHandle();
4047

4048 4049 4050 4051
  /* The beginning of the buffer.  This may be different than the pointer
   * passed to a StringBuf handler because the handler may receive data
   * that is from the middle or end of a larger buffer. */
  const char* buffer() const;
4052

4053 4054 4055
  /* The offset within the attached object where this buffer begins.  Only
   * meaningful if there is an attached object. */
  size_t object_offset() const;
4056

4057 4058 4059
  /* Note that object_offset is the offset of "buf" within the attached
   * object. */
  void SetBuffer(const char* buf, size_t object_offset);
4060

4061 4062 4063 4064
  /* The BufferHandle can have an "attached object", which can be used to
   * tunnel through a pointer to the buffer's underlying representation. */
  template <class T>
  void SetAttachedObject(const T* obj);
4065

4066 4067 4068
  /* Returns NULL if the attached object is not of this type. */
  template <class T>
  const T* GetAttachedObject() const;
4069

4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
 private:
  friend UPB_INLINE void ::upb_bufhandle_init(upb_bufhandle *h);
  friend UPB_INLINE void ::upb_bufhandle_setobj(upb_bufhandle *h,
                                                const void *obj,
                                                const void *type);
  friend UPB_INLINE void ::upb_bufhandle_setbuf(upb_bufhandle *h,
                                                const char *buf, size_t ofs);
  friend UPB_INLINE const void* ::upb_bufhandle_obj(const upb_bufhandle *h);
  friend UPB_INLINE const void* ::upb_bufhandle_objtype(
      const upb_bufhandle *h);
  friend UPB_INLINE const char* ::upb_bufhandle_buf(const upb_bufhandle *h);
#else
struct upb_bufhandle {
#endif
  const char *buf_;
  const void *obj_;
  const void *objtype_;
  size_t objofs_;
};
4089

4090
#ifdef __cplusplus
4091

4092 4093 4094 4095
/* A upb::Handlers object represents the set of handlers associated with a
 * message in the graph of messages.  You can think of it as a big virtual
 * table with functions corresponding to all the events that can fire while
 * parsing or visiting a message of a specific type.
4096
 *
4097 4098 4099
 * Any handlers that are not set behave as if they had successfully consumed
 * the value.  Any unset Start* handlers will propagate their closure to the
 * inner frame.
4100
 *
4101 4102 4103 4104 4105 4106
 * The easiest way to create the *Handler objects needed by the Set* methods is
 * with the UpbBind() and UpbMakeHandler() macros; see below. */
class upb::Handlers {
 public:
  typedef upb_selector_t Selector;
  typedef upb_handlertype_t Type;
4107

4108 4109 4110 4111 4112 4113 4114
  typedef Handler<void *(*)(void *, const void *)> StartFieldHandler;
  typedef Handler<bool (*)(void *, const void *)> EndFieldHandler;
  typedef Handler<bool (*)(void *, const void *)> StartMessageHandler;
  typedef Handler<bool (*)(void *, const void *, Status*)> EndMessageHandler;
  typedef Handler<void *(*)(void *, const void *, size_t)> StartStringHandler;
  typedef Handler<size_t (*)(void *, const void *, const char *, size_t,
                             const BufferHandle *)> StringHandler;
4115

4116 4117 4118
  template <class T> struct ValueHandler {
    typedef Handler<bool(*)(void *, const void *, T)> H;
  };
4119

4120 4121 4122 4123 4124 4125 4126
  typedef ValueHandler<int32_t>::H     Int32Handler;
  typedef ValueHandler<int64_t>::H     Int64Handler;
  typedef ValueHandler<uint32_t>::H    UInt32Handler;
  typedef ValueHandler<uint64_t>::H    UInt64Handler;
  typedef ValueHandler<float>::H       FloatHandler;
  typedef ValueHandler<double>::H      DoubleHandler;
  typedef ValueHandler<bool>::H        BoolHandler;
4127

4128 4129 4130
  /* Any function pointer can be converted to this and converted back to its
   * correct type. */
  typedef void GenericFunction();
4131

4132
  typedef void HandlersCallback(const void *closure, upb_handlers *h);
4133

4134 4135 4136
  /* Returns a new handlers object for the given frozen msgdef.
   * Returns NULL if memory allocation failed. */
  static reffed_ptr<Handlers> New(const MessageDef *m);
4137

4138 4139 4140 4141 4142 4143 4144 4145
  /* Convenience function for registering a graph of handlers that mirrors the
   * graph of msgdefs for some message.  For "m" and all its children a new set
   * of handlers will be created and the given callback will be invoked,
   * allowing the client to register handlers for this message.  Note that any
   * subhandlers set by the callback will be overwritten. */
  static reffed_ptr<const Handlers> NewFrozen(const MessageDef *m,
                                              HandlersCallback *callback,
                                              const void *closure);
4146

4147 4148
  /* Functionality from upb::RefCounted. */
  UPB_REFCOUNTED_CPPMETHODS
4149

4150 4151 4152 4153 4154 4155 4156
  /* All handler registration functions return bool to indicate success or
   * failure; details about failures are stored in this status object.  If a
   * failure does occur, it must be cleared before the Handlers are frozen,
   * otherwise the freeze() operation will fail.  The functions may *only* be
   * used while the Handlers are mutable. */
  const Status* status();
  void ClearError();
4157

4158 4159 4160 4161
  /* Call to freeze these Handlers.  Requires that any SubHandlers are already
   * frozen.  For cycles, you must use the static version below and freeze the
   * whole graph at once. */
  bool Freeze(Status* s);
4162

4163 4164
  /* Freezes the given set of handlers.  You may not freeze a handler without
   * also freezing any handlers they point to. */
4165 4166 4167
  static bool Freeze(Handlers*const* handlers, int n, Status* s);
  static bool Freeze(const std::vector<Handlers*>& handlers, Status* s);

4168
  /* Returns the msgdef associated with this handlers object. */
4169 4170
  const MessageDef* message_def() const;

4171 4172 4173
  /* Adds the given pointer and function to the list of cleanup functions that
   * will be run when these handlers are freed.  If this pointer has previously
   * been registered, the function returns false and does nothing. */
4174 4175
  bool AddCleanup(void *ptr, upb_handlerfree *cleanup);

4176 4177 4178 4179 4180 4181 4182 4183
  /* Sets the startmsg handler for the message, which is defined as follows:
   *
   *   bool startmsg(MyType* closure) {
   *     // Called when the message begins.  Returns true if processing should
   *     // continue.
   *     return true;
   *   }
   */
4184 4185
  bool SetStartMessageHandler(const StartMessageHandler& handler);

4186 4187 4188 4189 4190 4191 4192 4193
  /* Sets the endmsg handler for the message, which is defined as follows:
   *
   *   bool endmsg(MyType* closure, upb_status *status) {
   *     // Called when processing of this message ends, whether in success or
   *     // failure.  "status" indicates the final status of processing, and
   *     // can also be modified in-place to update the final status.
   *   }
   */
4194 4195
  bool SetEndMessageHandler(const EndMessageHandler& handler);

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
  /* Sets the value handler for the given field, which is defined as follows
   * (this is for an int32 field; other field types will pass their native
   * C/C++ type for "val"):
   *
   *   bool OnValue(MyClosure* c, const MyHandlerData* d, int32_t val) {
   *     // Called when the field's value is encountered.  "d" contains
   *     // whatever data was bound to this field when it was registered.
   *     // Returns true if processing should continue.
   *     return true;
   *   }
   *
   *   handers->SetInt32Handler(f, UpbBind(OnValue, new MyHandlerData(...)));
   *
   * The value type must exactly match f->type().
   * For example, a handler that takes an int32_t parameter may only be used for
   * fields of type UPB_TYPE_INT32 and UPB_TYPE_ENUM.
   *
   * Returns false if the handler failed to register; in this case the cleanup
   * handler (if any) will be called immediately.
   */
4216 4217 4218 4219 4220 4221 4222 4223
  bool SetInt32Handler (const FieldDef* f,  const Int32Handler& h);
  bool SetInt64Handler (const FieldDef* f,  const Int64Handler& h);
  bool SetUInt32Handler(const FieldDef* f, const UInt32Handler& h);
  bool SetUInt64Handler(const FieldDef* f, const UInt64Handler& h);
  bool SetFloatHandler (const FieldDef* f,  const FloatHandler& h);
  bool SetDoubleHandler(const FieldDef* f, const DoubleHandler& h);
  bool SetBoolHandler  (const FieldDef* f,   const BoolHandler& h);

4224 4225 4226 4227
  /* Like the previous, but templated on the type on the value (ie. int32).
   * This is mostly useful to call from other templates.  To call this you must
   * specify the template parameter explicitly, ie:
   *   h->SetValueHandler<T>(f, UpbBind(MyHandler<T>, MyData)); */
4228 4229 4230 4231 4232
  template <class T>
  bool SetValueHandler(
      const FieldDef *f,
      const typename ValueHandler<typename CanonicalType<T>::Type>::H& handler);

4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
  /* Sets handlers for a string field, which are defined as follows:
   *
   *   MySubClosure* startstr(MyClosure* c, const MyHandlerData* d,
   *                          size_t size_hint) {
   *     // Called when a string value begins.  The return value indicates the
   *     // closure for the string.  "size_hint" indicates the size of the
   *     // string if it is known, however if the string is length-delimited
   *     // and the end-of-string is not available size_hint will be zero.
   *     // This case is indistinguishable from the case where the size is
   *     // known to be zero.
   *     //
   *     // TODO(haberman): is it important to distinguish these cases?
   *     // If we had ssize_t as a type we could make -1 "unknown", but
   *     // ssize_t is POSIX (not ANSI) and therefore less portable.
   *     // In practice I suspect it won't be important to distinguish.
   *     return closure;
   *   }
   *
   *   size_t str(MyClosure* closure, const MyHandlerData* d,
   *              const char *str, size_t len) {
   *     // Called for each buffer of string data; the multiple physical buffers
   *     // are all part of the same logical string.  The return value indicates
   *     // how many bytes were consumed.  If this number is less than "len",
   *     // this will also indicate that processing should be halted for now,
   *     // like returning false or UPB_BREAK from any other callback.  If
   *     // number is greater than "len", the excess bytes will be skipped over
   *     // and not passed to the callback.
   *     return len;
   *   }
   *
   *   bool endstr(MyClosure* c, const MyHandlerData* d) {
   *     // Called when a string value ends.  Return value indicates whether
   *     // processing should continue.
   *     return true;
   *   }
   */
4269 4270 4271 4272
  bool SetStartStringHandler(const FieldDef* f, const StartStringHandler& h);
  bool SetStringHandler(const FieldDef* f, const StringHandler& h);
  bool SetEndStringHandler(const FieldDef* f, const EndFieldHandler& h);

4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
  /* Sets the startseq handler, which is defined as follows:
   *
   *   MySubClosure *startseq(MyClosure* c, const MyHandlerData* d) {
   *     // Called when a sequence (repeated field) begins.  The returned
   *     // pointer indicates the closure for the sequence (or UPB_BREAK
   *     // to interrupt processing).
   *     return closure;
   *   }
   *
   *   h->SetStartSequenceHandler(f, UpbBind(startseq, new MyHandlerData(...)));
   *
   * Returns "false" if "f" does not belong to this message or is not a
   * repeated field.
   */
4287 4288
  bool SetStartSequenceHandler(const FieldDef* f, const StartFieldHandler& h);

4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
  /* Sets the startsubmsg handler for the given field, which is defined as
   * follows:
   *
   *   MySubClosure* startsubmsg(MyClosure* c, const MyHandlerData* d) {
   *     // Called when a submessage begins.  The returned pointer indicates the
   *     // closure for the sequence (or UPB_BREAK to interrupt processing).
   *     return closure;
   *   }
   *
   *   h->SetStartSubMessageHandler(f, UpbBind(startsubmsg,
   *                                           new MyHandlerData(...)));
   *
   * Returns "false" if "f" does not belong to this message or is not a
   * submessage/group field.
   */
4304 4305
  bool SetStartSubMessageHandler(const FieldDef* f, const StartFieldHandler& h);

4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
  /* Sets the endsubmsg handler for the given field, which is defined as
   * follows:
   *
   *   bool endsubmsg(MyClosure* c, const MyHandlerData* d) {
   *     // Called when a submessage ends.  Returns true to continue processing.
   *     return true;
   *   }
   *
   * Returns "false" if "f" does not belong to this message or is not a
   * submessage/group field.
   */
4317 4318
  bool SetEndSubMessageHandler(const FieldDef *f, const EndFieldHandler &h);

4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
  /* Starts the endsubseq handler for the given field, which is defined as
   * follows:
   *
   *   bool endseq(MyClosure* c, const MyHandlerData* d) {
   *     // Called when a sequence ends.  Returns true continue processing.
   *     return true;
   *   }
   *
   * Returns "false" if "f" does not belong to this message or is not a
   * repeated field.
   */
4330 4331
  bool SetEndSequenceHandler(const FieldDef* f, const EndFieldHandler& h);

4332 4333
  /* Sets or gets the object that specifies handlers for the given field, which
   * must be a submessage or group.  Returns NULL if no handlers are set. */
4334 4335 4336
  bool SetSubHandlers(const FieldDef* f, const Handlers* sub);
  const Handlers* GetSubHandlers(const FieldDef* f) const;

4337 4338
  /* Equivalent to GetSubHandlers, but takes the STARTSUBMSG selector for the
   * field. */
4339 4340
  const Handlers* GetSubHandlers(Selector startsubmsg) const;

4341 4342 4343 4344 4345 4346
  /* A selector refers to a specific field handler in the Handlers object
   * (for example: the STARTSUBMSG handler for field "field15").
   * On success, returns true and stores the selector in "s".
   * If the FieldDef or Type are invalid, returns false.
   * The returned selector is ONLY valid for Handlers whose MessageDef
   * contains this FieldDef. */
4347 4348
  static bool GetSelector(const FieldDef* f, Type type, Selector* s);

4349
  /* Given a START selector of any kind, returns the corresponding END selector. */
4350 4351
  static Selector GetEndSelector(Selector start_selector);

4352 4353
  /* Returns the function pointer for this handler.  It is the client's
   * responsibility to cast to the correct function type before calling it. */
4354 4355
  GenericFunction* GetHandler(Selector selector);

4356
  /* Sets the given attributes to the attributes for this selector. */
4357 4358
  bool GetAttributes(Selector selector, HandlerAttributes* attr);

4359
  /* Returns the handler data that was registered with this handler. */
4360 4361
  const void* GetHandlerData(Selector selector);

4362 4363 4364 4365 4366
  /* Could add any of the following functions as-needed, with some minor
   * implementation changes:
   *
   * const FieldDef* GetFieldDef(Selector selector);
   * static bool IsSequence(Selector selector); */
4367 4368

 private:
4369
  UPB_DISALLOW_POD_OPS(Handlers, upb::Handlers)
4370 4371 4372 4373 4374

  friend UPB_INLINE GenericFunction *::upb_handlers_gethandler(
      const upb_handlers *h, upb_selector_t s);
  friend UPB_INLINE const void *::upb_handlers_gethandlerdata(
      const upb_handlers *h, upb_selector_t s);
4375 4376 4377 4378
#else
struct upb_handlers {
#endif
  upb_refcounted base;
4379 4380 4381 4382 4383

  const upb_msgdef *msg;
  const upb_handlers **sub;
  const void *top_closure_type;
  upb_inttable cleanup_;
4384 4385 4386
  upb_status status_;  /* Used only when mutable. */
  upb_handlers_tabent table[1];  /* Dynamically-sized field handler array. */
};
4387 4388 4389 4390 4391

#ifdef __cplusplus

namespace upb {

4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
/* Convenience macros for creating a Handler object that is wrapped with a
 * type-safe wrapper function that converts the "void*" parameters/returns
 * of the underlying C API into nice C++ function.
 *
 * Sample usage:
 *   void OnValue1(MyClosure* c, const MyHandlerData* d, int32_t val) {
 *     // do stuff ...
 *   }
 *
 *   // Handler that doesn't need any data bound to it.
 *   void OnValue2(MyClosure* c, int32_t val) {
 *     // do stuff ...
 *   }
 *
 *   // Handler that returns bool so it can return failure if necessary.
 *   bool OnValue3(MyClosure* c, int32_t val) {
 *     // do stuff ...
 *     return ok;
 *   }
 *
 *   // Member function handler.
 *   class MyClosure {
 *    public:
 *     void OnValue(int32_t val) {
 *       // do stuff ...
 *     }
 *   };
 *
 *   // Takes ownership of the MyHandlerData.
 *   handlers->SetInt32Handler(f1, UpbBind(OnValue1, new MyHandlerData(...)));
 *   handlers->SetInt32Handler(f2, UpbMakeHandler(OnValue2));
 *   handlers->SetInt32Handler(f1, UpbMakeHandler(OnValue3));
 *   handlers->SetInt32Handler(f2, UpbMakeHandler(&MyClosure::OnValue));
 */
4426 4427 4428

#ifdef UPB_CXX11

4429 4430
/* In C++11, the "template" disambiguator can appear even outside templates,
 * so all calls can safely use this pair of macros. */
4431 4432 4433

#define UpbMakeHandler(f) upb::MatchFunc(f).template GetFunc<f>()

4434
/* We have to be careful to only evaluate "d" once. */
4435 4436 4437 4438
#define UpbBind(f, d) upb::MatchFunc(f).template GetFunc<f>((d))

#else

4439 4440
/* Prior to C++11, the "template" disambiguator may only appear inside a
 * template, so the regular macro must not use "template" */
4441 4442 4443 4444 4445

#define UpbMakeHandler(f) upb::MatchFunc(f).GetFunc<f>()

#define UpbBind(f, d) upb::MatchFunc(f).GetFunc<f>((d))

4446
#endif  /* UPB_CXX11 */
4447

4448 4449 4450
/* This macro must be used in C++98 for calls from inside a template.  But we
 * define this variant in all cases; code that wants to be compatible with both
 * C++98 and C++11 should always use this macro when calling from a template. */
4451 4452
#define UpbMakeHandlerT(f) upb::MatchFunc(f).template GetFunc<f>()

4453
/* We have to be careful to only evaluate "d" once. */
4454 4455
#define UpbBindT(f, d) upb::MatchFunc(f).template GetFunc<f>((d))

4456 4457 4458
/* Handler: a struct that contains the (handler, data, deleter) tuple that is
 * used to register all handlers.  Users can Make() these directly but it's
 * more convenient to use the UpbMakeHandler/UpbBind macros above. */
4459 4460
template <class T> class Handler {
 public:
4461
  /* The underlying, handler function signature that upb uses internally. */
4462 4463
  typedef T FuncPtr;

4464
  /* Intentionally implicit. */
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
  template <class F> Handler(F func);
  ~Handler();

 private:
  void AddCleanup(Handlers* h) const {
    if (cleanup_func_) {
      bool ok = h->AddCleanup(cleanup_data_, cleanup_func_);
      UPB_ASSERT_VAR(ok, ok);
    }
  }

4476
  UPB_DISALLOW_COPY_AND_ASSIGN(Handler)
4477 4478 4479 4480 4481 4482 4483 4484
  friend class Handlers;
  FuncPtr handler_;
  mutable HandlerAttributes attr_;
  mutable bool registered_;
  void *cleanup_data_;
  upb_handlerfree *cleanup_func_;
};

4485
}  /* namespace upb */
4486

4487
#endif  /* __cplusplus */
4488 4489 4490

UPB_BEGIN_EXTERN_C

4491
/* Native C API. */
4492

4493
/* Handler function typedefs. */
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
typedef bool upb_startmsg_handlerfunc(void *c, const void*);
typedef bool upb_endmsg_handlerfunc(void *c, const void *, upb_status *status);
typedef void* upb_startfield_handlerfunc(void *c, const void *hd);
typedef bool upb_endfield_handlerfunc(void *c, const void *hd);
typedef bool upb_int32_handlerfunc(void *c, const void *hd, int32_t val);
typedef bool upb_int64_handlerfunc(void *c, const void *hd, int64_t val);
typedef bool upb_uint32_handlerfunc(void *c, const void *hd, uint32_t val);
typedef bool upb_uint64_handlerfunc(void *c, const void *hd, uint64_t val);
typedef bool upb_float_handlerfunc(void *c, const void *hd, float val);
typedef bool upb_double_handlerfunc(void *c, const void *hd, double val);
typedef bool upb_bool_handlerfunc(void *c, const void *hd, bool val);
typedef void *upb_startstr_handlerfunc(void *c, const void *hd,
                                       size_t size_hint);
typedef size_t upb_string_handlerfunc(void *c, const void *hd, const char *buf,
                                      size_t n, const upb_bufhandle* handle);

4510
/* upb_bufhandle */
4511 4512
size_t upb_bufhandle_objofs(const upb_bufhandle *h);

4513
/* upb_handlerattr */
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
void upb_handlerattr_init(upb_handlerattr *attr);
void upb_handlerattr_uninit(upb_handlerattr *attr);

bool upb_handlerattr_sethandlerdata(upb_handlerattr *attr, const void *hd);
bool upb_handlerattr_setclosuretype(upb_handlerattr *attr, const void *type);
const void *upb_handlerattr_closuretype(const upb_handlerattr *attr);
bool upb_handlerattr_setreturnclosuretype(upb_handlerattr *attr,
                                          const void *type);
const void *upb_handlerattr_returnclosuretype(const upb_handlerattr *attr);
bool upb_handlerattr_setalwaysok(upb_handlerattr *attr, bool alwaysok);
bool upb_handlerattr_alwaysok(const upb_handlerattr *attr);

UPB_INLINE const void *upb_handlerattr_handlerdata(
    const upb_handlerattr *attr) {
  return attr->handler_data_;
}

4531
/* upb_handlers */
4532 4533 4534 4535 4536 4537 4538
typedef void upb_handlers_callback(const void *closure, upb_handlers *h);
upb_handlers *upb_handlers_new(const upb_msgdef *m,
                               const void *owner);
const upb_handlers *upb_handlers_newfrozen(const upb_msgdef *m,
                                           const void *owner,
                                           upb_handlers_callback *callback,
                                           const void *closure);
4539 4540 4541

/* Include refcounted methods like upb_handlers_ref(). */
UPB_REFCOUNTED_CMETHODS(upb_handlers, upb_handlers_upcast)
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611

const upb_status *upb_handlers_status(upb_handlers *h);
void upb_handlers_clearerr(upb_handlers *h);
const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h);
bool upb_handlers_addcleanup(upb_handlers *h, void *p, upb_handlerfree *hfree);

bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handlerfunc *func,
                              upb_handlerattr *attr);
bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handlerfunc *func,
                            upb_handlerattr *attr);
bool upb_handlers_setint32(upb_handlers *h, const upb_fielddef *f,
                           upb_int32_handlerfunc *func, upb_handlerattr *attr);
bool upb_handlers_setint64(upb_handlers *h, const upb_fielddef *f,
                           upb_int64_handlerfunc *func, upb_handlerattr *attr);
bool upb_handlers_setuint32(upb_handlers *h, const upb_fielddef *f,
                            upb_uint32_handlerfunc *func,
                            upb_handlerattr *attr);
bool upb_handlers_setuint64(upb_handlers *h, const upb_fielddef *f,
                            upb_uint64_handlerfunc *func,
                            upb_handlerattr *attr);
bool upb_handlers_setfloat(upb_handlers *h, const upb_fielddef *f,
                           upb_float_handlerfunc *func, upb_handlerattr *attr);
bool upb_handlers_setdouble(upb_handlers *h, const upb_fielddef *f,
                            upb_double_handlerfunc *func,
                            upb_handlerattr *attr);
bool upb_handlers_setbool(upb_handlers *h, const upb_fielddef *f,
                          upb_bool_handlerfunc *func,
                          upb_handlerattr *attr);
bool upb_handlers_setstartstr(upb_handlers *h, const upb_fielddef *f,
                              upb_startstr_handlerfunc *func,
                              upb_handlerattr *attr);
bool upb_handlers_setstring(upb_handlers *h, const upb_fielddef *f,
                            upb_string_handlerfunc *func,
                            upb_handlerattr *attr);
bool upb_handlers_setendstr(upb_handlers *h, const upb_fielddef *f,
                            upb_endfield_handlerfunc *func,
                            upb_handlerattr *attr);
bool upb_handlers_setstartseq(upb_handlers *h, const upb_fielddef *f,
                              upb_startfield_handlerfunc *func,
                              upb_handlerattr *attr);
bool upb_handlers_setstartsubmsg(upb_handlers *h, const upb_fielddef *f,
                                 upb_startfield_handlerfunc *func,
                                 upb_handlerattr *attr);
bool upb_handlers_setendsubmsg(upb_handlers *h, const upb_fielddef *f,
                               upb_endfield_handlerfunc *func,
                               upb_handlerattr *attr);
bool upb_handlers_setendseq(upb_handlers *h, const upb_fielddef *f,
                            upb_endfield_handlerfunc *func,
                            upb_handlerattr *attr);

bool upb_handlers_setsubhandlers(upb_handlers *h, const upb_fielddef *f,
                                 const upb_handlers *sub);
const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h,
                                                const upb_fielddef *f);
const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h,
                                                    upb_selector_t sel);

UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h,
                                             upb_selector_t s) {
  return (upb_func *)h->table[s].func;
}

bool upb_handlers_getattr(const upb_handlers *h, upb_selector_t s,
                          upb_handlerattr *attr);

UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h,
                                                   upb_selector_t s) {
  return upb_handlerattr_handlerdata(&h->table[s].attr);
}

4612 4613 4614 4615 4616 4617 4618 4619
#ifdef __cplusplus

/* Handler types for single fields.
 * Right now we only have one for TYPE_BYTES but ones for other types
 * should follow.
 *
 * These follow the same handlers protocol for fields of a message. */
class upb::BytesHandler {
4620 4621 4622
 public:
  BytesHandler();
  ~BytesHandler();
4623 4624 4625
#else
struct upb_byteshandler {
#endif
4626
  upb_handlers_tabent table[3];
4627
};
4628 4629 4630

void upb_byteshandler_init(upb_byteshandler *h);

4631 4632 4633 4634
/* Caller must ensure that "d" outlives the handlers.
 * TODO(haberman): should this have a "freeze" operation?  It's not necessary
 * for memory management, but could be useful to force immutability and provide
 * a convenient moment to verify that all registration succeeded. */
4635 4636 4637 4638 4639 4640 4641
bool upb_byteshandler_setstartstr(upb_byteshandler *h,
                                  upb_startstr_handlerfunc *func, void *d);
bool upb_byteshandler_setstring(upb_byteshandler *h,
                                upb_string_handlerfunc *func, void *d);
bool upb_byteshandler_setendstr(upb_byteshandler *h,
                                upb_endfield_handlerfunc *func, void *d);

4642
/* "Static" methods */
4643 4644 4645 4646 4647 4648 4649 4650
bool upb_handlers_freeze(upb_handlers *const *handlers, int n, upb_status *s);
upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f);
bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type,
                              upb_selector_t *s);
UPB_INLINE upb_selector_t upb_handlers_getendselector(upb_selector_t start) {
  return start + 1;
}

4651
/* Internal-only. */
4652 4653 4654 4655 4656 4657
uint32_t upb_handlers_selectorbaseoffset(const upb_fielddef *f);
uint32_t upb_handlers_selectorcount(const upb_fielddef *f);

UPB_END_EXTERN_C

/*
4658 4659 4660
** Inline definitions for handlers.h, which are particularly long and a bit
** tricky.
*/
4661 4662 4663 4664 4665 4666

#ifndef UPB_HANDLERS_INL_H_
#define UPB_HANDLERS_INL_H_

#include <limits.h>

4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
/* C inline methods. */

/* upb_bufhandle */
UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h) {
  h->obj_ = NULL;
  h->objtype_ = NULL;
  h->buf_ = NULL;
  h->objofs_ = 0;
}
UPB_INLINE void upb_bufhandle_uninit(upb_bufhandle *h) {
  UPB_UNUSED(h);
}
UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj,
                                     const void *type) {
  h->obj_ = obj;
  h->objtype_ = type;
}
UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf,
                                     size_t ofs) {
  h->buf_ = buf;
  h->objofs_ = ofs;
}
UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h) {
  return h->obj_;
}
UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h) {
  return h->objtype_;
}
UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h) {
  return h->buf_;
}


#ifdef __cplusplus

/* Type detection and typedefs for integer types.
 * For platforms where there are multiple 32-bit or 64-bit types, we need to be
 * able to enumerate them so we can properly create overloads for all variants.
 *
 * If any platform existed where there were three integer types with the same
 * size, this would have to become more complicated.  For example, short, int,
 * and long could all be 32-bits.  Even more diabolically, short, int, long,
 * and long long could all be 64 bits and still be standard-compliant.
 * However, few platforms are this strange, and it's unlikely that upb will be
 * used on the strangest ones. */

/* Can't count on stdint.h limits like INT32_MAX, because in C++ these are
 * only defined when __STDC_LIMIT_MACROS are defined before the *first* include
 * of stdint.h.  We can't guarantee that someone else didn't include these first
 * without defining __STDC_LIMIT_MACROS. */
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
#define UPB_INT32_MAX 0x7fffffffLL
#define UPB_INT32_MIN (-UPB_INT32_MAX - 1)
#define UPB_INT64_MAX 0x7fffffffffffffffLL
#define UPB_INT64_MIN (-UPB_INT64_MAX - 1)

#if INT_MAX == UPB_INT32_MAX && INT_MIN == UPB_INT32_MIN
#define UPB_INT_IS_32BITS 1
#endif

#if LONG_MAX == UPB_INT32_MAX && LONG_MIN == UPB_INT32_MIN
#define UPB_LONG_IS_32BITS 1
#endif

#if LONG_MAX == UPB_INT64_MAX && LONG_MIN == UPB_INT64_MIN
#define UPB_LONG_IS_64BITS 1
#endif

#if LLONG_MAX == UPB_INT64_MAX && LLONG_MIN == UPB_INT64_MIN
#define UPB_LLONG_IS_64BITS 1
#endif

4738 4739
/* We use macros instead of typedefs so we can undefine them later and avoid
 * leaking them outside this header file. */
4740 4741 4742 4743 4744 4745 4746 4747
#if UPB_INT_IS_32BITS
#define UPB_INT32_T int
#define UPB_UINT32_T unsigned int

#if UPB_LONG_IS_32BITS
#define UPB_TWO_32BIT_TYPES 1
#define UPB_INT32ALT_T long
#define UPB_UINT32ALT_T unsigned long
4748
#endif  /* UPB_LONG_IS_32BITS */
4749

4750
#elif UPB_LONG_IS_32BITS  /* && !UPB_INT_IS_32BITS */
4751 4752
#define UPB_INT32_T long
#define UPB_UINT32_T unsigned long
4753
#endif  /* UPB_INT_IS_32BITS */
4754 4755 4756 4757 4758 4759 4760 4761 4762 4763


#if UPB_LONG_IS_64BITS
#define UPB_INT64_T long
#define UPB_UINT64_T unsigned long

#if UPB_LLONG_IS_64BITS
#define UPB_TWO_64BIT_TYPES 1
#define UPB_INT64ALT_T long long
#define UPB_UINT64ALT_T unsigned long long
4764
#endif  /* UPB_LLONG_IS_64BITS */
4765

4766
#elif UPB_LLONG_IS_64BITS  /* && !UPB_LONG_IS_64BITS */
4767 4768
#define UPB_INT64_T long long
#define UPB_UINT64_T unsigned long long
4769
#endif  /* UPB_LONG_IS_64BITS */
4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784

#undef UPB_INT32_MAX
#undef UPB_INT32_MIN
#undef UPB_INT64_MAX
#undef UPB_INT64_MIN
#undef UPB_INT_IS_32BITS
#undef UPB_LONG_IS_32BITS
#undef UPB_LONG_IS_64BITS
#undef UPB_LLONG_IS_64BITS


namespace upb {

typedef void CleanupFunc(void *ptr);

4785 4786 4787 4788 4789
/* Template to remove "const" from "const T*" and just return "T*".
 *
 * We define a nonsense default because otherwise it will fail to instantiate as
 * a function parameter type even in cases where we don't expect any caller to
 * actually match the overload. */
4790 4791 4792 4793
class CouldntRemoveConst {};
template <class T> struct remove_constptr { typedef CouldntRemoveConst type; };
template <class T> struct remove_constptr<const T *> { typedef T *type; };

4794 4795
/* Template that we use below to remove a template specialization from
 * consideration if it matches a specific type. */
4796 4797 4798 4799 4800 4801
template <class T, class U> struct disable_if_same { typedef void Type; };
template <class T> struct disable_if_same<T, T> {};

template <class T> void DeletePointer(void *p) { delete static_cast<T>(p); }

template <class T1, class T2>
4802
struct FirstUnlessVoidOrBool {
4803 4804 4805 4806
  typedef T1 value;
};

template <class T2>
4807 4808 4809 4810 4811 4812
struct FirstUnlessVoidOrBool<void, T2> {
  typedef T2 value;
};

template <class T2>
struct FirstUnlessVoidOrBool<bool, T2> {
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
  typedef T2 value;
};

template<class T, class U>
struct is_same {
  static bool value;
};

template<class T>
struct is_same<T, T> {
  static bool value;
};

template<class T, class U>
bool is_same<T, U>::value = false;

template<class T>
bool is_same<T, T>::value = true;

4832
/* FuncInfo *******************************************************************/
4833

4834
/* Info about the user's original, pre-wrapped function. */
4835 4836
template <class C, class R = void>
struct FuncInfo {
4837
  /* The type of the closure that the function takes (its first param). */
4838 4839
  typedef C Closure;

4840
  /* The return type. */
4841 4842 4843
  typedef R Return;
};

4844
/* Func ***********************************************************************/
4845

4846 4847 4848 4849 4850 4851 4852
/* Func1, Func2, Func3: Template classes representing a function and its
 * signature.
 *
 * Since the function is a template parameter, calling the function can be
 * inlined at compile-time and does not require a function pointer at runtime.
 * These functions are not bound to a handler data so have no data or cleanup
 * handler. */
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
struct UnboundFunc {
  CleanupFunc *GetCleanup() { return NULL; }
  void *GetData() { return NULL; }
};

template <class R, class P1, R F(P1), class I>
struct Func1 : public UnboundFunc {
  typedef R Return;
  typedef I FuncInfo;
  static R Call(P1 p1) { return F(p1); }
};

template <class R, class P1, class P2, R F(P1, P2), class I>
struct Func2 : public UnboundFunc {
  typedef R Return;
  typedef I FuncInfo;
  static R Call(P1 p1, P2 p2) { return F(p1, p2); }
};

template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
struct Func3 : public UnboundFunc {
  typedef R Return;
  typedef I FuncInfo;
  static R Call(P1 p1, P2 p2, P3 p3) { return F(p1, p2, p3); }
};

template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
          class I>
struct Func4 : public UnboundFunc {
  typedef R Return;
  typedef I FuncInfo;
  static R Call(P1 p1, P2 p2, P3 p3, P4 p4) { return F(p1, p2, p3, p4); }
};

template <class R, class P1, class P2, class P3, class P4, class P5,
          R F(P1, P2, P3, P4, P5), class I>
struct Func5 : public UnboundFunc {
  typedef R Return;
  typedef I FuncInfo;
  static R Call(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) {
    return F(p1, p2, p3, p4, p5);
  }
};

4897
/* BoundFunc ******************************************************************/
4898

4899 4900 4901 4902 4903
/* BoundFunc2, BoundFunc3: Like Func2/Func3 except also contains a value that
 * shall be bound to the function's second parameter.
 * 
 * Note that the second parameter is a const pointer, but our stored bound value
 * is non-const so we can free it when the handlers are destroyed. */
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
template <class T>
struct BoundFunc {
  typedef typename remove_constptr<T>::type MutableP2;
  explicit BoundFunc(MutableP2 data_) : data(data_) {}
  CleanupFunc *GetCleanup() { return &DeletePointer<MutableP2>; }
  MutableP2 GetData() { return data; }
  MutableP2 data;
};

template <class R, class P1, class P2, R F(P1, P2), class I>
struct BoundFunc2 : public BoundFunc<P2> {
  typedef BoundFunc<P2> Base;
  typedef I FuncInfo;
  explicit BoundFunc2(typename Base::MutableP2 arg) : Base(arg) {}
};

template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
struct BoundFunc3 : public BoundFunc<P2> {
  typedef BoundFunc<P2> Base;
  typedef I FuncInfo;
  explicit BoundFunc3(typename Base::MutableP2 arg) : Base(arg) {}
};

template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
          class I>
struct BoundFunc4 : public BoundFunc<P2> {
  typedef BoundFunc<P2> Base;
  typedef I FuncInfo;
  explicit BoundFunc4(typename Base::MutableP2 arg) : Base(arg) {}
};

template <class R, class P1, class P2, class P3, class P4, class P5,
          R F(P1, P2, P3, P4, P5), class I>
struct BoundFunc5 : public BoundFunc<P2> {
  typedef BoundFunc<P2> Base;
  typedef I FuncInfo;
  explicit BoundFunc5(typename Base::MutableP2 arg) : Base(arg) {}
};

4943
/* FuncSig ********************************************************************/
4944

4945 4946 4947 4948 4949
/* FuncSig1, FuncSig2, FuncSig3: template classes reflecting a function
 * *signature*, but without a specific function attached.
 *
 * These classes contain member functions that can be invoked with a
 * specific function to return a Func/BoundFunc class. */
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
template <class R, class P1>
struct FuncSig1 {
  template <R F(P1)>
  Func1<R, P1, F, FuncInfo<P1, R> > GetFunc() {
    return Func1<R, P1, F, FuncInfo<P1, R> >();
  }
};

template <class R, class P1, class P2>
struct FuncSig2 {
  template <R F(P1, P2)>
  Func2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc() {
    return Func2<R, P1, P2, F, FuncInfo<P1, R> >();
  }

  template <R F(P1, P2)>
  BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc(
      typename remove_constptr<P2>::type param2) {
    return BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> >(param2);
  }
};

template <class R, class P1, class P2, class P3>
struct FuncSig3 {
  template <R F(P1, P2, P3)>
  Func3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc() {
    return Func3<R, P1, P2, P3, F, FuncInfo<P1, R> >();
  }

  template <R F(P1, P2, P3)>
  BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc(
      typename remove_constptr<P2>::type param2) {
    return BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> >(param2);
  }
};

template <class R, class P1, class P2, class P3, class P4>
struct FuncSig4 {
  template <R F(P1, P2, P3, P4)>
  Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc() {
    return Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >();
  }

  template <R F(P1, P2, P3, P4)>
  BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc(
      typename remove_constptr<P2>::type param2) {
    return BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >(param2);
  }
};

template <class R, class P1, class P2, class P3, class P4, class P5>
struct FuncSig5 {
  template <R F(P1, P2, P3, P4, P5)>
  Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc() {
    return Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >();
  }

  template <R F(P1, P2, P3, P4, P5)>
  BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc(
      typename remove_constptr<P2>::type param2) {
    return BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >(param2);
  }
};

5014 5015
/* Overloaded template function that can construct the appropriate FuncSig*
 * class given a function pointer by deducing the template parameters. */
5016 5017
template <class R, class P1>
inline FuncSig1<R, P1> MatchFunc(R (*f)(P1)) {
5018
  UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5019 5020
  return FuncSig1<R, P1>();
}
5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772

template <class R, class P1, class P2>
inline FuncSig2<R, P1, P2> MatchFunc(R (*f)(P1, P2)) {
  UPB_UNUSED(f);  /* Only used for template parameter deduction. */
  return FuncSig2<R, P1, P2>();
}

template <class R, class P1, class P2, class P3>
inline FuncSig3<R, P1, P2, P3> MatchFunc(R (*f)(P1, P2, P3)) {
  UPB_UNUSED(f);  /* Only used for template parameter deduction. */
  return FuncSig3<R, P1, P2, P3>();
}

template <class R, class P1, class P2, class P3, class P4>
inline FuncSig4<R, P1, P2, P3, P4> MatchFunc(R (*f)(P1, P2, P3, P4)) {
  UPB_UNUSED(f);  /* Only used for template parameter deduction. */
  return FuncSig4<R, P1, P2, P3, P4>();
}

template <class R, class P1, class P2, class P3, class P4, class P5>
inline FuncSig5<R, P1, P2, P3, P4, P5> MatchFunc(R (*f)(P1, P2, P3, P4, P5)) {
  UPB_UNUSED(f);  /* Only used for template parameter deduction. */
  return FuncSig5<R, P1, P2, P3, P4, P5>();
}

/* MethodSig ******************************************************************/

/* CallMethod*: a function template that calls a given method. */
template <class R, class C, R (C::*F)()>
R CallMethod0(C *obj) {
  return ((*obj).*F)();
}

template <class R, class C, class P1, R (C::*F)(P1)>
R CallMethod1(C *obj, P1 arg1) {
  return ((*obj).*F)(arg1);
}

template <class R, class C, class P1, class P2, R (C::*F)(P1, P2)>
R CallMethod2(C *obj, P1 arg1, P2 arg2) {
  return ((*obj).*F)(arg1, arg2);
}

template <class R, class C, class P1, class P2, class P3, R (C::*F)(P1, P2, P3)>
R CallMethod3(C *obj, P1 arg1, P2 arg2, P3 arg3) {
  return ((*obj).*F)(arg1, arg2, arg3);
}

template <class R, class C, class P1, class P2, class P3, class P4,
          R (C::*F)(P1, P2, P3, P4)>
R CallMethod4(C *obj, P1 arg1, P2 arg2, P3 arg3, P4 arg4) {
  return ((*obj).*F)(arg1, arg2, arg3, arg4);
}

/* MethodSig: like FuncSig, but for member functions.
 *
 * GetFunc() returns a normal FuncN object, so after calling GetFunc() no
 * more logic is required to special-case methods. */
template <class R, class C>
struct MethodSig0 {
  template <R (C::*F)()>
  Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> > GetFunc() {
    return Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> >();
  }
};

template <class R, class C, class P1>
struct MethodSig1 {
  template <R (C::*F)(P1)>
  Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc() {
    return Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >();
  }

  template <R (C::*F)(P1)>
  BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc(
      typename remove_constptr<P1>::type param1) {
    return BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >(
        param1);
  }
};

template <class R, class C, class P1, class P2>
struct MethodSig2 {
  template <R (C::*F)(P1, P2)>
  Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >
  GetFunc() {
    return Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>,
                 FuncInfo<C *, R> >();
  }

  template <R (C::*F)(P1, P2)>
  BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >
  GetFunc(typename remove_constptr<P1>::type param1) {
    return BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>,
                      FuncInfo<C *, R> >(param1);
  }
};

template <class R, class C, class P1, class P2, class P3>
struct MethodSig3 {
  template <R (C::*F)(P1, P2, P3)>
  Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, FuncInfo<C *, R> >
  GetFunc() {
    return Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
                 FuncInfo<C *, R> >();
  }

  template <R (C::*F)(P1, P2, P3)>
  BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
             FuncInfo<C *, R> >
  GetFunc(typename remove_constptr<P1>::type param1) {
    return BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
                      FuncInfo<C *, R> >(param1);
  }
};

template <class R, class C, class P1, class P2, class P3, class P4>
struct MethodSig4 {
  template <R (C::*F)(P1, P2, P3, P4)>
  Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
        FuncInfo<C *, R> >
  GetFunc() {
    return Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
                 FuncInfo<C *, R> >();
  }

  template <R (C::*F)(P1, P2, P3, P4)>
  BoundFunc5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
             FuncInfo<C *, R> >
  GetFunc(typename remove_constptr<P1>::type param1) {
    return BoundFunc5<R, C *, P1, P2, P3, P4,
                      CallMethod4<R, C, P1, P2, P3, P4, F>, FuncInfo<C *, R> >(
        param1);
  }
};

template <class R, class C>
inline MethodSig0<R, C> MatchFunc(R (C::*f)()) {
  UPB_UNUSED(f);  /* Only used for template parameter deduction. */
  return MethodSig0<R, C>();
}

template <class R, class C, class P1>
inline MethodSig1<R, C, P1> MatchFunc(R (C::*f)(P1)) {
  UPB_UNUSED(f);  /* Only used for template parameter deduction. */
  return MethodSig1<R, C, P1>();
}

template <class R, class C, class P1, class P2>
inline MethodSig2<R, C, P1, P2> MatchFunc(R (C::*f)(P1, P2)) {
  UPB_UNUSED(f);  /* Only used for template parameter deduction. */
  return MethodSig2<R, C, P1, P2>();
}

template <class R, class C, class P1, class P2, class P3>
inline MethodSig3<R, C, P1, P2, P3> MatchFunc(R (C::*f)(P1, P2, P3)) {
  UPB_UNUSED(f);  /* Only used for template parameter deduction. */
  return MethodSig3<R, C, P1, P2, P3>();
}

template <class R, class C, class P1, class P2, class P3, class P4>
inline MethodSig4<R, C, P1, P2, P3, P4> MatchFunc(R (C::*f)(P1, P2, P3, P4)) {
  UPB_UNUSED(f);  /* Only used for template parameter deduction. */
  return MethodSig4<R, C, P1, P2, P3, P4>();
}

/* MaybeWrapReturn ************************************************************/

/* Template class that attempts to wrap the return value of the function so it
 * matches the expected type.  There are two main adjustments it may make:
 *
 *   1. If the function returns void, make it return the expected type and with
 *      a value that always indicates success.
 *   2. If the function returns bool, make it return the expected type with a
 *      value that indicates success or failure.
 *
 * The "expected type" for return is:
 *   1. void* for start handlers.  If the closure parameter has a different type
 *      we will cast it to void* for the return in the success case.
 *   2. size_t for string buffer handlers.
 *   3. bool for everything else. */

/* Template parameters are FuncN type and desired return type. */
template <class F, class R, class Enable = void>
struct MaybeWrapReturn;

/* If the return type matches, return the given function unwrapped. */
template <class F>
struct MaybeWrapReturn<F, typename F::Return> {
  typedef F Func;
};

/* Function wrapper that munges the return value from void to (bool)true. */
template <class P1, class P2, void F(P1, P2)>
bool ReturnTrue2(P1 p1, P2 p2) {
  F(p1, p2);
  return true;
}

template <class P1, class P2, class P3, void F(P1, P2, P3)>
bool ReturnTrue3(P1 p1, P2 p2, P3 p3) {
  F(p1, p2, p3);
  return true;
}

/* Function wrapper that munges the return value from void to (void*)arg1  */
template <class P1, class P2, void F(P1, P2)>
void *ReturnClosure2(P1 p1, P2 p2) {
  F(p1, p2);
  return p1;
}

template <class P1, class P2, class P3, void F(P1, P2, P3)>
void *ReturnClosure3(P1 p1, P2 p2, P3 p3) {
  F(p1, p2, p3);
  return p1;
}

/* Function wrapper that munges the return value from R to void*. */
template <class R, class P1, class P2, R F(P1, P2)>
void *CastReturnToVoidPtr2(P1 p1, P2 p2) {
  return F(p1, p2);
}

template <class R, class P1, class P2, class P3, R F(P1, P2, P3)>
void *CastReturnToVoidPtr3(P1 p1, P2 p2, P3 p3) {
  return F(p1, p2, p3);
}

/* Function wrapper that munges the return value from bool to void*. */
template <class P1, class P2, bool F(P1, P2)>
void *ReturnClosureOrBreak2(P1 p1, P2 p2) {
  return F(p1, p2) ? p1 : UPB_BREAK;
}

template <class P1, class P2, class P3, bool F(P1, P2, P3)>
void *ReturnClosureOrBreak3(P1 p1, P2 p2, P3 p3) {
  return F(p1, p2, p3) ? p1 : UPB_BREAK;
}

/* For the string callback, which takes five params, returns the size param. */
template <class P1, class P2,
          void F(P1, P2, const char *, size_t, const BufferHandle *)>
size_t ReturnStringLen(P1 p1, P2 p2, const char *p3, size_t p4,
                       const BufferHandle *p5) {
  F(p1, p2, p3, p4, p5);
  return p4;
}

/* For the string callback, which takes five params, returns the size param or
 * zero. */
template <class P1, class P2,
          bool F(P1, P2, const char *, size_t, const BufferHandle *)>
size_t ReturnNOr0(P1 p1, P2 p2, const char *p3, size_t p4,
                  const BufferHandle *p5) {
  return F(p1, p2, p3, p4, p5) ? p4 : 0;
}

/* If we have a function returning void but want a function returning bool, wrap
 * it in a function that returns true. */
template <class P1, class P2, void F(P1, P2), class I>
struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, bool> {
  typedef Func2<bool, P1, P2, ReturnTrue2<P1, P2, F>, I> Func;
};

template <class P1, class P2, class P3, void F(P1, P2, P3), class I>
struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, bool> {
  typedef Func3<bool, P1, P2, P3, ReturnTrue3<P1, P2, P3, F>, I> Func;
};

/* If our function returns void but we want one returning void*, wrap it in a
 * function that returns the first argument. */
template <class P1, class P2, void F(P1, P2), class I>
struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, void *> {
  typedef Func2<void *, P1, P2, ReturnClosure2<P1, P2, F>, I> Func;
};

template <class P1, class P2, class P3, void F(P1, P2, P3), class I>
struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, void *> {
  typedef Func3<void *, P1, P2, P3, ReturnClosure3<P1, P2, P3, F>, I> Func;
};

/* If our function returns R* but we want one returning void*, wrap it in a
 * function that casts to void*. */
template <class R, class P1, class P2, R *F(P1, P2), class I>
struct MaybeWrapReturn<Func2<R *, P1, P2, F, I>, void *,
                       typename disable_if_same<R *, void *>::Type> {
  typedef Func2<void *, P1, P2, CastReturnToVoidPtr2<R *, P1, P2, F>, I> Func;
};

template <class R, class P1, class P2, class P3, R *F(P1, P2, P3), class I>
struct MaybeWrapReturn<Func3<R *, P1, P2, P3, F, I>, void *,
                       typename disable_if_same<R *, void *>::Type> {
  typedef Func3<void *, P1, P2, P3, CastReturnToVoidPtr3<R *, P1, P2, P3, F>, I>
      Func;
};

/* If our function returns bool but we want one returning void*, wrap it in a
 * function that returns either the first param or UPB_BREAK. */
template <class P1, class P2, bool F(P1, P2), class I>
struct MaybeWrapReturn<Func2<bool, P1, P2, F, I>, void *> {
  typedef Func2<void *, P1, P2, ReturnClosureOrBreak2<P1, P2, F>, I> Func;
};

template <class P1, class P2, class P3, bool F(P1, P2, P3), class I>
struct MaybeWrapReturn<Func3<bool, P1, P2, P3, F, I>, void *> {
  typedef Func3<void *, P1, P2, P3, ReturnClosureOrBreak3<P1, P2, P3, F>, I>
      Func;
};

/* If our function returns void but we want one returning size_t, wrap it in a
 * function that returns the size argument. */
template <class P1, class P2,
          void F(P1, P2, const char *, size_t, const BufferHandle *), class I>
struct MaybeWrapReturn<
    Func5<void, P1, P2, const char *, size_t, const BufferHandle *, F, I>,
          size_t> {
  typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *,
                ReturnStringLen<P1, P2, F>, I> Func;
};

/* If our function returns bool but we want one returning size_t, wrap it in a
 * function that returns either 0 or the buf size. */
template <class P1, class P2,
          bool F(P1, P2, const char *, size_t, const BufferHandle *), class I>
struct MaybeWrapReturn<
    Func5<bool, P1, P2, const char *, size_t, const BufferHandle *, F, I>,
    size_t> {
  typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *,
                ReturnNOr0<P1, P2, F>, I> Func;
};

/* ConvertParams **************************************************************/

/* Template class that converts the function parameters if necessary, and
 * ignores the HandlerData parameter if appropriate.
 *
 * Template parameter is the are FuncN function type. */
template <class F, class T>
struct ConvertParams;

/* Function that discards the handler data parameter. */
template <class R, class P1, R F(P1)>
R IgnoreHandlerData2(void *p1, const void *hd) {
  UPB_UNUSED(hd);
  return F(static_cast<P1>(p1));
}

template <class R, class P1, class P2Wrapper, class P2Wrapped,
          R F(P1, P2Wrapped)>
R IgnoreHandlerData3(void *p1, const void *hd, P2Wrapper p2) {
  UPB_UNUSED(hd);
  return F(static_cast<P1>(p1), p2);
}

template <class R, class P1, class P2, class P3, R F(P1, P2, P3)>
R IgnoreHandlerData4(void *p1, const void *hd, P2 p2, P3 p3) {
  UPB_UNUSED(hd);
  return F(static_cast<P1>(p1), p2, p3);
}

template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4)>
R IgnoreHandlerData5(void *p1, const void *hd, P2 p2, P3 p3, P4 p4) {
  UPB_UNUSED(hd);
  return F(static_cast<P1>(p1), p2, p3, p4);
}

template <class R, class P1, R F(P1, const char*, size_t)>
R IgnoreHandlerDataIgnoreHandle(void *p1, const void *hd, const char *p2,
                                size_t p3, const BufferHandle *handle) {
  UPB_UNUSED(hd);
  UPB_UNUSED(handle);
  return F(static_cast<P1>(p1), p2, p3);
}

/* Function that casts the handler data parameter. */
template <class R, class P1, class P2, R F(P1, P2)>
R CastHandlerData2(void *c, const void *hd) {
  return F(static_cast<P1>(c), static_cast<P2>(hd));
}

template <class R, class P1, class P2, class P3Wrapper, class P3Wrapped,
          R F(P1, P2, P3Wrapped)>
R CastHandlerData3(void *c, const void *hd, P3Wrapper p3) {
  return F(static_cast<P1>(c), static_cast<P2>(hd), p3);
}

template <class R, class P1, class P2, class P3, class P4, class P5,
          R F(P1, P2, P3, P4, P5)>
R CastHandlerData5(void *c, const void *hd, P3 p3, P4 p4, P5 p5) {
  return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4, p5);
}

template <class R, class P1, class P2, R F(P1, P2, const char *, size_t)>
R CastHandlerDataIgnoreHandle(void *c, const void *hd, const char *p3,
                              size_t p4, const BufferHandle *handle) {
  UPB_UNUSED(handle);
  return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4);
}

/* For unbound functions, ignore the handler data. */
template <class R, class P1, R F(P1), class I, class T>
struct ConvertParams<Func1<R, P1, F, I>, T> {
  typedef Func2<R, void *, const void *, IgnoreHandlerData2<R, P1, F>, I> Func;
};

template <class R, class P1, class P2, R F(P1, P2), class I,
          class R2, class P1_2, class P2_2, class P3_2>
struct ConvertParams<Func2<R, P1, P2, F, I>,
                     R2 (*)(P1_2, P2_2, P3_2)> {
  typedef Func3<R, void *, const void *, P3_2,
                IgnoreHandlerData3<R, P1, P3_2, P2, F>, I> Func;
};

/* For StringBuffer only; this ignores both the handler data and the
 * BufferHandle. */
template <class R, class P1, R F(P1, const char *, size_t), class I, class T>
struct ConvertParams<Func3<R, P1, const char *, size_t, F, I>, T> {
  typedef Func5<R, void *, const void *, const char *, size_t,
                const BufferHandle *, IgnoreHandlerDataIgnoreHandle<R, P1, F>,
                I> Func;
};

template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
          class I, class T>
struct ConvertParams<Func4<R, P1, P2, P3, P4, F, I>, T> {
  typedef Func5<R, void *, const void *, P2, P3, P4,
                IgnoreHandlerData5<R, P1, P2, P3, P4, F>, I> Func;
};

/* For bound functions, cast the handler data. */
template <class R, class P1, class P2, R F(P1, P2), class I, class T>
struct ConvertParams<BoundFunc2<R, P1, P2, F, I>, T> {
  typedef Func2<R, void *, const void *, CastHandlerData2<R, P1, P2, F>, I>
      Func;
};

template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I,
          class R2, class P1_2, class P2_2, class P3_2>
struct ConvertParams<BoundFunc3<R, P1, P2, P3, F, I>,
                     R2 (*)(P1_2, P2_2, P3_2)> {
  typedef Func3<R, void *, const void *, P3_2,
                CastHandlerData3<R, P1, P2, P3_2, P3, F>, I> Func;
};

/* For StringBuffer only; this ignores the BufferHandle. */
template <class R, class P1, class P2, R F(P1, P2, const char *, size_t),
          class I, class T>
struct ConvertParams<BoundFunc4<R, P1, P2, const char *, size_t, F, I>, T> {
  typedef Func5<R, void *, const void *, const char *, size_t,
                const BufferHandle *, CastHandlerDataIgnoreHandle<R, P1, P2, F>,
                I> Func;
};

template <class R, class P1, class P2, class P3, class P4, class P5,
          R F(P1, P2, P3, P4, P5), class I, class T>
struct ConvertParams<BoundFunc5<R, P1, P2, P3, P4, P5, F, I>, T> {
  typedef Func5<R, void *, const void *, P3, P4, P5,
                CastHandlerData5<R, P1, P2, P3, P4, P5, F>, I> Func;
};

/* utype/ltype are upper/lower-case, ctype is canonical C type, vtype is
 * variant C type. */
#define TYPE_METHODS(utype, ltype, ctype, vtype)                               \
  template <> struct CanonicalType<vtype> {                                    \
    typedef ctype Type;                                                        \
  };                                                                           \
  template <>                                                                  \
  inline bool Handlers::SetValueHandler<vtype>(                                \
      const FieldDef *f,                                                       \
      const Handlers::utype ## Handler& handler) {                             \
    assert(!handler.registered_);                                              \
    handler.AddCleanup(this);                                                  \
    handler.registered_ = true;                                                \
    return upb_handlers_set##ltype(this, f, handler.handler_, &handler.attr_); \
  }                                                                            \

TYPE_METHODS(Double, double, double,   double)
TYPE_METHODS(Float,  float,  float,    float)
TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64_T)
TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32_T)
TYPE_METHODS(Int64,  int64,  int64_t,  UPB_INT64_T)
TYPE_METHODS(Int32,  int32,  int32_t,  UPB_INT32_T)
TYPE_METHODS(Bool,   bool,   bool,     bool)

#ifdef UPB_TWO_32BIT_TYPES
TYPE_METHODS(Int32,  int32,  int32_t,  UPB_INT32ALT_T)
TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32ALT_T)
#endif

#ifdef UPB_TWO_64BIT_TYPES
TYPE_METHODS(Int64,  int64,  int64_t,  UPB_INT64ALT_T)
TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64ALT_T)
#endif
#undef TYPE_METHODS

template <> struct CanonicalType<Status*> {
  typedef Status* Type;
};

/* Type methods that are only one-per-canonical-type and not
 * one-per-cvariant. */

#define TYPE_METHODS(utype, ctype) \
    inline bool Handlers::Set##utype##Handler(const FieldDef *f, \
                                              const utype##Handler &h) { \
      return SetValueHandler<ctype>(f, h); \
    } \

TYPE_METHODS(Double, double)
TYPE_METHODS(Float,  float)
TYPE_METHODS(UInt64, uint64_t)
TYPE_METHODS(UInt32, uint32_t)
TYPE_METHODS(Int64,  int64_t)
TYPE_METHODS(Int32,  int32_t)
TYPE_METHODS(Bool,   bool)
#undef TYPE_METHODS

template <class F> struct ReturnOf;

template <class R, class P1, class P2>
struct ReturnOf<R (*)(P1, P2)> {
  typedef R Return;
};

template <class R, class P1, class P2, class P3>
struct ReturnOf<R (*)(P1, P2, P3)> {
  typedef R Return;
};

template <class R, class P1, class P2, class P3, class P4>
struct ReturnOf<R (*)(P1, P2, P3, P4)> {
  typedef R Return;
};

template <class R, class P1, class P2, class P3, class P4, class P5>
struct ReturnOf<R (*)(P1, P2, P3, P4, P5)> {
  typedef R Return;
};

template<class T> const void *UniquePtrForType() {
  static const char ch = 0;
  return &ch;
}

template <class T>
template <class F>
inline Handler<T>::Handler(F func)
    : registered_(false),
      cleanup_data_(func.GetData()),
      cleanup_func_(func.GetCleanup()) {
  upb_handlerattr_sethandlerdata(&attr_, func.GetData());
  typedef typename ReturnOf<T>::Return Return;
  typedef typename ConvertParams<F, T>::Func ConvertedParamsFunc;
  typedef typename MaybeWrapReturn<ConvertedParamsFunc, Return>::Func
      ReturnWrappedFunc;
  handler_ = ReturnWrappedFunc().Call;

  /* Set attributes based on what templates can statically tell us about the
   * user's function. */

  /* If the original function returns void, then we know that we wrapped it to
   * always return ok. */
  bool always_ok = is_same<typename F::FuncInfo::Return, void>::value;
  attr_.SetAlwaysOk(always_ok);

  /* Closure parameter and return type. */
  attr_.SetClosureType(UniquePtrForType<typename F::FuncInfo::Closure>());

  /* We use the closure type (from the first parameter) if the return type is
   * void or bool, since these are the two cases we wrap to return the closure's
   * type anyway.
   *
   * This is all nonsense for non START* handlers, but it doesn't matter because
   * in that case the value will be ignored. */
  typedef typename FirstUnlessVoidOrBool<typename F::FuncInfo::Return,
                                         typename F::FuncInfo::Closure>::value
      EffectiveReturn;
  attr_.SetReturnClosureType(UniquePtrForType<EffectiveReturn>());
}

template <class T>
inline Handler<T>::~Handler() {
  assert(registered_);
}

inline HandlerAttributes::HandlerAttributes() { upb_handlerattr_init(this); }
inline HandlerAttributes::~HandlerAttributes() { upb_handlerattr_uninit(this); }
inline bool HandlerAttributes::SetHandlerData(const void *hd) {
  return upb_handlerattr_sethandlerdata(this, hd);
}
inline const void* HandlerAttributes::handler_data() const {
  return upb_handlerattr_handlerdata(this);
}
inline bool HandlerAttributes::SetClosureType(const void *type) {
  return upb_handlerattr_setclosuretype(this, type);
}
inline const void* HandlerAttributes::closure_type() const {
  return upb_handlerattr_closuretype(this);
}
inline bool HandlerAttributes::SetReturnClosureType(const void *type) {
  return upb_handlerattr_setreturnclosuretype(this, type);
}
inline const void* HandlerAttributes::return_closure_type() const {
  return upb_handlerattr_returnclosuretype(this);
}
inline bool HandlerAttributes::SetAlwaysOk(bool always_ok) {
  return upb_handlerattr_setalwaysok(this, always_ok);
}
inline bool HandlerAttributes::always_ok() const {
  return upb_handlerattr_alwaysok(this);
}

inline BufferHandle::BufferHandle() { upb_bufhandle_init(this); }
inline BufferHandle::~BufferHandle() { upb_bufhandle_uninit(this); }
inline const char* BufferHandle::buffer() const {
  return upb_bufhandle_buf(this);
}
inline size_t BufferHandle::object_offset() const {
  return upb_bufhandle_objofs(this);
}
inline void BufferHandle::SetBuffer(const char* buf, size_t ofs) {
  upb_bufhandle_setbuf(this, buf, ofs);
}
template <class T>
void BufferHandle::SetAttachedObject(const T* obj) {
  upb_bufhandle_setobj(this, obj, UniquePtrForType<T>());
}
template <class T>
const T* BufferHandle::GetAttachedObject() const {
  return upb_bufhandle_objtype(this) == UniquePtrForType<T>()
      ? static_cast<const T *>(upb_bufhandle_obj(this))
                               : NULL;
}

inline reffed_ptr<Handlers> Handlers::New(const MessageDef *m) {
  upb_handlers *h = upb_handlers_new(m, &h);
  return reffed_ptr<Handlers>(h, &h);
}
inline reffed_ptr<const Handlers> Handlers::NewFrozen(
    const MessageDef *m, upb_handlers_callback *callback,
    const void *closure) {
  const upb_handlers *h = upb_handlers_newfrozen(m, &h, callback, closure);
  return reffed_ptr<const Handlers>(h, &h);
}
inline const Status* Handlers::status() {
  return upb_handlers_status(this);
}
inline void Handlers::ClearError() {
  return upb_handlers_clearerr(this);
}
inline bool Handlers::Freeze(Status *s) {
  upb::Handlers* h = this;
  return upb_handlers_freeze(&h, 1, s);
}
inline bool Handlers::Freeze(Handlers *const *handlers, int n, Status *s) {
  return upb_handlers_freeze(handlers, n, s);
}
inline bool Handlers::Freeze(const std::vector<Handlers*>& h, Status* status) {
  return upb_handlers_freeze((Handlers* const*)&h[0], h.size(), status);
}
inline const MessageDef *Handlers::message_def() const {
  return upb_handlers_msgdef(this);
}
inline bool Handlers::AddCleanup(void *p, upb_handlerfree *func) {
  return upb_handlers_addcleanup(this, p, func);
}
inline bool Handlers::SetStartMessageHandler(
    const Handlers::StartMessageHandler &handler) {
  assert(!handler.registered_);
  handler.registered_ = true;
  handler.AddCleanup(this);
  return upb_handlers_setstartmsg(this, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetEndMessageHandler(
    const Handlers::EndMessageHandler &handler) {
  assert(!handler.registered_);
  handler.registered_ = true;
  handler.AddCleanup(this);
  return upb_handlers_setendmsg(this, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetStartStringHandler(const FieldDef *f,
                                            const StartStringHandler &handler) {
  assert(!handler.registered_);
  handler.registered_ = true;
  handler.AddCleanup(this);
  return upb_handlers_setstartstr(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetEndStringHandler(const FieldDef *f,
                                          const EndFieldHandler &handler) {
  assert(!handler.registered_);
  handler.registered_ = true;
  handler.AddCleanup(this);
  return upb_handlers_setendstr(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetStringHandler(const FieldDef *f,
                                       const StringHandler& handler) {
  assert(!handler.registered_);
  handler.registered_ = true;
  handler.AddCleanup(this);
  return upb_handlers_setstring(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetStartSequenceHandler(
    const FieldDef *f, const StartFieldHandler &handler) {
  assert(!handler.registered_);
  handler.registered_ = true;
  handler.AddCleanup(this);
  return upb_handlers_setstartseq(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetStartSubMessageHandler(
    const FieldDef *f, const StartFieldHandler &handler) {
  assert(!handler.registered_);
  handler.registered_ = true;
  handler.AddCleanup(this);
  return upb_handlers_setstartsubmsg(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetEndSubMessageHandler(const FieldDef *f,
                                              const EndFieldHandler &handler) {
  assert(!handler.registered_);
  handler.registered_ = true;
  handler.AddCleanup(this);
  return upb_handlers_setendsubmsg(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetEndSequenceHandler(const FieldDef *f,
                                            const EndFieldHandler &handler) {
  assert(!handler.registered_);
  handler.registered_ = true;
  handler.AddCleanup(this);
  return upb_handlers_setendseq(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetSubHandlers(const FieldDef *f, const Handlers *sub) {
  return upb_handlers_setsubhandlers(this, f, sub);
}
inline const Handlers *Handlers::GetSubHandlers(const FieldDef *f) const {
  return upb_handlers_getsubhandlers(this, f);
}
inline const Handlers *Handlers::GetSubHandlers(Handlers::Selector sel) const {
  return upb_handlers_getsubhandlers_sel(this, sel);
}
inline bool Handlers::GetSelector(const FieldDef *f, Handlers::Type type,
                                  Handlers::Selector *s) {
  return upb_handlers_getselector(f, type, s);
}
inline Handlers::Selector Handlers::GetEndSelector(Handlers::Selector start) {
  return upb_handlers_getendselector(start);
}
inline Handlers::GenericFunction *Handlers::GetHandler(
    Handlers::Selector selector) {
  return upb_handlers_gethandler(this, selector);
}
inline const void *Handlers::GetHandlerData(Handlers::Selector selector) {
  return upb_handlers_gethandlerdata(this, selector);
5773 5774
}

5775 5776
inline BytesHandler::BytesHandler() {
  upb_byteshandler_init(this);
5777 5778
}

5779
inline BytesHandler::~BytesHandler() {}
5780

5781
}  /* namespace upb */
5782

5783
#endif  /* __cplusplus */
5784 5785


5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
#undef UPB_TWO_32BIT_TYPES
#undef UPB_TWO_64BIT_TYPES
#undef UPB_INT32_T
#undef UPB_UINT32_T
#undef UPB_INT32ALT_T
#undef UPB_UINT32ALT_T
#undef UPB_INT64_T
#undef UPB_UINT64_T
#undef UPB_INT64ALT_T
#undef UPB_UINT64ALT_T
5796

5797
#endif  /* UPB_HANDLERS_INL_H_ */
5798

5799 5800
#endif  /* UPB_HANDLERS_H */
/*
5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
** upb::Sink (upb_sink)
** upb::BytesSink (upb_bytessink)
**
** A upb_sink is an object that binds a upb_handlers object to some runtime
** state.  It is the object that can actually receive data via the upb_handlers
** interface.
**
** Unlike upb_def and upb_handlers, upb_sink is never frozen, immutable, or
** thread-safe.  You can create as many of them as you want, but each one may
** only be used in a single thread at a time.
**
** If we compare with class-based OOP, a you can think of a upb_def as an
** abstract base class, a upb_handlers as a concrete derived class, and a
** upb_sink as an object (class instance).
*/
5816 5817 5818 5819 5820 5821 5822 5823 5824 5825

#ifndef UPB_SINK_H
#define UPB_SINK_H


#ifdef __cplusplus
namespace upb {
class BufferSource;
class BytesSink;
class Sink;
5826
}
5827
#endif
5828

5829 5830 5831
UPB_DECLARE_TYPE(upb::BufferSource, upb_bufsrc)
UPB_DECLARE_TYPE(upb::BytesSink, upb_bytessink)
UPB_DECLARE_TYPE(upb::Sink, upb_sink)
5832

5833
#ifdef __cplusplus
5834

5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
/* A upb::Sink is an object that binds a upb::Handlers object to some runtime
 * state.  It represents an endpoint to which data can be sent.
 *
 * TODO(haberman): right now all of these functions take selectors.  Should they
 * take selectorbase instead?
 *
 * ie. instead of calling:
 *   sink->StartString(FOO_FIELD_START_STRING, ...)
 * a selector base would let you say:
 *   sink->StartString(FOO_FIELD, ...)
 *
 * This would make call sites a little nicer and require emitting fewer selector
 * definitions in .h files.
 *
 * But the current scheme has the benefit that you can retrieve a function
 * pointer for any handler with handlers->GetHandler(selector), without having
 * to have a separate GetHandler() function for each handler type.  The JIT
 * compiler uses this.  To accommodate we'd have to expose a separate
 * GetHandler() for every handler type.
 *
 * Also to ponder: selectors right now are independent of a specific Handlers
 * instance.  In other words, they allocate a number to every possible handler
 * that *could* be registered, without knowing anything about what handlers
 * *are* registered.  That means that using selectors as table offsets prohibits
 * us from compacting the handler table at Freeze() time.  If the table is very
 * sparse, this could be wasteful.
 *
 * Having another selector-like thing that is specific to a Handlers instance
 * would allow this compacting, but then it would be impossible to write code
 * ahead-of-time that can be bound to any Handlers instance at runtime.  For
 * example, a .proto file parser written as straight C will not know what
 * Handlers it will be bound to, so when it calls sink->StartString() what
 * selector will it pass?  It needs a selector like we have today, that is
 * independent of any particular upb::Handlers.
 *
 * Is there a way then to allow Handlers table compaction? */
class upb::Sink {
 public:
  /* Constructor with no initialization; must be Reset() before use. */
  Sink() {}
5875

5876 5877 5878 5879 5880
  /* Constructs a new sink for the given frozen handlers and closure.
   *
   * TODO: once the Handlers know the expected closure type, verify that T
   * matches it. */
  template <class T> Sink(const Handlers* handlers, T* closure);
5881

5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919
  /* Resets the value of the sink. */
  template <class T> void Reset(const Handlers* handlers, T* closure);

  /* Returns the top-level object that is bound to this sink.
   *
   * TODO: once the Handlers know the expected closure type, verify that T
   * matches it. */
  template <class T> T* GetObject() const;

  /* Functions for pushing data into the sink.
   *
   * These return false if processing should stop (either due to error or just
   * to suspend).
   *
   * These may not be called from within one of the same sink's handlers (in
   * other words, handlers are not re-entrant). */

  /* Should be called at the start and end of every message; both the top-level
   * message and submessages.  This means that submessages should use the
   * following sequence:
   *   sink->StartSubMessage(startsubmsg_selector);
   *   sink->StartMessage();
   *   // ...
   *   sink->EndMessage(&status);
   *   sink->EndSubMessage(endsubmsg_selector); */
  bool StartMessage();
  bool EndMessage(Status* status);

  /* Putting of individual values.  These work for both repeated and
   * non-repeated fields, but for repeated fields you must wrap them in
   * calls to StartSequence()/EndSequence(). */
  bool PutInt32(Handlers::Selector s, int32_t val);
  bool PutInt64(Handlers::Selector s, int64_t val);
  bool PutUInt32(Handlers::Selector s, uint32_t val);
  bool PutUInt64(Handlers::Selector s, uint64_t val);
  bool PutFloat(Handlers::Selector s, float val);
  bool PutDouble(Handlers::Selector s, double val);
  bool PutBool(Handlers::Selector s, bool val);
5920

5921 5922 5923 5924 5925 5926 5927 5928 5929
  /* Putting of string/bytes values.  Each string can consist of zero or more
   * non-contiguous buffers of data.
   *
   * For StartString(), the function will write a sink for the string to "sub."
   * The sub-sink must be used for any/all PutStringBuffer() calls. */
  bool StartString(Handlers::Selector s, size_t size_hint, Sink* sub);
  size_t PutStringBuffer(Handlers::Selector s, const char *buf, size_t len,
                         const BufferHandle *handle);
  bool EndString(Handlers::Selector s);
5930

5931 5932 5933 5934 5935 5936 5937
  /* For submessage fields.
   *
   * For StartSubMessage(), the function will write a sink for the string to
   * "sub." The sub-sink must be used for any/all handlers called within the
   * submessage. */
  bool StartSubMessage(Handlers::Selector s, Sink* sub);
  bool EndSubMessage(Handlers::Selector s);
5938

5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956
  /* For repeated fields of any type, the sequence of values must be wrapped in
   * these calls.
   *
   * For StartSequence(), the function will write a sink for the string to
   * "sub." The sub-sink must be used for any/all handlers called within the
   * sequence. */
  bool StartSequence(Handlers::Selector s, Sink* sub);
  bool EndSequence(Handlers::Selector s);

  /* Copy and assign specifically allowed.
   * We don't even bother making these members private because so many
   * functions need them and this is mainly just a dumb data container anyway.
   */
#else
struct upb_sink {
#endif
  const upb_handlers *handlers;
  void *closure;
5957 5958
};

5959 5960 5961 5962
#ifdef __cplusplus
class upb::BytesSink {
 public:
  BytesSink() {}
5963

5964 5965 5966 5967 5968
  /* Constructs a new sink for the given frozen handlers and closure.
   *
   * TODO(haberman): once the Handlers know the expected closure type, verify
   * that T matches it. */
  template <class T> BytesSink(const BytesHandler* handler, T* closure);
5969

5970 5971
  /* Resets the value of the sink. */
  template <class T> void Reset(const BytesHandler* handler, T* closure);
5972

5973 5974 5975 5976 5977 5978
  bool Start(size_t size_hint, void **subc);
  size_t PutBuffer(void *subc, const char *buf, size_t len,
                   const BufferHandle *handle);
  bool End();
#else
struct upb_bytessink {
5979
#endif
5980 5981
  const upb_byteshandler *handler;
  void *closure;
5982 5983
};

5984
#ifdef __cplusplus
5985

5986 5987 5988 5989 5990 5991 5992 5993
/* A class for pushing a flat buffer of data to a BytesSink.
 * You can construct an instance of this to get a resumable source,
 * or just call the static PutBuffer() to do a non-resumable push all in one
 * go. */
class upb::BufferSource {
 public:
  BufferSource();
  BufferSource(const char* buf, size_t len, BytesSink* sink);
5994

5995 5996 5997 5998
  /* Returns true if the entire buffer was pushed successfully.  Otherwise the
   * next call to PutNext() will resume where the previous one left off.
   * TODO(haberman): implement this. */
  bool PutNext();
5999

6000 6001 6002
  /* A static version; with this version is it not possible to resume in the
   * case of failure or a partially-consumed buffer. */
  static bool PutBuffer(const char* buf, size_t len, BytesSink* sink);
6003

6004 6005 6006 6007 6008 6009 6010
  template <class T> static bool PutBuffer(const T& str, BytesSink* sink) {
    return PutBuffer(str.c_str(), str.size(), sink);
  }
#else
struct upb_bufsrc {
  char dummy;
#endif
6011 6012
};

6013
UPB_BEGIN_EXTERN_C
6014

6015
/* Inline definitions. */
6016

6017 6018 6019 6020
UPB_INLINE void upb_bytessink_reset(upb_bytessink *s, const upb_byteshandler *h,
                                    void *closure) {
  s->handler = h;
  s->closure = closure;
6021 6022
}

6023 6024 6025 6026 6027 6028 6029
UPB_INLINE bool upb_bytessink_start(upb_bytessink *s, size_t size_hint,
                                    void **subc) {
  typedef upb_startstr_handlerfunc func;
  func *start;
  *subc = s->closure;
  if (!s->handler) return true;
  start = (func *)s->handler->table[UPB_STARTSTR_SELECTOR].func;
6030

6031 6032 6033 6034 6035 6036
  if (!start) return true;
  *subc = start(s->closure, upb_handlerattr_handlerdata(
                                &s->handler->table[UPB_STARTSTR_SELECTOR].attr),
                size_hint);
  return *subc != NULL;
}
6037

6038 6039 6040 6041 6042 6043 6044
UPB_INLINE size_t upb_bytessink_putbuf(upb_bytessink *s, void *subc,
                                       const char *buf, size_t size,
                                       const upb_bufhandle* handle) {
  typedef upb_string_handlerfunc func;
  func *putbuf;
  if (!s->handler) return true;
  putbuf = (func *)s->handler->table[UPB_STRING_SELECTOR].func;
6045

6046 6047 6048 6049
  if (!putbuf) return true;
  return putbuf(subc, upb_handlerattr_handlerdata(
                          &s->handler->table[UPB_STRING_SELECTOR].attr),
                buf, size, handle);
6050 6051
}

6052 6053 6054 6055 6056
UPB_INLINE bool upb_bytessink_end(upb_bytessink *s) {
  typedef upb_endfield_handlerfunc func;
  func *end;
  if (!s->handler) return true;
  end = (func *)s->handler->table[UPB_ENDSTR_SELECTOR].func;
6057

6058 6059 6060 6061
  if (!end) return true;
  return end(s->closure,
             upb_handlerattr_handlerdata(
                 &s->handler->table[UPB_ENDSTR_SELECTOR].attr));
6062 6063
}

6064 6065 6066 6067 6068 6069 6070 6071 6072
UPB_INLINE bool upb_bufsrc_putbuf(const char *buf, size_t len,
                                  upb_bytessink *sink) {
  void *subc;
  bool ret;
  upb_bufhandle handle;
  upb_bufhandle_init(&handle);
  upb_bufhandle_setbuf(&handle, buf, 0);
  ret = upb_bytessink_start(sink, len, &subc);
  if (ret && len != 0) {
6073
    ret = (upb_bytessink_putbuf(sink, subc, buf, len, &handle) >= len);
6074 6075 6076 6077 6078 6079
  }
  if (ret) {
    ret = upb_bytessink_end(sink);
  }
  upb_bufhandle_uninit(&handle);
  return ret;
6080
}
6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106

#define PUTVAL(type, ctype)                                                    \
  UPB_INLINE bool upb_sink_put##type(upb_sink *s, upb_selector_t sel,          \
                                     ctype val) {                              \
    typedef upb_##type##_handlerfunc functype;                                 \
    functype *func;                                                            \
    const void *hd;                                                            \
    if (!s->handlers) return true;                                             \
    func = (functype *)upb_handlers_gethandler(s->handlers, sel);              \
    if (!func) return true;                                                    \
    hd = upb_handlers_gethandlerdata(s->handlers, sel);                        \
    return func(s->closure, hd, val);                                          \
  }

PUTVAL(int32,  int32_t)
PUTVAL(int64,  int64_t)
PUTVAL(uint32, uint32_t)
PUTVAL(uint64, uint64_t)
PUTVAL(float,  float)
PUTVAL(double, double)
PUTVAL(bool,   bool)
#undef PUTVAL

UPB_INLINE void upb_sink_reset(upb_sink *s, const upb_handlers *h, void *c) {
  s->handlers = h;
  s->closure = c;
6107
}
6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120

UPB_INLINE size_t upb_sink_putstring(upb_sink *s, upb_selector_t sel,
                                     const char *buf, size_t n,
                                     const upb_bufhandle *handle) {
  typedef upb_string_handlerfunc func;
  func *handler;
  const void *hd;
  if (!s->handlers) return n;
  handler = (func *)upb_handlers_gethandler(s->handlers, sel);

  if (!handler) return n;
  hd = upb_handlers_gethandlerdata(s->handlers, sel);
  return handler(s->closure, hd, buf, n, handle);
6121
}
6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132

UPB_INLINE bool upb_sink_startmsg(upb_sink *s) {
  typedef upb_startmsg_handlerfunc func;
  func *startmsg;
  const void *hd;
  if (!s->handlers) return true;
  startmsg = (func*)upb_handlers_gethandler(s->handlers, UPB_STARTMSG_SELECTOR);

  if (!startmsg) return true;
  hd = upb_handlers_gethandlerdata(s->handlers, UPB_STARTMSG_SELECTOR);
  return startmsg(s->closure, hd);
6133
}
6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144

UPB_INLINE bool upb_sink_endmsg(upb_sink *s, upb_status *status) {
  typedef upb_endmsg_handlerfunc func;
  func *endmsg;
  const void *hd;
  if (!s->handlers) return true;
  endmsg = (func *)upb_handlers_gethandler(s->handlers, UPB_ENDMSG_SELECTOR);

  if (!endmsg) return true;
  hd = upb_handlers_gethandlerdata(s->handlers, UPB_ENDMSG_SELECTOR);
  return endmsg(s->closure, hd, status);
6145 6146
}

6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160
UPB_INLINE bool upb_sink_startseq(upb_sink *s, upb_selector_t sel,
                                  upb_sink *sub) {
  typedef upb_startfield_handlerfunc func;
  func *startseq;
  const void *hd;
  sub->closure = s->closure;
  sub->handlers = s->handlers;
  if (!s->handlers) return true;
  startseq = (func*)upb_handlers_gethandler(s->handlers, sel);

  if (!startseq) return true;
  hd = upb_handlers_gethandlerdata(s->handlers, sel);
  sub->closure = startseq(s->closure, hd);
  return sub->closure ? true : false;
6161
}
6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172

UPB_INLINE bool upb_sink_endseq(upb_sink *s, upb_selector_t sel) {
  typedef upb_endfield_handlerfunc func;
  func *endseq;
  const void *hd;
  if (!s->handlers) return true;
  endseq = (func*)upb_handlers_gethandler(s->handlers, sel);

  if (!endseq) return true;
  hd = upb_handlers_gethandlerdata(s->handlers, sel);
  return endseq(s->closure, hd);
6173
}
6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188

UPB_INLINE bool upb_sink_startstr(upb_sink *s, upb_selector_t sel,
                                  size_t size_hint, upb_sink *sub) {
  typedef upb_startstr_handlerfunc func;
  func *startstr;
  const void *hd;
  sub->closure = s->closure;
  sub->handlers = s->handlers;
  if (!s->handlers) return true;
  startstr = (func*)upb_handlers_gethandler(s->handlers, sel);

  if (!startstr) return true;
  hd = upb_handlers_gethandlerdata(s->handlers, sel);
  sub->closure = startstr(s->closure, hd, size_hint);
  return sub->closure ? true : false;
6189
}
6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200

UPB_INLINE bool upb_sink_endstr(upb_sink *s, upb_selector_t sel) {
  typedef upb_endfield_handlerfunc func;
  func *endstr;
  const void *hd;
  if (!s->handlers) return true;
  endstr = (func*)upb_handlers_gethandler(s->handlers, sel);

  if (!endstr) return true;
  hd = upb_handlers_gethandlerdata(s->handlers, sel);
  return endstr(s->closure, hd);
6201
}
6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219

UPB_INLINE bool upb_sink_startsubmsg(upb_sink *s, upb_selector_t sel,
                                     upb_sink *sub) {
  typedef upb_startfield_handlerfunc func;
  func *startsubmsg;
  const void *hd;
  sub->closure = s->closure;
  if (!s->handlers) {
    sub->handlers = NULL;
    return true;
  }
  sub->handlers = upb_handlers_getsubhandlers_sel(s->handlers, sel);
  startsubmsg = (func*)upb_handlers_gethandler(s->handlers, sel);

  if (!startsubmsg) return true;
  hd = upb_handlers_gethandlerdata(s->handlers, sel);
  sub->closure = startsubmsg(s->closure, hd);
  return sub->closure ? true : false;
6220
}
6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231

UPB_INLINE bool upb_sink_endsubmsg(upb_sink *s, upb_selector_t sel) {
  typedef upb_endfield_handlerfunc func;
  func *endsubmsg;
  const void *hd;
  if (!s->handlers) return true;
  endsubmsg = (func*)upb_handlers_gethandler(s->handlers, sel);

  if (!endsubmsg) return s->closure;
  hd = upb_handlers_gethandlerdata(s->handlers, sel);
  return endsubmsg(s->closure, hd);
6232
}
6233 6234 6235 6236 6237 6238 6239 6240 6241

UPB_END_EXTERN_C

#ifdef __cplusplus

namespace upb {

template <class T> Sink::Sink(const Handlers* handlers, T* closure) {
  upb_sink_reset(this, handlers, closure);
6242
}
6243 6244 6245
template <class T>
inline void Sink::Reset(const Handlers* handlers, T* closure) {
  upb_sink_reset(this, handlers, closure);
6246
}
6247 6248
inline bool Sink::StartMessage() {
  return upb_sink_startmsg(this);
6249
}
6250 6251
inline bool Sink::EndMessage(Status* status) {
  return upb_sink_endmsg(this, status);
6252
}
6253 6254
inline bool Sink::PutInt32(Handlers::Selector sel, int32_t val) {
  return upb_sink_putint32(this, sel, val);
6255
}
6256 6257
inline bool Sink::PutInt64(Handlers::Selector sel, int64_t val) {
  return upb_sink_putint64(this, sel, val);
6258
}
6259 6260
inline bool Sink::PutUInt32(Handlers::Selector sel, uint32_t val) {
  return upb_sink_putuint32(this, sel, val);
6261
}
6262 6263
inline bool Sink::PutUInt64(Handlers::Selector sel, uint64_t val) {
  return upb_sink_putuint64(this, sel, val);
6264
}
6265 6266
inline bool Sink::PutFloat(Handlers::Selector sel, float val) {
  return upb_sink_putfloat(this, sel, val);
6267
}
6268 6269
inline bool Sink::PutDouble(Handlers::Selector sel, double val) {
  return upb_sink_putdouble(this, sel, val);
6270
}
6271 6272
inline bool Sink::PutBool(Handlers::Selector sel, bool val) {
  return upb_sink_putbool(this, sel, val);
6273
}
6274 6275 6276
inline bool Sink::StartString(Handlers::Selector sel, size_t size_hint,
                              Sink *sub) {
  return upb_sink_startstr(this, sel, size_hint, sub);
6277
}
6278 6279 6280
inline size_t Sink::PutStringBuffer(Handlers::Selector sel, const char *buf,
                                    size_t len, const BufferHandle* handle) {
  return upb_sink_putstring(this, sel, buf, len, handle);
6281
}
6282 6283
inline bool Sink::EndString(Handlers::Selector sel) {
  return upb_sink_endstr(this, sel);
6284
}
6285 6286
inline bool Sink::StartSubMessage(Handlers::Selector sel, Sink* sub) {
  return upb_sink_startsubmsg(this, sel, sub);
6287
}
6288 6289
inline bool Sink::EndSubMessage(Handlers::Selector sel) {
  return upb_sink_endsubmsg(this, sel);
6290
}
6291 6292
inline bool Sink::StartSequence(Handlers::Selector sel, Sink* sub) {
  return upb_sink_startseq(this, sel, sub);
6293
}
6294 6295
inline bool Sink::EndSequence(Handlers::Selector sel) {
  return upb_sink_endseq(this, sel);
6296
}
6297 6298 6299 6300

template <class T>
BytesSink::BytesSink(const BytesHandler* handler, T* closure) {
  Reset(handler, closure);
6301
}
6302 6303 6304 6305

template <class T>
void BytesSink::Reset(const BytesHandler *handler, T *closure) {
  upb_bytessink_reset(this, handler, closure);
6306
}
6307 6308
inline bool BytesSink::Start(size_t size_hint, void **subc) {
  return upb_bytessink_start(this, size_hint, subc);
6309
}
6310 6311 6312
inline size_t BytesSink::PutBuffer(void *subc, const char *buf, size_t len,
                                   const BufferHandle *handle) {
  return upb_bytessink_putbuf(this, subc, buf, len, handle);
6313
}
6314 6315
inline bool BytesSink::End() {
  return upb_bytessink_end(this);
6316 6317
}

6318 6319 6320
inline bool BufferSource::PutBuffer(const char *buf, size_t len,
                                    BytesSink *sink) {
  return upb_bufsrc_putbuf(buf, len, sink);
6321 6322
}

6323 6324
}  /* namespace upb */
#endif
6325

6326
#endif
6327
/*
6328 6329 6330 6331 6332 6333 6334 6335 6336 6337
** For handlers that do very tiny, very simple operations, the function call
** overhead of calling a handler can be significant.  This file allows the
** user to define handlers that do something very simple like store the value
** to memory and/or set a hasbit.  JIT compilers can then special-case these
** handlers and emit specialized code for them instead of actually calling the
** handler.
**
** The functionality is very simple/limited right now but may expand to be able
** to call another function.
*/
6338

6339 6340
#ifndef UPB_SHIM_H
#define UPB_SHIM_H
6341 6342


6343 6344 6345 6346
typedef struct {
  size_t offset;
  int32_t hasbit;
} upb_shim_data;
6347

6348
#ifdef __cplusplus
6349

6350
namespace upb {
6351

6352 6353
struct Shim {
  typedef upb_shim_data Data;
6354

6355 6356 6357 6358
  /* Sets a handler for the given field that writes the value to the given
   * offset and, if hasbit >= 0, sets a bit at the given bit offset.  Returns
   * true if the handler was set successfully. */
  static bool Set(Handlers *h, const FieldDef *f, size_t ofs, int32_t hasbit);
6359

6360 6361 6362 6363 6364
  /* If this handler is a shim, returns the corresponding upb::Shim::Data and
   * stores the type in "type".  Otherwise returns NULL. */
  static const Data* GetData(const Handlers* h, Handlers::Selector s,
                             FieldDef::Type* type);
};
6365

6366
}  /* namespace upb */
6367

6368
#endif
6369

6370
UPB_BEGIN_EXTERN_C
6371

6372 6373 6374 6375 6376
/* C API. */
bool upb_shim_set(upb_handlers *h, const upb_fielddef *f, size_t offset,
                  int32_t hasbit);
const upb_shim_data *upb_shim_getdata(const upb_handlers *h, upb_selector_t s,
                                      upb_fieldtype_t *type);
6377

6378
UPB_END_EXTERN_C
6379

6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392
#ifdef __cplusplus
/* C++ Wrappers. */
namespace upb {
inline bool Shim::Set(Handlers* h, const FieldDef* f, size_t ofs,
                      int32_t hasbit) {
  return upb_shim_set(h, f, ofs, hasbit);
}
inline const Shim::Data* Shim::GetData(const Handlers* h, Handlers::Selector s,
                                       FieldDef::Type* type) {
  return upb_shim_getdata(h, s, type);
}
}  /* namespace upb */
#endif
6393

6394 6395
#endif  /* UPB_SHIM_H */
/*
6396 6397 6398 6399 6400 6401 6402 6403 6404 6405
** upb::SymbolTable (upb_symtab)
**
** A symtab (symbol table) stores a name->def map of upb_defs.  Clients could
** always create such tables themselves, but upb_symtab has logic for resolving
** symbolic references, and in particular, for keeping a whole set of consistent
** defs when replacing some subset of those defs.  This logic is nontrivial.
**
** This is a mixed C/C++ interface that offers a full API to both languages.
** See the top-level README for more information.
*/
6406

6407 6408
#ifndef UPB_SYMTAB_H_
#define UPB_SYMTAB_H_
6409 6410


6411 6412 6413 6414
#ifdef __cplusplus
#include <vector>
namespace upb { class SymbolTable; }
#endif
6415

6416 6417
UPB_DECLARE_DERIVED_TYPE(upb::SymbolTable, upb::RefCounted,
                         upb_symtab, upb_refcounted)
6418

6419 6420 6421 6422 6423 6424 6425
typedef struct {
 UPB_PRIVATE_FOR_CPP
  upb_strtable_iter iter;
  upb_deftype_t type;
} upb_symtab_iter;

#ifdef __cplusplus
6426

6427 6428
/* Non-const methods in upb::SymbolTable are NOT thread-safe. */
class upb::SymbolTable {
6429
 public:
6430 6431 6432
  /* Returns a new symbol table with a single ref owned by "owner."
   * Returns NULL if memory allocation failed. */
  static reffed_ptr<SymbolTable> New();
6433

6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450
  /* Include RefCounted base methods. */
  UPB_REFCOUNTED_CPPMETHODS

  /* For all lookup functions, the returned pointer is not owned by the
   * caller; it may be invalidated by any non-const call or unref of the
   * SymbolTable!  To protect against this, take a ref if desired. */

  /* Freezes the symbol table: prevents further modification of it.
   * After the Freeze() operation is successful, the SymbolTable must only be
   * accessed via a const pointer.
   *
   * Unlike with upb::MessageDef/upb::EnumDef/etc, freezing a SymbolTable is not
   * a necessary step in using a SymbolTable.  If you have no need for it to be
   * immutable, there is no need to freeze it ever.  However sometimes it is
   * useful, and SymbolTables that are statically compiled into the binary are
   * always frozen by nature. */
  void Freeze();
6451

6452 6453 6454 6455 6456 6457 6458 6459 6460 6461
  /* Resolves the given symbol using the rules described in descriptor.proto,
   * namely:
   *
   *    If the name starts with a '.', it is fully-qualified.  Otherwise,
   *    C++-like scoping rules are used to find the type (i.e. first the nested
   *    types within this message are searched, then within the parent, on up
   *    to the root namespace).
   *
   * If not found, returns NULL. */
  const Def* Resolve(const char* base, const char* sym) const;
6462

6463 6464 6465 6466 6467
  /* Finds an entry in the symbol table with this exact name.  If not found,
   * returns NULL. */
  const Def* Lookup(const char *sym) const;
  const MessageDef* LookupMessage(const char *sym) const;
  const EnumDef* LookupEnum(const char *sym) const;
6468

6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503
  /* TODO: introduce a C++ iterator, but make it nice and templated so that if
   * you ask for an iterator of MessageDef the iterated elements are strongly
   * typed as MessageDef*. */

  /* Adds the given mutable defs to the symtab, resolving all symbols
   * (including enum default values) and finalizing the defs.  Only one def per
   * name may be in the list, but defs can replace existing defs in the symtab.
   * All defs must have a name -- anonymous defs are not allowed.  Anonymous
   * defs can still be frozen by calling upb_def_freeze() directly.
   *
   * Any existing defs that can reach defs that are being replaced will
   * themselves be replaced also, so that the resulting set of defs is fully
   * consistent.
   *
   * This logic implemented in this method is a convenience; ultimately it
   * calls some combination of upb_fielddef_setsubdef(), upb_def_dup(), and
   * upb_freeze(), any of which the client could call themself.  However, since
   * the logic for doing so is nontrivial, we provide it here.
   *
   * The entire operation either succeeds or fails.  If the operation fails,
   * the symtab is unchanged, false is returned, and status indicates the
   * error.  The caller passes a ref on all defs to the symtab (even if the
   * operation fails).
   *
   * TODO(haberman): currently failure will leave the symtab unchanged, but may
   * leave the defs themselves partially resolved.  Does this matter?  If so we
   * could do a prepass that ensures that all symbols are resolvable and bail
   * if not, so we don't mutate anything until we know the operation will
   * succeed.
   *
   * TODO(haberman): since the defs must be mutable, refining a frozen def
   * requires making mutable copies of the entire tree.  This is wasteful if
   * only a few messages are changing.  We may want to add a way of adding a
   * tree of frozen defs to the symtab (perhaps an alternate constructor where
   * you pass the root of the tree?) */
6504
  bool Add(Def*const* defs, size_t n, void* ref_donor, Status* status);
6505

6506 6507 6508
  bool Add(const std::vector<Def*>& defs, void *owner, Status* status) {
    return Add((Def*const*)&defs[0], defs.size(), owner, status);
  }
6509

6510 6511 6512 6513 6514
  /* Resolves all subdefs for messages in this file and attempts to freeze the
   * file.  If this succeeds, adds all the symbols to this SymbolTable
   * (replacing any existing ones with the same names). */
  bool AddFile(FileDef* file, Status* s);

6515 6516 6517 6518 6519
 private:
  UPB_DISALLOW_POD_OPS(SymbolTable, upb::SymbolTable)
};

#endif  /* __cplusplus */
6520 6521 6522

UPB_BEGIN_EXTERN_C

6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534
/* Native C API. */

/* Include refcounted methods like upb_symtab_ref(). */
UPB_REFCOUNTED_CMETHODS(upb_symtab, upb_symtab_upcast)

upb_symtab *upb_symtab_new(const void *owner);
void upb_symtab_freeze(upb_symtab *s);
const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base,
                                  const char *sym);
const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym);
const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym);
const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym);
6535 6536 6537
bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, size_t n,
                    void *ref_donor, upb_status *status);
bool upb_symtab_addfile(upb_symtab *s, upb_filedef *file, upb_status* status);
6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553

/* upb_symtab_iter i;
 * for(upb_symtab_begin(&i, s, type); !upb_symtab_done(&i);
 *     upb_symtab_next(&i)) {
 *   const upb_def *def = upb_symtab_iter_def(&i);
 *    // ...
 * }
 *
 * For C we don't have separate iterators for const and non-const.
 * It is the caller's responsibility to cast the upb_fielddef* to
 * const if the upb_msgdef* is const. */
void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s,
                      upb_deftype_t type);
void upb_symtab_next(upb_symtab_iter *iter);
bool upb_symtab_done(const upb_symtab_iter *iter);
const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter);
6554 6555 6556 6557

UPB_END_EXTERN_C

#ifdef __cplusplus
6558
/* C++ inline wrappers. */
6559
namespace upb {
6560 6561 6562
inline reffed_ptr<SymbolTable> SymbolTable::New() {
  upb_symtab *s = upb_symtab_new(&s);
  return reffed_ptr<SymbolTable>(s, &s);
6563 6564
}

6565 6566
inline void SymbolTable::Freeze() {
  return upb_symtab_freeze(this);
6567
}
6568 6569 6570
inline const Def *SymbolTable::Resolve(const char *base,
                                       const char *sym) const {
  return upb_symtab_resolve(this, base, sym);
6571
}
6572 6573
inline const Def* SymbolTable::Lookup(const char *sym) const {
  return upb_symtab_lookup(this, sym);
6574
}
6575 6576
inline const MessageDef *SymbolTable::LookupMessage(const char *sym) const {
  return upb_symtab_lookupmsg(this, sym);
6577
}
6578
inline bool SymbolTable::Add(
6579
    Def*const* defs, size_t n, void* ref_donor, Status* status) {
6580 6581
  return upb_symtab_add(this, (upb_def*const*)defs, n, ref_donor, status);
}
6582 6583 6584
inline bool SymbolTable::AddFile(FileDef* file, Status* s) {
  return upb_symtab_addfile(this, file, s);
}
6585 6586
}  /* namespace upb */
#endif
6587

6588
#endif  /* UPB_SYMTAB_H_ */
6589
/*
6590 6591 6592 6593
** upb::descriptor::Reader (upb_descreader)
**
** Provides a way of building upb::Defs from data in descriptor.proto format.
*/
6594

6595 6596
#ifndef UPB_DESCRIPTOR_H
#define UPB_DESCRIPTOR_H
6597 6598 6599 6600


#ifdef __cplusplus
namespace upb {
6601 6602 6603 6604
namespace descriptor {
class Reader;
}  /* namespace descriptor */
}  /* namespace upb */
6605 6606
#endif

6607
UPB_DECLARE_TYPE(upb::descriptor::Reader, upb_descreader)
6608

6609
#ifdef __cplusplus
6610

6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
/* Class that receives descriptor data according to the descriptor.proto schema
 * and use it to build upb::Defs corresponding to that schema. */
class upb::descriptor::Reader {
 public:
  /* These handlers must have come from NewHandlers() and must outlive the
   * Reader.
   *
   * TODO: generate the handlers statically (like we do with the
   * descriptor.proto defs) so that there is no need to pass this parameter (or
   * to build/memory-manage the handlers at runtime at all).  Unfortunately this
   * is a bit tricky to implement for Handlers, but necessary to simplify this
   * interface. */
  static Reader* Create(Environment* env, const Handlers* handlers);
6624

6625 6626
  /* The reader's input; this is where descriptor.proto data should be sent. */
  Sink* input();
6627

6628 6629 6630
  /* Use to get the FileDefs that have been parsed. */
  size_t file_count() const;
  FileDef* file(size_t i) const;
6631

6632 6633
  /* Builds and returns handlers for the reader, owned by "owner." */
  static Handlers* NewHandlers(const void* owner);
6634

6635 6636 6637
 private:
  UPB_DISALLOW_POD_OPS(Reader, upb::descriptor::Reader)
};
6638

6639
#endif
6640

6641
UPB_BEGIN_EXTERN_C
6642

6643 6644 6645
/* C API. */
upb_descreader *upb_descreader_create(upb_env *e, const upb_handlers *h);
upb_sink *upb_descreader_input(upb_descreader *r);
6646 6647
size_t upb_descreader_filecount(const upb_descreader *r);
upb_filedef *upb_descreader_file(const upb_descreader *r, size_t i);
6648
const upb_handlers *upb_descreader_newhandlers(const void *owner);
6649

6650
UPB_END_EXTERN_C
6651

6652 6653 6654 6655 6656 6657 6658 6659
#ifdef __cplusplus
/* C++ implementation details. ************************************************/
namespace upb {
namespace descriptor {
inline Reader* Reader::Create(Environment* e, const Handlers *h) {
  return upb_descreader_create(e, h);
}
inline Sink* Reader::input() { return upb_descreader_input(this); }
6660 6661 6662 6663 6664
inline size_t Reader::file_count() const {
  return upb_descreader_filecount(this);
}
inline FileDef* Reader::file(size_t i) const {
  return upb_descreader_file(this, i);
6665 6666 6667 6668
}
}  /* namespace descriptor */
}  /* namespace upb */
#endif
6669

6670 6671 6672 6673 6674 6675 6676
#endif  /* UPB_DESCRIPTOR_H */
/* This file contains accessors for a set of compiled-in defs.
 * Note that unlike Google's protobuf, it does *not* define
 * generated classes or any other kind of data structure for
 * actually storing protobufs.  It only contains *defs* which
 * let you reflect over a protobuf *schema*.
 */
6677 6678 6679 6680 6681
/* This file was generated by upbc (the upb compiler) from the input
 * file:
 *
 *     upb/descriptor/descriptor.proto
 *
6682 6683
 * Do not edit -- your changes will be discarded when the file is
 * regenerated. */
6684

6685 6686
#ifndef UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_
#define UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_
6687 6688


6689
UPB_BEGIN_EXTERN_C
6690

6691
/* Enums */
6692

6693
typedef enum {
6694 6695 6696
  google_protobuf_FieldDescriptorProto_LABEL_OPTIONAL = 1,
  google_protobuf_FieldDescriptorProto_LABEL_REQUIRED = 2,
  google_protobuf_FieldDescriptorProto_LABEL_REPEATED = 3
6697
} google_protobuf_FieldDescriptorProto_Label;
6698

6699
typedef enum {
6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717
  google_protobuf_FieldDescriptorProto_TYPE_DOUBLE = 1,
  google_protobuf_FieldDescriptorProto_TYPE_FLOAT = 2,
  google_protobuf_FieldDescriptorProto_TYPE_INT64 = 3,
  google_protobuf_FieldDescriptorProto_TYPE_UINT64 = 4,
  google_protobuf_FieldDescriptorProto_TYPE_INT32 = 5,
  google_protobuf_FieldDescriptorProto_TYPE_FIXED64 = 6,
  google_protobuf_FieldDescriptorProto_TYPE_FIXED32 = 7,
  google_protobuf_FieldDescriptorProto_TYPE_BOOL = 8,
  google_protobuf_FieldDescriptorProto_TYPE_STRING = 9,
  google_protobuf_FieldDescriptorProto_TYPE_GROUP = 10,
  google_protobuf_FieldDescriptorProto_TYPE_MESSAGE = 11,
  google_protobuf_FieldDescriptorProto_TYPE_BYTES = 12,
  google_protobuf_FieldDescriptorProto_TYPE_UINT32 = 13,
  google_protobuf_FieldDescriptorProto_TYPE_ENUM = 14,
  google_protobuf_FieldDescriptorProto_TYPE_SFIXED32 = 15,
  google_protobuf_FieldDescriptorProto_TYPE_SFIXED64 = 16,
  google_protobuf_FieldDescriptorProto_TYPE_SINT32 = 17,
  google_protobuf_FieldDescriptorProto_TYPE_SINT64 = 18
6718
} google_protobuf_FieldDescriptorProto_Type;
6719

6720
typedef enum {
6721 6722 6723
  google_protobuf_FieldOptions_STRING = 0,
  google_protobuf_FieldOptions_CORD = 1,
  google_protobuf_FieldOptions_STRING_PIECE = 2
6724
} google_protobuf_FieldOptions_CType;
6725

6726
typedef enum {
6727 6728 6729
  google_protobuf_FieldOptions_JS_NORMAL = 0,
  google_protobuf_FieldOptions_JS_STRING = 1,
  google_protobuf_FieldOptions_JS_NUMBER = 2
6730 6731
} google_protobuf_FieldOptions_JSType;

6732
typedef enum {
6733 6734 6735
  google_protobuf_FileOptions_SPEED = 1,
  google_protobuf_FileOptions_CODE_SIZE = 2,
  google_protobuf_FileOptions_LITE_RUNTIME = 3
6736
} google_protobuf_FileOptions_OptimizeMode;
6737

6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960
/* MessageDefs: call these functions to get a ref to a msgdef. */
const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_EnumDescriptorProto_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_EnumOptions_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_EnumValueDescriptorProto_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_EnumValueOptions_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_FieldDescriptorProto_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_FieldOptions_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_FileDescriptorProto_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_FileDescriptorSet_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_FileOptions_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_MessageOptions_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_MethodDescriptorProto_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_MethodOptions_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_OneofDescriptorProto_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_ServiceDescriptorProto_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_ServiceOptions_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo_Location_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption_get(const void *owner);
const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption_NamePart_get(const void *owner);

/* EnumDefs: call these functions to get a ref to an enumdef. */
const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Label_get(const void *owner);
const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Type_get(const void *owner);
const upb_enumdef *upbdefs_google_protobuf_FieldOptions_CType_get(const void *owner);
const upb_enumdef *upbdefs_google_protobuf_FieldOptions_JSType_get(const void *owner);
const upb_enumdef *upbdefs_google_protobuf_FileOptions_OptimizeMode_get(const void *owner);

/* Functions to test whether this message is of a certain type. */
UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto.ExtensionRange") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto.ReservedRange") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_EnumDescriptorProto_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumDescriptorProto") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_EnumOptions_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumOptions") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_EnumValueDescriptorProto_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumValueDescriptorProto") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_EnumValueOptions_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumValueOptions") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.FieldDescriptorProto") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.FieldOptions") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_FileDescriptorProto_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileDescriptorProto") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_FileDescriptorSet_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileDescriptorSet") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_FileOptions_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileOptions") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_MessageOptions_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.MessageOptions") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_MethodDescriptorProto_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.MethodDescriptorProto") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_MethodOptions_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.MethodOptions") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_OneofDescriptorProto_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.OneofDescriptorProto") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_ServiceDescriptorProto_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.ServiceDescriptorProto") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_ServiceOptions_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.ServiceOptions") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_SourceCodeInfo_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.SourceCodeInfo") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_SourceCodeInfo_Location_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.SourceCodeInfo.Location") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_UninterpretedOption_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.UninterpretedOption") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_UninterpretedOption_NamePart_is(const upb_msgdef *m) {
  return strcmp(upb_msgdef_fullname(m), "google.protobuf.UninterpretedOption.NamePart") == 0;
}

/* Functions to test whether this enum is of a certain type. */
UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_Label_is(const upb_enumdef *e) {
  return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldDescriptorProto.Label") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_Type_is(const upb_enumdef *e) {
  return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldDescriptorProto.Type") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_CType_is(const upb_enumdef *e) {
  return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldOptions.CType") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_JSType_is(const upb_enumdef *e) {
  return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldOptions.JSType") == 0;
}
UPB_INLINE bool upbdefs_google_protobuf_FileOptions_OptimizeMode_is(const upb_enumdef *e) {
  return strcmp(upb_enumdef_fullname(e), "google.protobuf.FileOptions.OptimizeMode") == 0;
}


/* Functions to get a fielddef from a msgdef reference. */
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_f_end(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m)); return upb_msgdef_itof(m, 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_f_start(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m)); return upb_msgdef_itof(m, 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_f_end(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m)); return upb_msgdef_itof(m, 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_f_start(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m)); return upb_msgdef_itof(m, 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_enum_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 4); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 6); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_extension_range(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 5); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_field(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_nested_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_oneof_decl(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 8); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 7); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_reserved_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 10); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_reserved_range(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 9); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_allow_alias(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 999); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_number(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueOptions_is(m)); return upb_msgdef_itof(m, 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueOptions_is(m)); return upb_msgdef_itof(m, 999); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_default_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 7); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_extendee(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_json_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 10); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_label(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_number(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_oneof_index(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 9); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 8); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_type_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_ctype(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_jstype(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 6); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_lazy(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 5); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_packed(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 999); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_weak(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 10); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_enum_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 7); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_message_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 8); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_public_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 10); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_service(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_source_code_info(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 9); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_syntax(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 12); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_weak_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 11); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorSet_f_file(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorSet_is(m)); return upb_msgdef_itof(m, 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_cc_enable_arenas(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 31); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_cc_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 16); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_csharp_namespace(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 37); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 23); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_go_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 11); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_generate_equals_and_hash(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 20); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 17); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_multiple_files(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 10); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_outer_classname(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 8); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_string_check_utf8(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 27); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_javanano_use_deprecated_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 38); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_objc_class_prefix(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 36); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_optimize_for(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 9); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_py_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 18); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 999); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_map_entry(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 7); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_message_set_wire_format(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_no_standard_descriptor_accessor(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 999); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_client_streaming(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_input_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_output_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_server_streaming(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodOptions_is(m)); return upb_msgdef_itof(m, 33); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodOptions_is(m)); return upb_msgdef_itof(m, 999); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_OneofDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_OneofDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_method(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceOptions_is(m)); return upb_msgdef_itof(m, 33); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceOptions_is(m)); return upb_msgdef_itof(m, 999); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_leading_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_leading_detached_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 6); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_path(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_span(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_trailing_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 4); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_f_location(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_is(m)); return upb_msgdef_itof(m, 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NamePart_f_is_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m)); return upb_msgdef_itof(m, 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NamePart_f_name_part(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m)); return upb_msgdef_itof(m, 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_aggregate_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 8); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_double_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 6); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_identifier_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_negative_int_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 5); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_positive_int_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 4); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_string_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 7); }
6961

6962
UPB_END_EXTERN_C
6963 6964 6965

#ifdef __cplusplus

6966 6967 6968
namespace upbdefs {
namespace google {
namespace protobuf {
6969

6970
class DescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
6971
 public:
6972
  DescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
6973 6974 6975
      : reffed_ptr(m, ref_donor) {
    assert(upbdefs_google_protobuf_DescriptorProto_is(m));
  }
6976

6977
  static DescriptorProto get() {
6978
    const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_get(&m);
6979 6980
    return DescriptorProto(m, &m);
  }
6981

6982
  class ExtensionRange : public ::upb::reffed_ptr<const ::upb::MessageDef> {
6983
   public:
6984
    ExtensionRange(const ::upb::MessageDef* m, const void *ref_donor = NULL)
6985 6986 6987
        : reffed_ptr(m, ref_donor) {
      assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m));
    }
6988

6989
    static ExtensionRange get() {
6990
      const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_ExtensionRange_get(&m);
6991 6992 6993
      return ExtensionRange(m, &m);
    }
  };
6994

6995
  class ReservedRange : public ::upb::reffed_ptr<const ::upb::MessageDef> {
6996
   public:
6997
    ReservedRange(const ::upb::MessageDef* m, const void *ref_donor = NULL)
6998 6999 7000
        : reffed_ptr(m, ref_donor) {
      assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m));
    }
7001

7002
    static ReservedRange get() {
7003
      const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_ReservedRange_get(&m);
7004 7005 7006 7007
      return ReservedRange(m, &m);
    }
  };
};
7008

7009
class EnumDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7010
 public:
7011
  EnumDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7012 7013 7014
      : reffed_ptr(m, ref_donor) {
    assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m));
  }
7015

7016
  static EnumDescriptorProto get() {
7017
    const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumDescriptorProto_get(&m);
7018 7019 7020
    return EnumDescriptorProto(m, &m);
  }
};
7021

7022
class EnumOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7023
 public:
7024
  EnumOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7025 7026 7027
      : reffed_ptr(m, ref_donor) {
    assert(upbdefs_google_protobuf_EnumOptions_is(m));
  }
7028

7029
  static EnumOptions get() {
7030
    const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumOptions_get(&m);
7031 7032 7033
    return EnumOptions(m, &m);
  }
};
7034

7035
class EnumValueDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7036
 public:
7037
  EnumValueDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7038 7039 7040
      : reffed_ptr(m, ref_donor) {
    assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m));
  }
7041

7042
  static EnumValueDescriptorProto get() {
7043
    const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumValueDescriptorProto_get(&m);
7044 7045 7046
    return EnumValueDescriptorProto(m, &m);
  }
};
7047

7048
class EnumValueOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7049
 public:
7050
  EnumValueOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7051 7052 7053
      : reffed_ptr(m, ref_donor) {
    assert(upbdefs_google_protobuf_EnumValueOptions_is(m));
  }
7054

7055
  static EnumValueOptions get() {
7056
    const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumValueOptions_get(&m);
7057 7058 7059
    return EnumValueOptions(m, &m);
  }
};
7060

7061
class FieldDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7062
 public:
7063
  FieldDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7064 7065 7066
      : reffed_ptr(m, ref_donor) {
    assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m));
  }
7067

7068
  static FieldDescriptorProto get() {
7069
    const ::upb::MessageDef* m = upbdefs_google_protobuf_FieldDescriptorProto_get(&m);
7070 7071
    return FieldDescriptorProto(m, &m);
  }
7072

7073
  class Label : public ::upb::reffed_ptr<const ::upb::EnumDef> {
7074
   public:
7075
    Label(const ::upb::EnumDef* e, const void *ref_donor = NULL)
7076 7077 7078 7079
        : reffed_ptr(e, ref_donor) {
      assert(upbdefs_google_protobuf_FieldDescriptorProto_Label_is(e));
    }
    static Label get() {
7080
      const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldDescriptorProto_Label_get(&e);
7081 7082 7083
      return Label(e, &e);
    }
  };
7084

7085
  class Type : public ::upb::reffed_ptr<const ::upb::EnumDef> {
7086
   public:
7087
    Type(const ::upb::EnumDef* e, const void *ref_donor = NULL)
7088 7089 7090 7091
        : reffed_ptr(e, ref_donor) {
      assert(upbdefs_google_protobuf_FieldDescriptorProto_Type_is(e));
    }
    static Type get() {
7092
      const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldDescriptorProto_Type_get(&e);
7093 7094 7095 7096
      return Type(e, &e);
    }
  };
};
7097

7098
class FieldOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7099
 public:
7100
  FieldOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7101 7102 7103
      : reffed_ptr(m, ref_donor) {
    assert(upbdefs_google_protobuf_FieldOptions_is(m));
  }
7104

7105
  static FieldOptions get() {
7106
    const ::upb::MessageDef* m = upbdefs_google_protobuf_FieldOptions_get(&m);
7107 7108
    return FieldOptions(m, &m);
  }
7109

7110
  class CType : public ::upb::reffed_ptr<const ::upb::EnumDef> {
7111
   public:
7112
    CType(const ::upb::EnumDef* e, const void *ref_donor = NULL)
7113 7114 7115 7116
        : reffed_ptr(e, ref_donor) {
      assert(upbdefs_google_protobuf_FieldOptions_CType_is(e));
    }
    static CType get() {
7117
      const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldOptions_CType_get(&e);
7118 7119 7120
      return CType(e, &e);
    }
  };
7121

7122
  class JSType : public ::upb::reffed_ptr<const ::upb::EnumDef> {
7123
   public:
7124
    JSType(const ::upb::EnumDef* e, const void *ref_donor = NULL)
7125 7126 7127 7128
        : reffed_ptr(e, ref_donor) {
      assert(upbdefs_google_protobuf_FieldOptions_JSType_is(e));
    }
    static JSType get() {
7129
      const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldOptions_JSType_get(&e);
7130 7131 7132 7133 7134
      return JSType(e, &e);
    }
  };
};

7135
class FileDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7136
 public:
7137
  FileDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7138 7139 7140 7141 7142
      : reffed_ptr(m, ref_donor) {
    assert(upbdefs_google_protobuf_FileDescriptorProto_is(m));
  }

  static FileDescriptorProto get() {
7143
    const ::upb::MessageDef* m = upbdefs_google_protobuf_FileDescriptorProto_get(&m);
7144 7145 7146 7147
    return FileDescriptorProto(m, &m);
  }
};

7148
class FileDescriptorSet : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7149
 public:
7150
  FileDescriptorSet(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7151 7152 7153 7154 7155
      : reffed_ptr(m, ref_donor) {
    assert(upbdefs_google_protobuf_FileDescriptorSet_is(m));
  }

  static FileDescriptorSet get() {
7156
    const ::upb::MessageDef* m = upbdefs_google_protobuf_FileDescriptorSet_get(&m);
7157 7158 7159 7160
    return FileDescriptorSet(m, &m);
  }
};

7161
class FileOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7162
 public:
7163
  FileOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7164 7165 7166 7167 7168
      : reffed_ptr(m, ref_donor) {
    assert(upbdefs_google_protobuf_FileOptions_is(m));
  }

  static FileOptions get() {
7169
    const ::upb::MessageDef* m = upbdefs_google_protobuf_FileOptions_get(&m);
7170 7171 7172
    return FileOptions(m, &m);
  }

7173
  class OptimizeMode : public ::upb::reffed_ptr<const ::upb::EnumDef> {
7174
   public:
7175
    OptimizeMode(const ::upb::EnumDef* e, const void *ref_donor = NULL)
7176 7177 7178 7179
        : reffed_ptr(e, ref_donor) {
      assert(upbdefs_google_protobuf_FileOptions_OptimizeMode_is(e));
    }
    static OptimizeMode get() {
7180
      const ::upb::EnumDef* e = upbdefs_google_protobuf_FileOptions_OptimizeMode_get(&e);
7181 7182 7183 7184 7185
      return OptimizeMode(e, &e);
    }
  };
};

7186
class MessageOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7187
 public:
7188
  MessageOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7189 7190 7191 7192 7193
      : reffed_ptr(m, ref_donor) {
    assert(upbdefs_google_protobuf_MessageOptions_is(m));
  }

  static MessageOptions get() {
7194
    const ::upb::MessageDef* m = upbdefs_google_protobuf_MessageOptions_get(&m);
7195 7196 7197 7198
    return MessageOptions(m, &m);
  }
};

7199
class MethodDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7200
 public:
7201
  MethodDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7202 7203 7204 7205 7206
      : reffed_ptr(m, ref_donor) {
    assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m));
  }

  static MethodDescriptorProto get() {
7207
    const ::upb::MessageDef* m = upbdefs_google_protobuf_MethodDescriptorProto_get(&m);
7208 7209 7210 7211
    return MethodDescriptorProto(m, &m);
  }
};

7212
class MethodOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7213
 public:
7214
  MethodOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7215 7216 7217 7218 7219
      : reffed_ptr(m, ref_donor) {
    assert(upbdefs_google_protobuf_MethodOptions_is(m));
  }

  static MethodOptions get() {
7220
    const ::upb::MessageDef* m = upbdefs_google_protobuf_MethodOptions_get(&m);
7221 7222 7223 7224
    return MethodOptions(m, &m);
  }
};

7225
class OneofDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7226
 public:
7227
  OneofDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7228 7229 7230 7231 7232
      : reffed_ptr(m, ref_donor) {
    assert(upbdefs_google_protobuf_OneofDescriptorProto_is(m));
  }

  static OneofDescriptorProto get() {
7233
    const ::upb::MessageDef* m = upbdefs_google_protobuf_OneofDescriptorProto_get(&m);
7234 7235 7236 7237
    return OneofDescriptorProto(m, &m);
  }
};

7238
class ServiceDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7239
 public:
7240
  ServiceDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7241 7242 7243 7244 7245
      : reffed_ptr(m, ref_donor) {
    assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m));
  }

  static ServiceDescriptorProto get() {
7246
    const ::upb::MessageDef* m = upbdefs_google_protobuf_ServiceDescriptorProto_get(&m);
7247 7248 7249 7250
    return ServiceDescriptorProto(m, &m);
  }
};

7251
class ServiceOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7252
 public:
7253
  ServiceOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7254 7255 7256 7257 7258
      : reffed_ptr(m, ref_donor) {
    assert(upbdefs_google_protobuf_ServiceOptions_is(m));
  }

  static ServiceOptions get() {
7259
    const ::upb::MessageDef* m = upbdefs_google_protobuf_ServiceOptions_get(&m);
7260 7261 7262 7263
    return ServiceOptions(m, &m);
  }
};

7264
class SourceCodeInfo : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7265
 public:
7266
  SourceCodeInfo(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7267 7268 7269 7270 7271
      : reffed_ptr(m, ref_donor) {
    assert(upbdefs_google_protobuf_SourceCodeInfo_is(m));
  }

  static SourceCodeInfo get() {
7272
    const ::upb::MessageDef* m = upbdefs_google_protobuf_SourceCodeInfo_get(&m);
7273 7274 7275
    return SourceCodeInfo(m, &m);
  }

7276
  class Location : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7277
   public:
7278
    Location(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7279 7280 7281 7282 7283
        : reffed_ptr(m, ref_donor) {
      assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m));
    }

    static Location get() {
7284
      const ::upb::MessageDef* m = upbdefs_google_protobuf_SourceCodeInfo_Location_get(&m);
7285 7286 7287 7288 7289
      return Location(m, &m);
    }
  };
};

7290
class UninterpretedOption : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7291
 public:
7292
  UninterpretedOption(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7293 7294 7295 7296 7297
      : reffed_ptr(m, ref_donor) {
    assert(upbdefs_google_protobuf_UninterpretedOption_is(m));
  }

  static UninterpretedOption get() {
7298
    const ::upb::MessageDef* m = upbdefs_google_protobuf_UninterpretedOption_get(&m);
7299 7300 7301
    return UninterpretedOption(m, &m);
  }

7302
  class NamePart : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7303
   public:
7304
    NamePart(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7305 7306 7307 7308 7309
        : reffed_ptr(m, ref_donor) {
      assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m));
    }

    static NamePart get() {
7310
      const ::upb::MessageDef* m = upbdefs_google_protobuf_UninterpretedOption_NamePart_get(&m);
7311 7312 7313 7314
      return NamePart(m, &m);
    }
  };
};
7315

7316 7317 7318 7319
}  /* namespace protobuf */
}  /* namespace google */
}  /* namespace upbdefs */

7320
#endif  /* __cplusplus */
7321

7322
#endif  /* UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_ */
7323
/*
7324 7325
** Internal-only definitions for the decoder.
*/
7326 7327 7328 7329 7330

#ifndef UPB_DECODER_INT_H_
#define UPB_DECODER_INT_H_

/*
7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342
** upb::pb::Decoder
**
** A high performance, streaming, resumable decoder for the binary protobuf
** format.
**
** This interface works the same regardless of what decoder backend is being
** used.  A client of this class does not need to know whether decoding is using
** a JITted decoder (DynASM, LLVM, etc) or an interpreted decoder.  By default,
** it will always use the fastest available decoder.  However, you can call
** set_allow_jit(false) to disable any JIT decoder that might be available.
** This is primarily useful for testing purposes.
*/
7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354

#ifndef UPB_DECODER_H_
#define UPB_DECODER_H_


#ifdef __cplusplus
namespace upb {
namespace pb {
class CodeCache;
class Decoder;
class DecoderMethod;
class DecoderMethodOptions;
7355 7356
}  /* namespace pb */
}  /* namespace upb */
7357 7358
#endif

7359 7360 7361 7362 7363 7364 7365
UPB_DECLARE_TYPE(upb::pb::CodeCache, upb_pbcodecache)
UPB_DECLARE_TYPE(upb::pb::Decoder, upb_pbdecoder)
UPB_DECLARE_TYPE(upb::pb::DecoderMethodOptions, upb_pbdecodermethodopts)

UPB_DECLARE_DERIVED_TYPE(upb::pb::DecoderMethod, upb::RefCounted,
                         upb_pbdecodermethod, upb_refcounted)

7366 7367 7368 7369 7370 7371 7372
/* The maximum number of bytes we are required to buffer internally between
 * calls to the decoder.  The value is 14: a 5 byte unknown tag plus ten-byte
 * varint, less one because we are buffering an incomplete value.
 *
 * Should only be used by unit tests. */
#define UPB_DECODER_MAX_RESIDUAL_BYTES 14

7373
#ifdef __cplusplus
7374

7375 7376 7377 7378
/* The parameters one uses to construct a DecoderMethod.
 * TODO(haberman): move allowjit here?  Seems more convenient for users.
 * TODO(haberman): move this to be heap allocated for ABI stability. */
class upb::pb::DecoderMethodOptions {
7379
 public:
7380 7381
  /* Parameter represents the destination handlers that this method will push
   * to. */
7382 7383
  explicit DecoderMethodOptions(const Handlers* dest_handlers);

7384 7385 7386
  /* Should the decoder push submessages to lazy handlers for fields that have
   * them?  The caller should set this iff the lazy handlers expect data that is
   * in protobuf binary format and the caller wishes to lazy parse it. */
7387
  void set_lazy(bool lazy);
7388 7389 7390
#else
struct upb_pbdecodermethodopts {
#endif
7391 7392
  const upb_handlers *handlers;
  bool lazy;
7393 7394 7395
};

#ifdef __cplusplus
7396

7397 7398 7399
/* Represents the code to parse a protobuf according to a destination
 * Handlers. */
class upb::pb::DecoderMethod {
7400
 public:
7401 7402 7403 7404 7405 7406
  /* Include base methods from upb::ReferenceCounted. */
  UPB_REFCOUNTED_CPPMETHODS

  /* The destination handlers that are statically bound to this method.
   * This method is only capable of outputting to a sink that uses these
   * handlers. */
7407 7408
  const Handlers* dest_handlers() const;

7409
  /* The input handlers for this decoder method. */
7410 7411
  const BytesHandler* input_handler() const;

7412
  /* Whether this method is native. */
7413 7414
  bool is_native() const;

7415 7416
  /* Convenience method for generating a DecoderMethod without explicitly
   * creating a CodeCache. */
7417 7418 7419
  static reffed_ptr<const DecoderMethod> New(const DecoderMethodOptions& opts);

 private:
7420 7421
  UPB_DISALLOW_POD_OPS(DecoderMethod, upb::pb::DecoderMethod)
};
7422

7423
#endif
7424

7425 7426 7427 7428
/* Preallocation hint: decoder won't allocate more bytes than this when first
 * constructed.  This hint may be an overestimate for some build configurations.
 * But if the decoder library is upgraded without recompiling the application,
 * it may be an underestimate. */
7429
#define UPB_PB_DECODER_SIZE 4416
7430 7431 7432

#ifdef __cplusplus

7433 7434
/* A Decoder receives binary protobuf data on its input sink and pushes the
 * decoded data to its output sink. */
7435
class upb::pb::Decoder {
7436
 public:
7437 7438 7439 7440 7441
  /* Constructs a decoder instance for the given method, which must outlive this
   * decoder.  Any errors during parsing will be set on the given status, which
   * must also outlive this decoder.
   *
   * The sink must match the given method. */
7442 7443
  static Decoder* Create(Environment* env, const DecoderMethod* method,
                         Sink* output);
7444

7445
  /* Returns the DecoderMethod this decoder is parsing from. */
7446 7447
  const DecoderMethod* method() const;

7448
  /* The sink on which this decoder receives input. */
7449
  BytesSink* input();
7450

7451 7452 7453 7454 7455 7456 7457
  /* Returns number of bytes successfully parsed.
   *
   * This can be useful for determining the stream position where an error
   * occurred.
   *
   * This value may not be up-to-date when called from inside a parsing
   * callback. */
7458 7459
  uint64_t BytesParsed() const;

7460 7461 7462 7463 7464 7465 7466
  /* Gets/sets the parsing nexting limit.  If the total number of nested
   * submessages and repeated fields hits this limit, parsing will fail.  This
   * is a resource limit that controls the amount of memory used by the parsing
   * stack.
   *
   * Setting the limit will fail if the parser is currently suspended at a depth
   * greater than this, or if memory allocation of the stack fails. */
7467 7468
  size_t max_nesting() const;
  bool set_max_nesting(size_t max);
7469

7470
  void Reset();
7471

7472
  static const size_t kSize = UPB_PB_DECODER_SIZE;
7473

7474
 private:
7475
  UPB_DISALLOW_POD_OPS(Decoder, upb::pb::Decoder)
7476
};
7477

7478 7479 7480
#endif  /* __cplusplus */

#ifdef __cplusplus
7481

7482 7483 7484 7485 7486 7487 7488
/* A class for caching protobuf processing code, whether bytecode for the
 * interpreted decoder or machine code for the JIT.
 *
 * This class is not thread-safe.
 *
 * TODO(haberman): move this to be heap allocated for ABI stability. */
class upb::pb::CodeCache {
7489 7490 7491 7492
 public:
  CodeCache();
  ~CodeCache();

7493 7494 7495 7496 7497 7498 7499
  /* Whether the cache is allowed to generate machine code.  Defaults to true.
   * There is no real reason to turn it off except for testing or if you are
   * having a specific problem with the JIT.
   *
   * Note that allow_jit = true does not *guarantee* that the code will be JIT
   * compiled.  If this platform is not supported or the JIT was not compiled
   * in, the code may still be interpreted. */
7500 7501
  bool allow_jit() const;

7502 7503
  /* This may only be called when the object is first constructed, and prior to
   * any code generation, otherwise returns false and does nothing. */
7504 7505
  bool set_allow_jit(bool allow);

7506 7507 7508 7509 7510 7511 7512 7513
  /* Returns a DecoderMethod that can push data to the given handlers.
   * If a suitable method already exists, it will be returned from the cache.
   *
   * Specifying the destination handlers here allows the DecoderMethod to be
   * statically bound to the destination handlers if possible, which can allow
   * more efficient decoding.  However the returned method may or may not
   * actually be statically bound.  But in all cases, the returned method can
   * push data to the given handlers. */
7514 7515
  const DecoderMethod *GetDecoderMethod(const DecoderMethodOptions& opts);

7516 7517
  /* If/when someone needs to explicitly create a dynamically-bound
   * DecoderMethod*, we can add a method to get it here. */
7518 7519

 private:
7520 7521 7522 7523
  UPB_DISALLOW_COPY_AND_ASSIGN(CodeCache)
#else
struct upb_pbcodecache {
#endif
7524 7525
  bool allow_jit_;

7526
  /* Array of mgroups. */
7527
  upb_inttable groups;
7528
};
7529

7530
UPB_BEGIN_EXTERN_C
7531

7532 7533 7534
upb_pbdecoder *upb_pbdecoder_create(upb_env *e,
                                    const upb_pbdecodermethod *method,
                                    upb_sink *output);
7535 7536 7537
const upb_pbdecodermethod *upb_pbdecoder_method(const upb_pbdecoder *d);
upb_bytessink *upb_pbdecoder_input(upb_pbdecoder *d);
uint64_t upb_pbdecoder_bytesparsed(const upb_pbdecoder *d);
7538 7539 7540
size_t upb_pbdecoder_maxnesting(const upb_pbdecoder *d);
bool upb_pbdecoder_setmaxnesting(upb_pbdecoder *d, size_t max);
void upb_pbdecoder_reset(upb_pbdecoder *d);
7541 7542 7543 7544 7545

void upb_pbdecodermethodopts_init(upb_pbdecodermethodopts *opts,
                                  const upb_handlers *h);
void upb_pbdecodermethodopts_setlazy(upb_pbdecodermethodopts *opts, bool lazy);

7546 7547 7548 7549

/* Include refcounted methods like upb_pbdecodermethod_ref(). */
UPB_REFCOUNTED_CMETHODS(upb_pbdecodermethod, upb_pbdecodermethod_upcast)

7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564
const upb_handlers *upb_pbdecodermethod_desthandlers(
    const upb_pbdecodermethod *m);
const upb_byteshandler *upb_pbdecodermethod_inputhandler(
    const upb_pbdecodermethod *m);
bool upb_pbdecodermethod_isnative(const upb_pbdecodermethod *m);
const upb_pbdecodermethod *upb_pbdecodermethod_new(
    const upb_pbdecodermethodopts *opts, const void *owner);

void upb_pbcodecache_init(upb_pbcodecache *c);
void upb_pbcodecache_uninit(upb_pbcodecache *c);
bool upb_pbcodecache_allowjit(const upb_pbcodecache *c);
bool upb_pbcodecache_setallowjit(upb_pbcodecache *c, bool allow);
const upb_pbdecodermethod *upb_pbcodecache_getdecodermethod(
    upb_pbcodecache *c, const upb_pbdecodermethodopts *opts);

7565
UPB_END_EXTERN_C
7566 7567 7568 7569 7570 7571 7572

#ifdef __cplusplus

namespace upb {

namespace pb {

7573
/* static */
7574 7575 7576
inline Decoder* Decoder::Create(Environment* env, const DecoderMethod* m,
                                Sink* sink) {
  return upb_pbdecoder_create(env, m, sink);
7577 7578 7579 7580
}
inline const DecoderMethod* Decoder::method() const {
  return upb_pbdecoder_method(this);
}
7581 7582
inline BytesSink* Decoder::input() {
  return upb_pbdecoder_input(this);
7583 7584 7585 7586
}
inline uint64_t Decoder::BytesParsed() const {
  return upb_pbdecoder_bytesparsed(this);
}
7587 7588
inline size_t Decoder::max_nesting() const {
  return upb_pbdecoder_maxnesting(this);
7589
}
7590 7591
inline bool Decoder::set_max_nesting(size_t max) {
  return upb_pbdecoder_setmaxnesting(this, max);
7592
}
7593
inline void Decoder::Reset() { upb_pbdecoder_reset(this); }
7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610

inline DecoderMethodOptions::DecoderMethodOptions(const Handlers* h) {
  upb_pbdecodermethodopts_init(this, h);
}
inline void DecoderMethodOptions::set_lazy(bool lazy) {
  upb_pbdecodermethodopts_setlazy(this, lazy);
}

inline const Handlers* DecoderMethod::dest_handlers() const {
  return upb_pbdecodermethod_desthandlers(this);
}
inline const BytesHandler* DecoderMethod::input_handler() const {
  return upb_pbdecodermethod_inputhandler(this);
}
inline bool DecoderMethod::is_native() const {
  return upb_pbdecodermethod_isnative(this);
}
7611
/* static */
7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634
inline reffed_ptr<const DecoderMethod> DecoderMethod::New(
    const DecoderMethodOptions &opts) {
  const upb_pbdecodermethod *m = upb_pbdecodermethod_new(&opts, &m);
  return reffed_ptr<const DecoderMethod>(m, &m);
}

inline CodeCache::CodeCache() {
  upb_pbcodecache_init(this);
}
inline CodeCache::~CodeCache() {
  upb_pbcodecache_uninit(this);
}
inline bool CodeCache::allow_jit() const {
  return upb_pbcodecache_allowjit(this);
}
inline bool CodeCache::set_allow_jit(bool allow) {
  return upb_pbcodecache_setallowjit(this, allow);
}
inline const DecoderMethod *CodeCache::GetDecoderMethod(
    const DecoderMethodOptions& opts) {
  return upb_pbcodecache_getdecodermethod(this, &opts);
}

7635 7636
}  /* namespace pb */
}  /* namespace upb */
7637

7638
#endif  /* __cplusplus */
7639 7640 7641

#endif  /* UPB_DECODER_H_ */

7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663
/* C++ names are not actually used since this type isn't exposed to users. */
#ifdef __cplusplus
namespace upb {
namespace pb {
class MessageGroup;
}  /* namespace pb */
}  /* namespace upb */
#endif
UPB_DECLARE_DERIVED_TYPE(upb::pb::MessageGroup, upb::RefCounted,
                         mgroup, upb_refcounted)

/* Opcode definitions.  The canonical meaning of each opcode is its
 * implementation in the interpreter (the JIT is written to match this).
 *
 * All instructions have the opcode in the low byte.
 * Instruction format for most instructions is:
 *
 * +-------------------+--------+
 * |     arg (24)      | op (8) |
 * +-------------------+--------+
 *
 * Exceptions are indicated below.  A few opcodes are multi-word. */
7664
typedef enum {
7665 7666
  /* Opcodes 1-8, 13, 15-18 parse their respective descriptor types.
   * Arg for all of these is the upb selector for this field. */
7667 7668 7669 7670
#define T(type) OP_PARSE_ ## type = UPB_DESCRIPTOR_TYPE_ ## type
  T(DOUBLE), T(FLOAT), T(INT64), T(UINT64), T(INT32), T(FIXED64), T(FIXED32),
  T(BOOL), T(UINT32), T(SFIXED32), T(SFIXED64), T(SINT32), T(SINT64),
#undef T
7671 7672
  OP_STARTMSG       = 9,   /* No arg. */
  OP_ENDMSG         = 10,  /* No arg. */
7673 7674 7675 7676 7677 7678 7679 7680
  OP_STARTSEQ       = 11,
  OP_ENDSEQ         = 12,
  OP_STARTSUBMSG    = 14,
  OP_ENDSUBMSG      = 19,
  OP_STARTSTR       = 20,
  OP_STRING         = 21,
  OP_ENDSTR         = 22,

7681 7682 7683 7684 7685 7686 7687
  OP_PUSHTAGDELIM   = 23,  /* No arg. */
  OP_PUSHLENDELIM   = 24,  /* No arg. */
  OP_POP            = 25,  /* No arg. */
  OP_SETDELIM       = 26,  /* No arg. */
  OP_SETBIGGROUPNUM = 27,  /* two words:
                            *   | unused (24)     | opc (8) |
                            *   |        groupnum (32)      | */
7688 7689 7690 7691 7692
  OP_CHECKDELIM     = 28,
  OP_CALL           = 29,
  OP_RET            = 30,
  OP_BRANCH         = 31,

7693 7694 7695 7696 7697 7698 7699
  /* Different opcodes depending on how many bytes expected. */
  OP_TAG1           = 32,  /* | match tag (16) | jump target (8) | opc (8) | */
  OP_TAG2           = 33,  /* | match tag (16) | jump target (8) | opc (8) | */
  OP_TAGN           = 34,  /* three words: */
                           /*   | unused (16) | jump target(8) | opc (8) | */
                           /*   |           match tag 1 (32)             | */
                           /*   |           match tag 2 (32)             | */
7700

7701 7702 7703
  OP_SETDISPATCH    = 35,  /* N words: */
                           /*   | unused (24)         | opc | */
                           /*   | upb_inttable* (32 or 64)  | */
7704

7705
  OP_DISPATCH       = 36,  /* No arg. */
Chris Fallin's avatar
Chris Fallin committed
7706

7707
  OP_HALT           = 37   /* No arg. */
7708 7709 7710 7711 7712 7713
} opcode;

#define OP_MAX OP_HALT

UPB_INLINE opcode getop(uint32_t instr) { return instr & 0xff; }

7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728
/* Method group; represents a set of decoder methods that had their code
 * emitted together, and must therefore be freed together.  Immutable once
 * created.  It is possible we may want to expose this to users at some point.
 *
 * Overall ownership of Decoder objects looks like this:
 *
 *                +----------+
 *                |          | <---> DecoderMethod
 *                | method   |
 * CodeCache ---> |  group   | <---> DecoderMethod
 *                |          |
 *                | (mgroup) | <---> DecoderMethod
 *                +----------+
 */
struct mgroup {
7729 7730
  upb_refcounted base;

7731 7732
  /* Maps upb_msgdef/upb_handlers -> upb_pbdecodermethod.  We own refs on the
   * methods. */
7733 7734
  upb_inttable methods;

7735 7736
  /* When we add the ability to link to previously existing mgroups, we'll
   * need an array of mgroups we reference here, and own refs on them. */
7737

7738
  /* The bytecode for our methods, if any exists.  Owned by us. */
7739 7740 7741 7742
  uint32_t *bytecode;
  uint32_t *bytecode_end;

#ifdef UPB_USE_JIT_X64
7743
  /* JIT-generated machine code, if any. */
7744
  upb_string_handlerfunc *jit_code;
7745
  /* The size of the jit_code (required to munmap()). */
7746 7747 7748 7749
  size_t jit_size;
  char *debug_info;
  void *dl;
#endif
7750 7751 7752 7753 7754 7755 7756 7757 7758 7759
};

/* The maximum that any submessages can be nested.  Matches proto2's limit.
 * This specifies the size of the decoder's statically-sized array and therefore
 * setting it high will cause the upb::pb::Decoder object to be larger.
 *
 * If necessary we can add a runtime-settable property to Decoder that allow
 * this to be larger than the compile-time setting, but this would add
 * complexity, particularly since we would have to decide how/if to give users
 * the ability to set a custom memory allocation function. */
7760 7761
#define UPB_DECODER_MAX_NESTING 64

7762
/* Internal-only struct used by the decoder. */
7763
typedef struct {
7764 7765 7766 7767 7768
  /* Space optimization note: we store two pointers here that the JIT
   * doesn't need at all; the upb_handlers* inside the sink and
   * the dispatch table pointer.  We can optimze so that the JIT uses
   * smaller stack frames than the interpreter.  The only thing we need
   * to guarantee is that the fallback routines can find end_ofs. */
7769 7770
  upb_sink sink;

7771 7772 7773 7774 7775 7776 7777 7778
  /* The absolute stream offset of the end-of-frame delimiter.
   * Non-delimited frames (groups and non-packed repeated fields) reuse the
   * delimiter of their parent, even though the frame may not end there.
   *
   * NOTE: the JIT stores a slightly different value here for non-top frames.
   * It stores the value relative to the end of the enclosed message.  But the
   * top frame is still stored the same way, which is important for ensuring
   * that calls from the JIT into C work correctly. */
7779 7780 7781
  uint64_t end_ofs;
  const uint32_t *base;

7782 7783 7784
  /* 0 indicates a length-delimited field.
   * A positive number indicates a known group.
   * A negative number indicates an unknown group. */
7785
  int32_t groupnum;
7786
  upb_inttable *dispatch;  /* Not used by the JIT. */
7787 7788
} upb_pbdecoder_frame;

7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822
struct upb_pbdecodermethod {
  upb_refcounted base;

  /* While compiling, the base is relative in "ofs", after compiling it is
   * absolute in "ptr". */
  union {
    uint32_t ofs;     /* PC offset of method. */
    void *ptr;        /* Pointer to bytecode or machine code for this method. */
  } code_base;

  /* The decoder method group to which this method belongs.  We own a ref.
   * Owning a ref on the entire group is more coarse-grained than is strictly
   * necessary; all we truly require is that methods we directly reference
   * outlive us, while the group could contain many other messages we don't
   * require.  But the group represents the messages that were
   * allocated+compiled together, so it makes the most sense to free them
   * together also. */
  const upb_refcounted *group;

  /* Whether this method is native code or bytecode. */
  bool is_native_;

  /* The handler one calls to invoke this method. */
  upb_byteshandler input_handler_;

  /* The destination handlers this method is bound to.  We own a ref. */
  const upb_handlers *dest_handlers_;

  /* Dispatch table -- used by both bytecode decoder and JIT when encountering a
   * field number that wasn't the one we were expecting to see.  See
   * decoder.int.h for the layout of this table. */
  upb_inttable dispatch;
};

7823 7824 7825
struct upb_pbdecoder {
  upb_env *env;

7826
  /* Our input sink. */
7827 7828
  upb_bytessink input_;

7829
  /* The decoder method we are parsing with (owned). */
7830 7831 7832 7833 7834
  const upb_pbdecodermethod *method_;

  size_t call_len;
  const uint32_t *pc, *last;

7835
  /* Current input buffer and its stream offset. */
7836 7837
  const char *buf, *ptr, *end, *checkpoint;

7838
  /* End of the delimited region, relative to ptr, NULL if not in this buf. */
7839 7840
  const char *delim_end;

7841
  /* End of the delimited region, relative to ptr, end if not in this buf. */
7842 7843
  const char *data_end;

7844
  /* Overall stream offset of "buf." */
7845 7846
  uint64_t bufstart_ofs;

7847 7848
  /* Buffer for residual bytes not parsed from the previous buffer. */
  char residual[UPB_DECODER_MAX_RESIDUAL_BYTES];
7849 7850
  char *residual_end;

7851 7852 7853 7854 7855 7856
  /* Bytes of data that should be discarded from the input beore we start
   * parsing again.  We set this when we internally determine that we can
   * safely skip the next N bytes, but this region extends past the current
   * user buffer. */
  size_t skip;

7857
  /* Stores the user buffer passed to our decode function. */
7858 7859 7860 7861
  const char *buf_param;
  size_t size_param;
  const upb_bufhandle *handle;

7862
  /* Our internal stack. */
7863 7864 7865 7866 7867 7868 7869
  upb_pbdecoder_frame *stack, *top, *limit;
  const uint32_t **callstack;
  size_t stack_size;

  upb_status *status;

#ifdef UPB_USE_JIT_X64
7870 7871
  /* Used momentarily by the generated code to store a value while a user
   * function is called. */
7872 7873 7874 7875 7876 7877
  uint32_t tmp_len;

  const void *saved_rsp;
#endif
};

7878
/* Decoder entry points; used as handlers. */
7879 7880 7881 7882 7883 7884
void *upb_pbdecoder_startbc(void *closure, const void *pc, size_t size_hint);
void *upb_pbdecoder_startjit(void *closure, const void *hd, size_t size_hint);
size_t upb_pbdecoder_decode(void *closure, const void *hd, const char *buf,
                            size_t size, const upb_bufhandle *handle);
bool upb_pbdecoder_end(void *closure, const void *handler_data);

7885
/* Decoder-internal functions that the JIT calls to handle fallback paths. */
7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896
int32_t upb_pbdecoder_resume(upb_pbdecoder *d, void *p, const char *buf,
                             size_t size, const upb_bufhandle *handle);
size_t upb_pbdecoder_suspend(upb_pbdecoder *d);
int32_t upb_pbdecoder_skipunknown(upb_pbdecoder *d, int32_t fieldnum,
                                  uint8_t wire_type);
int32_t upb_pbdecoder_checktag_slow(upb_pbdecoder *d, uint64_t expected);
int32_t upb_pbdecoder_decode_varint_slow(upb_pbdecoder *d, uint64_t *u64);
int32_t upb_pbdecoder_decode_f32(upb_pbdecoder *d, uint32_t *u32);
int32_t upb_pbdecoder_decode_f64(upb_pbdecoder *d, uint64_t *u64);
void upb_pbdecoder_seterr(upb_pbdecoder *d, const char *msg);

7897
/* Error messages that are shared between the bytecode and JIT decoders. */
7898
extern const char *kPbDecoderStackOverflow;
7899
extern const char *kPbDecoderSubmessageTooLong;
7900

7901
/* Access to decoderplan members needed by the decoder. */
7902 7903
const char *upb_pbdecoder_getopname(unsigned int op);

7904
/* JIT codegen entry point. */
7905 7906
void upb_pbdecoder_jit(mgroup *group);
void upb_pbdecoder_freejit(mgroup *group);
7907
UPB_REFCOUNTED_CMETHODS(mgroup, mgroup_upcast)
7908

7909 7910
/* A special label that means "do field dispatch for this message and branch to
 * wherever that takes you." */
7911 7912
#define LABEL_DISPATCH 0

7913 7914
/* A special slot in the dispatch table that stores the epilogue (ENDMSG and/or
 * RET) for branching to when we find an appropriate ENDGROUP tag. */
7915 7916
#define DISPATCH_ENDMSG 0

7917 7918
/* It's important to use this invalid wire type instead of 0 (which is a valid
 * wire type). */
7919 7920
#define NO_WIRE_TYPE 0xff

7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933
/* The dispatch table layout is:
 *   [field number] -> [ 48-bit offset ][ 8-bit wt2 ][ 8-bit wt1 ]
 *
 * If wt1 matches, jump to the 48-bit offset.  If wt2 matches, lookup
 * (UPB_MAX_FIELDNUMBER + fieldnum) and jump there.
 *
 * We need two wire types because of packed/non-packed compatibility.  A
 * primitive repeated field can use either wire type and be valid.  While we
 * could key the table on fieldnum+wiretype, the table would be 8x sparser.
 *
 * Storing two wire types in the primary value allows us to quickly rule out
 * the second wire type without needing to do a separate lookup (this case is
 * less common than an unknown field). */
7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945
UPB_INLINE uint64_t upb_pbdecoder_packdispatch(uint64_t ofs, uint8_t wt1,
                                               uint8_t wt2) {
  return (ofs << 16) | (wt2 << 8) | wt1;
}

UPB_INLINE void upb_pbdecoder_unpackdispatch(uint64_t dispatch, uint64_t *ofs,
                                             uint8_t *wt1, uint8_t *wt2) {
  *wt1 = (uint8_t)dispatch;
  *wt2 = (uint8_t)(dispatch >> 8);
  *ofs = dispatch >> 16;
}

7946 7947 7948 7949 7950 7951 7952
/* All of the functions in decoder.c that return int32_t return values according
 * to the following scheme:
 *   1. negative values indicate a return code from the following list.
 *   2. positive values indicate that error or end of buffer was hit, and
 *      that the decode function should immediately return the given value
 *      (the decoder state has already been suspended and is ready to be
 *      resumed). */
7953
#define DECODE_OK -1
7954 7955
#define DECODE_MISMATCH -2  /* Used only from checktag_slow(). */
#define DECODE_ENDGROUP -3  /* Used only from checkunknown(). */
7956 7957 7958

#define CHECK_RETURN(x) { int32_t ret = x; if (ret >= 0) return ret; }

7959
#endif  /* UPB_DECODER_INT_H_ */
7960
/*
7961 7962 7963
** A number of routines for varint manipulation (we keep them all around to
** have multiple approaches available for benchmarking).
*/
7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975

#ifndef UPB_VARINT_DECODER_H_
#define UPB_VARINT_DECODER_H_

#include <assert.h>
#include <stdint.h>
#include <string.h>

#ifdef __cplusplus
extern "C" {
#endif

7976
/* A list of types as they are encoded on-the-wire. */
7977 7978 7979 7980 7981 7982
typedef enum {
  UPB_WIRE_TYPE_VARINT      = 0,
  UPB_WIRE_TYPE_64BIT       = 1,
  UPB_WIRE_TYPE_DELIMITED   = 2,
  UPB_WIRE_TYPE_START_GROUP = 3,
  UPB_WIRE_TYPE_END_GROUP   = 4,
7983
  UPB_WIRE_TYPE_32BIT       = 5
7984 7985 7986 7987
} upb_wiretype_t;

#define UPB_MAX_WIRE_TYPE 5

7988 7989 7990
/* The maximum number of bytes that it takes to encode a 64-bit varint.
 * Note that with a better encoding this could be 9 (TODO: write up a
 * wiki document about this). */
7991 7992
#define UPB_PB_VARINT_MAX_LEN 10

7993 7994
/* Array of the "native" (ie. non-packed-repeated) wire type for the given a
 * descriptor type (upb_descriptortype_t). */
7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009
extern const uint8_t upb_pb_native_wire_types[];

/* Zig-zag encoding/decoding **************************************************/

UPB_INLINE int32_t upb_zzdec_32(uint32_t n) {
  return (n >> 1) ^ -(int32_t)(n & 1);
}
UPB_INLINE int64_t upb_zzdec_64(uint64_t n) {
  return (n >> 1) ^ -(int64_t)(n & 1);
}
UPB_INLINE uint32_t upb_zzenc_32(int32_t n) { return (n << 1) ^ (n >> 31); }
UPB_INLINE uint64_t upb_zzenc_64(int64_t n) { return (n << 1) ^ (n >> 63); }

/* Decoding *******************************************************************/

8010
/* All decoding functions return this struct by value. */
8011
typedef struct {
8012
  const char *p;  /* NULL if the varint was unterminated. */
8013 8014 8015
  uint64_t val;
} upb_decoderet;

8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028
UPB_INLINE upb_decoderet upb_decoderet_make(const char *p, uint64_t val) {
  upb_decoderet ret;
  ret.p = p;
  ret.val = val;
  return ret;
}

/* Four functions for decoding a varint of at most eight bytes.  They are all
 * functionally identical, but are implemented in different ways and likely have
 * different performance profiles.  We keep them around for performance testing.
 *
 * Note that these functions may not read byte-by-byte, so they must not be used
 * unless there are at least eight bytes left in the buffer! */
8029 8030 8031 8032 8033
upb_decoderet upb_vdecode_max8_branch32(upb_decoderet r);
upb_decoderet upb_vdecode_max8_branch64(upb_decoderet r);
upb_decoderet upb_vdecode_max8_wright(upb_decoderet r);
upb_decoderet upb_vdecode_max8_massimino(upb_decoderet r);

8034 8035 8036 8037
/* Template for a function that checks the first two bytes with branching
 * and dispatches 2-10 bytes with a separate function.  Note that this may read
 * up to 10 bytes, so it must not be used unless there are at least ten bytes
 * left in the buffer! */
8038 8039 8040
#define UPB_VARINT_DECODER_CHECK2(name, decode_max8_function)                  \
UPB_INLINE upb_decoderet upb_vdecode_check2_ ## name(const char *_p) {         \
  uint8_t *p = (uint8_t*)_p;                                                   \
8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051
  upb_decoderet r;                                                             \
  if ((*p & 0x80) == 0) {                                                      \
  /* Common case: one-byte varint. */                                          \
    return upb_decoderet_make(_p + 1, *p & 0x7fU);                             \
  }                                                                            \
  r = upb_decoderet_make(_p + 2, (*p & 0x7fU) | ((*(p + 1) & 0x7fU) << 7));    \
  if ((*(p + 1) & 0x80) == 0) {                                                \
    /* Two-byte varint. */                                                     \
    return r;                                                                  \
  }                                                                            \
  /* Longer varint, fallback to out-of-line function. */                       \
8052 8053 8054
  return decode_max8_function(r);                                              \
}

8055 8056 8057 8058
UPB_VARINT_DECODER_CHECK2(branch32, upb_vdecode_max8_branch32)
UPB_VARINT_DECODER_CHECK2(branch64, upb_vdecode_max8_branch64)
UPB_VARINT_DECODER_CHECK2(wright, upb_vdecode_max8_wright)
UPB_VARINT_DECODER_CHECK2(massimino, upb_vdecode_max8_massimino)
8059 8060
#undef UPB_VARINT_DECODER_CHECK2

8061 8062
/* Our canonical functions for decoding varints, based on the currently
 * favored best-performing implementations. */
8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078
UPB_INLINE upb_decoderet upb_vdecode_fast(const char *p) {
  if (sizeof(long) == 8)
    return upb_vdecode_check2_branch64(p);
  else
    return upb_vdecode_check2_branch32(p);
}

UPB_INLINE upb_decoderet upb_vdecode_max8_fast(upb_decoderet r) {
  return upb_vdecode_max8_massimino(r);
}


/* Encoding *******************************************************************/

UPB_INLINE int upb_value_size(uint64_t val) {
#ifdef __GNUC__
8079
  int high_bit = 63 - __builtin_clzll(val);  /* 0-based, undef if val == 0. */
8080 8081 8082 8083 8084 8085 8086 8087
#else
  int high_bit = 0;
  uint64_t tmp = val;
  while(tmp >>= 1) high_bit++;
#endif
  return val == 0 ? 1 : high_bit / 8 + 1;
}

8088 8089 8090 8091
/* Encodes a 64-bit varint into buf (which must be >=UPB_PB_VARINT_MAX_LEN
 * bytes long), returning how many bytes were used.
 *
 * TODO: benchmark and optimize if necessary. */
8092
UPB_INLINE size_t upb_vencode64(uint64_t val, char *buf) {
8093
  size_t i;
8094
  if (val == 0) { buf[0] = 0; return 1; }
8095
  i = 0;
8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109
  while (val) {
    uint8_t byte = val & 0x7fU;
    val >>= 7;
    if (val) byte |= 0x80U;
    buf[i++] = byte;
  }
  return i;
}

UPB_INLINE size_t upb_varint_size(uint64_t val) {
  char buf[UPB_PB_VARINT_MAX_LEN];
  return upb_vencode64(val, buf);
}

8110
/* Encodes a 32-bit varint, *not* sign-extended. */
8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126
UPB_INLINE uint64_t upb_vencode32(uint32_t val) {
  char buf[UPB_PB_VARINT_MAX_LEN];
  size_t bytes = upb_vencode64(val, buf);
  uint64_t ret = 0;
  assert(bytes <= 5);
  memcpy(&ret, buf, bytes);
  assert(ret <= 0xffffffffffU);
  return ret;
}

#ifdef __cplusplus
}  /* extern "C" */
#endif

#endif  /* UPB_VARINT_DECODER_H_ */
/*
8127 8128 8129 8130 8131 8132 8133 8134 8135
** upb::pb::Encoder (upb_pb_encoder)
**
** Implements a set of upb_handlers that write protobuf data to the binary wire
** format.
**
** This encoder implementation does not have any access to any out-of-band or
** precomputed lengths for submessages, so it must buffer submessages internally
** before it can emit the first byte.
*/
8136 8137 8138 8139 8140 8141 8142 8143 8144

#ifndef UPB_ENCODER_H_
#define UPB_ENCODER_H_


#ifdef __cplusplus
namespace upb {
namespace pb {
class Encoder;
8145 8146
}  /* namespace pb */
}  /* namespace upb */
8147 8148
#endif

8149
UPB_DECLARE_TYPE(upb::pb::Encoder, upb_pb_encoder)
8150 8151 8152 8153 8154

#define UPB_PBENCODER_MAX_NESTING 100

/* upb::pb::Encoder ***********************************************************/

8155 8156 8157 8158
/* Preallocation hint: decoder won't allocate more bytes than this when first
 * constructed.  This hint may be an overestimate for some build configurations.
 * But if the decoder library is upgraded without recompiling the application,
 * it may be an underestimate. */
8159
#define UPB_PB_ENCODER_SIZE 768
8160

8161
#ifdef __cplusplus
8162

8163 8164
class upb::pb::Encoder {
 public:
8165 8166
  /* Creates a new encoder in the given environment.  The Handlers must have
   * come from NewHandlers() below. */
8167 8168
  static Encoder* Create(Environment* env, const Handlers* handlers,
                         BytesSink* output);
8169

8170
  /* The input to the encoder. */
8171 8172
  Sink* input();

8173
  /* Creates a new set of handlers for this MessageDef. */
8174
  static reffed_ptr<const Handlers> NewHandlers(const MessageDef* msg);
8175

8176
  static const size_t kSize = UPB_PB_ENCODER_SIZE;
8177

8178
 private:
8179
  UPB_DISALLOW_POD_OPS(Encoder, upb::pb::Encoder)
8180
};
8181

8182
#endif
8183 8184 8185 8186 8187 8188

UPB_BEGIN_EXTERN_C

const upb_handlers *upb_pb_encoder_newhandlers(const upb_msgdef *m,
                                               const void *owner);
upb_sink *upb_pb_encoder_input(upb_pb_encoder *p);
8189 8190
upb_pb_encoder* upb_pb_encoder_create(upb_env* e, const upb_handlers* h,
                                      upb_bytessink* output);
8191 8192 8193 8194 8195 8196 8197

UPB_END_EXTERN_C

#ifdef __cplusplus

namespace upb {
namespace pb {
8198 8199 8200
inline Encoder* Encoder::Create(Environment* env, const Handlers* handlers,
                                BytesSink* output) {
  return upb_pb_encoder_create(env, handlers, output);
8201 8202 8203 8204 8205 8206 8207 8208 8209
}
inline Sink* Encoder::input() {
  return upb_pb_encoder_input(this);
}
inline reffed_ptr<const Handlers> Encoder::NewHandlers(
    const upb::MessageDef *md) {
  const Handlers* h = upb_pb_encoder_newhandlers(md, &h);
  return reffed_ptr<const Handlers>(h, &h);
}
8210 8211
}  /* namespace pb */
}  /* namespace upb */
8212 8213 8214 8215 8216

#endif

#endif  /* UPB_ENCODER_H_ */
/*
8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234
** upb's core components like upb_decoder and upb_msg are carefully designed to
** avoid depending on each other for maximum orthogonality.  In other words,
** you can use a upb_decoder to decode into *any* kind of structure; upb_msg is
** just one such structure.  A upb_msg can be serialized/deserialized into any
** format, protobuf binary format is just one such format.
**
** However, for convenience we provide functions here for doing common
** operations like deserializing protobuf binary format into a upb_msg.  The
** compromise is that this file drags in almost all of upb as a dependency,
** which could be undesirable if you're trying to use a trimmed-down build of
** upb.
**
** While these routines are convenient, they do not reuse any encoding/decoding
** state.  For example, if a decoder is JIT-based, it will be re-JITted every
** time these functions are called.  For this reason, if you are parsing lots
** of data and efficiency is an issue, these may not be the best functions to
** use (though they are useful for prototyping, before optimizing).
*/
8235 8236 8237 8238 8239 8240 8241

#ifndef UPB_GLUE_H
#define UPB_GLUE_H

#include <stdbool.h>

#ifdef __cplusplus
8242 8243
#include <vector>

8244 8245 8246
extern "C" {
#endif

8247
/* Loads a binary descriptor and returns a NULL-terminated array of unfrozen
8248 8249
 * filedefs.  The caller owns the returned array, which must be freed with
 * upb_gfree(). */
8250 8251
upb_filedef **upb_loaddescriptor(const char *buf, size_t n, const void *owner,
                                 upb_status *status);
8252 8253 8254 8255 8256 8257

#ifdef __cplusplus
}  /* extern "C" */

namespace upb {

8258 8259 8260
inline bool LoadDescriptor(const char* buf, size_t n, Status* status,
                           std::vector<reffed_ptr<FileDef> >* files) {
  FileDef** parsed_files = upb_loaddescriptor(buf, n, &parsed_files, status);
8261

8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272
  if (parsed_files) {
    FileDef** p = parsed_files;
    while (*p) {
      files->push_back(reffed_ptr<FileDef>(*p, &parsed_files));
      ++p;
    }
    free(parsed_files);
    return true;
  } else {
    return false;
  }
8273 8274
}

8275
/* Templated so it can accept both string and std::string. */
8276
template <typename T>
8277 8278 8279
bool LoadDescriptor(const T& desc, Status* status,
                    std::vector<reffed_ptr<FileDef> >* files) {
  return LoadDescriptor(desc.c_str(), desc.size(), status, files);
8280 8281
}

8282
}  /* namespace upb */
8283 8284 8285

#endif

8286
#endif  /* UPB_GLUE_H */
8287
/*
8288 8289 8290 8291
** upb::pb::TextPrinter (upb_textprinter)
**
** Handlers for writing to protobuf text format.
*/
8292 8293 8294 8295 8296 8297 8298 8299 8300

#ifndef UPB_TEXT_H_
#define UPB_TEXT_H_


#ifdef __cplusplus
namespace upb {
namespace pb {
class TextPrinter;
8301 8302
}  /* namespace pb */
}  /* namespace upb */
8303 8304
#endif

8305
UPB_DECLARE_TYPE(upb::pb::TextPrinter, upb_textprinter)
8306

8307 8308 8309
#ifdef __cplusplus

class upb::pb::TextPrinter {
8310
 public:
8311 8312
  /* The given handlers must have come from NewHandlers().  It must outlive the
   * TextPrinter. */
8313 8314
  static TextPrinter *Create(Environment *env, const upb::Handlers *handlers,
                             BytesSink *output);
8315 8316 8317 8318 8319

  void SetSingleLineMode(bool single_line);

  Sink* input();

8320 8321
  /* If handler caching becomes a requirement we can add a code cache as in
   * decoder.h */
8322
  static reffed_ptr<const Handlers> NewHandlers(const MessageDef* md);
8323
};
8324

8325
#endif
8326

8327
UPB_BEGIN_EXTERN_C
8328

8329
/* C API. */
8330 8331
upb_textprinter *upb_textprinter_create(upb_env *env, const upb_handlers *h,
                                        upb_bytessink *output);
8332 8333 8334 8335 8336 8337
void upb_textprinter_setsingleline(upb_textprinter *p, bool single_line);
upb_sink *upb_textprinter_input(upb_textprinter *p);

const upb_handlers *upb_textprinter_newhandlers(const upb_msgdef *m,
                                                const void *owner);

8338
UPB_END_EXTERN_C
8339 8340 8341 8342 8343

#ifdef __cplusplus

namespace upb {
namespace pb {
8344 8345 8346 8347
inline TextPrinter *TextPrinter::Create(Environment *env,
                                        const upb::Handlers *handlers,
                                        BytesSink *output) {
  return upb_textprinter_create(env, handlers, output);
8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359
}
inline void TextPrinter::SetSingleLineMode(bool single_line) {
  upb_textprinter_setsingleline(this, single_line);
}
inline Sink* TextPrinter::input() {
  return upb_textprinter_input(this);
}
inline reffed_ptr<const Handlers> TextPrinter::NewHandlers(
    const MessageDef *md) {
  const Handlers* h = upb_textprinter_newhandlers(md, &h);
  return reffed_ptr<const Handlers>(h, &h);
}
8360 8361
}  /* namespace pb */
}  /* namespace upb */
8362 8363 8364 8365 8366

#endif

#endif  /* UPB_TEXT_H_ */
/*
8367 8368 8369 8370 8371
** upb::json::Parser (upb_json_parser)
**
** Parses JSON according to a specific schema.
** Support for parsing arbitrary JSON (schema-less) will be added later.
*/
8372 8373 8374 8375 8376 8377 8378 8379 8380

#ifndef UPB_JSON_PARSER_H_
#define UPB_JSON_PARSER_H_


#ifdef __cplusplus
namespace upb {
namespace json {
class Parser;
8381
class ParserMethod;
8382 8383
}  /* namespace json */
}  /* namespace upb */
8384 8385
#endif

8386
UPB_DECLARE_TYPE(upb::json::Parser, upb_json_parser)
8387 8388
UPB_DECLARE_DERIVED_TYPE(upb::json::ParserMethod, upb::RefCounted,
                         upb_json_parsermethod, upb_refcounted)
8389 8390 8391

/* upb::json::Parser **********************************************************/

8392 8393 8394 8395
/* Preallocation hint: parser won't allocate more bytes than this when first
 * constructed.  This hint may be an overestimate for some build configurations.
 * But if the parser library is upgraded without recompiling the application,
 * it may be an underestimate. */
8396
#define UPB_JSON_PARSER_SIZE 4112
8397 8398

#ifdef __cplusplus
8399

8400 8401
/* Parses an incoming BytesStream, pushing the results to the destination
 * sink. */
8402
class upb::json::Parser {
8403
 public:
8404 8405
  static Parser* Create(Environment* env, const ParserMethod* method,
                        Sink* output);
8406 8407

  BytesSink* input();
Chris Fallin's avatar
Chris Fallin committed
8408

8409
 private:
8410
  UPB_DISALLOW_POD_OPS(Parser, upb::json::Parser)
8411
};
Chris Fallin's avatar
Chris Fallin committed
8412

8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432
class upb::json::ParserMethod {
 public:
  /* Include base methods from upb::ReferenceCounted. */
  UPB_REFCOUNTED_CPPMETHODS

  /* Returns handlers for parsing according to the specified schema. */
  static reffed_ptr<const ParserMethod> New(const upb::MessageDef* md);

  /* The destination handlers that are statically bound to this method.
   * This method is only capable of outputting to a sink that uses these
   * handlers. */
  const Handlers* dest_handlers() const;

  /* The input handlers for this decoder method. */
  const BytesHandler* input_handler() const;

 private:
  UPB_DISALLOW_POD_OPS(ParserMethod, upb::json::ParserMethod)
};

8433
#endif
8434 8435 8436

UPB_BEGIN_EXTERN_C

8437 8438 8439
upb_json_parser* upb_json_parser_create(upb_env* e,
                                        const upb_json_parsermethod* m,
                                        upb_sink* output);
8440 8441
upb_bytessink *upb_json_parser_input(upb_json_parser *p);

8442 8443 8444 8445 8446 8447 8448 8449 8450 8451
upb_json_parsermethod* upb_json_parsermethod_new(const upb_msgdef* md,
                                                 const void* owner);
const upb_handlers *upb_json_parsermethod_desthandlers(
    const upb_json_parsermethod *m);
const upb_byteshandler *upb_json_parsermethod_inputhandler(
    const upb_json_parsermethod *m);

/* Include refcounted methods like upb_json_parsermethod_ref(). */
UPB_REFCOUNTED_CMETHODS(upb_json_parsermethod, upb_json_parsermethod_upcast)

8452 8453 8454 8455 8456 8457
UPB_END_EXTERN_C

#ifdef __cplusplus

namespace upb {
namespace json {
8458 8459 8460
inline Parser* Parser::Create(Environment* env, const ParserMethod* method,
                              Sink* output) {
  return upb_json_parser_create(env, method, output);
8461 8462 8463 8464
}
inline BytesSink* Parser::input() {
  return upb_json_parser_input(this);
}
8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478

inline const Handlers* ParserMethod::dest_handlers() const {
  return upb_json_parsermethod_desthandlers(this);
}
inline const BytesHandler* ParserMethod::input_handler() const {
  return upb_json_parsermethod_inputhandler(this);
}
/* static */
inline reffed_ptr<const ParserMethod> ParserMethod::New(
    const MessageDef* md) {
  const upb_json_parsermethod *m = upb_json_parsermethod_new(md, &m);
  return reffed_ptr<const ParserMethod>(m, &m);
}

8479 8480
}  /* namespace json */
}  /* namespace upb */
8481 8482 8483 8484

#endif


8485
#endif  /* UPB_JSON_PARSER_H_ */
8486
/*
8487 8488 8489 8490
** upb::json::Printer
**
** Handlers that emit JSON according to a specific protobuf schema.
*/
8491 8492 8493 8494 8495 8496 8497 8498 8499

#ifndef UPB_JSON_TYPED_PRINTER_H_
#define UPB_JSON_TYPED_PRINTER_H_


#ifdef __cplusplus
namespace upb {
namespace json {
class Printer;
8500 8501
}  /* namespace json */
}  /* namespace upb */
8502 8503
#endif

8504
UPB_DECLARE_TYPE(upb::json::Printer, upb_json_printer)
8505 8506 8507 8508


/* upb::json::Printer *********************************************************/

8509
#define UPB_JSON_PRINTER_SIZE 176
8510

8511
#ifdef __cplusplus
8512

8513
/* Prints an incoming stream of data to a BytesSink in JSON format. */
8514 8515 8516 8517
class upb::json::Printer {
 public:
  static Printer* Create(Environment* env, const upb::Handlers* handlers,
                         BytesSink* output);
8518

8519
  /* The input to the printer. */
8520 8521
  Sink* input();

8522 8523 8524 8525 8526 8527
  /* Returns handlers for printing according to the specified schema.
   * If preserve_proto_fieldnames is true, the output JSON will use the
   * original .proto field names (ie. {"my_field":3}) instead of using
   * camelCased names, which is the default: (eg. {"myField":3}). */
  static reffed_ptr<const Handlers> NewHandlers(const upb::MessageDef* md,
                                                bool preserve_proto_fieldnames);
8528

8529
  static const size_t kSize = UPB_JSON_PRINTER_SIZE;
8530

8531
 private:
8532
  UPB_DISALLOW_POD_OPS(Printer, upb::json::Printer)
8533 8534 8535
};

#endif
8536

8537 8538
UPB_BEGIN_EXTERN_C

8539
/* Native C API. */
8540 8541
upb_json_printer *upb_json_printer_create(upb_env *e, const upb_handlers *h,
                                          upb_bytessink *output);
8542 8543
upb_sink *upb_json_printer_input(upb_json_printer *p);
const upb_handlers *upb_json_printer_newhandlers(const upb_msgdef *md,
8544
                                                 bool preserve_fieldnames,
8545 8546
                                                 const void *owner);

8547
UPB_END_EXTERN_C
8548 8549 8550 8551 8552

#ifdef __cplusplus

namespace upb {
namespace json {
8553 8554 8555
inline Printer* Printer::Create(Environment* env, const upb::Handlers* handlers,
                                BytesSink* output) {
  return upb_json_printer_create(env, handlers, output);
8556 8557 8558
}
inline Sink* Printer::input() { return upb_json_printer_input(this); }
inline reffed_ptr<const Handlers> Printer::NewHandlers(
8559 8560 8561
    const upb::MessageDef *md, bool preserve_proto_fieldnames) {
  const Handlers* h = upb_json_printer_newhandlers(
      md, preserve_proto_fieldnames, &h);
8562 8563
  return reffed_ptr<const Handlers>(h, &h);
}
8564 8565
}  /* namespace json */
}  /* namespace upb */
8566 8567 8568

#endif

8569
#endif  /* UPB_JSON_TYPED_PRINTER_H_ */