upb.c 389 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
// Amalgamated source file
#include "upb.h"
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2008-2012 Google Inc.  See LICENSE for details.
 * Author: Josh Haberman <jhaberman@gmail.com>
 */


#include <stdlib.h>
#include <string.h>

typedef struct {
  size_t len;
  char str[1];  // Null-terminated string data follows.
} str_t;

static str_t *newstr(const char *data, size_t len) {
  str_t *ret = malloc(sizeof(*ret) + len);
  if (!ret) return NULL;
  ret->len = len;
  memcpy(ret->str, data, len);
  ret->str[len] = '\0';
  return ret;
}

static void freestr(str_t *s) { free(s); }

// isalpha() etc. from <ctype.h> are locale-dependent, which we don't want.
static bool upb_isbetween(char c, char low, char high) {
  return c >= low && c <= high;
}

static bool upb_isletter(char c) {
  return upb_isbetween(c, 'A', 'Z') || upb_isbetween(c, 'a', 'z') || c == '_';
}

static bool upb_isalphanum(char c) {
  return upb_isletter(c) || upb_isbetween(c, '0', '9');
}

static bool upb_isident(const char *str, size_t len, bool full, upb_status *s) {
  bool start = true;
  for (size_t i = 0; i < len; i++) {
    char c = str[i];
    if (c == '.') {
      if (start || !full) {
        upb_status_seterrf(s, "invalid name: unexpected '.' (%s)", str);
        return false;
      }
      start = true;
    } else if (start) {
      if (!upb_isletter(c)) {
        upb_status_seterrf(
            s, "invalid name: path components must start with a letter (%s)",
            str);
        return false;
      }
      start = false;
    } else {
      if (!upb_isalphanum(c)) {
        upb_status_seterrf(s, "invalid name: non-alphanumeric character (%s)",
                           str);
        return false;
      }
    }
  }
  return !start;
}


/* upb_def ********************************************************************/

upb_deftype_t upb_def_type(const upb_def *d) { return d->type; }

const char *upb_def_fullname(const upb_def *d) { return d->fullname; }

bool upb_def_setfullname(upb_def *def, const char *fullname, upb_status *s) {
  assert(!upb_def_isfrozen(def));
  if (!upb_isident(fullname, strlen(fullname), true, s)) return false;
  free((void*)def->fullname);
  def->fullname = upb_strdup(fullname);
  return true;
}

upb_def *upb_def_dup(const upb_def *def, const void *o) {
  switch (def->type) {
    case UPB_DEF_MSG:
      return UPB_UPCAST(upb_msgdef_dup(upb_downcast_msgdef(def), o));
    case UPB_DEF_FIELD:
      return UPB_UPCAST(upb_fielddef_dup(upb_downcast_fielddef(def), o));
    case UPB_DEF_ENUM:
      return UPB_UPCAST(upb_enumdef_dup(upb_downcast_enumdef(def), o));
    default: assert(false); return NULL;
  }
}

bool upb_def_isfrozen(const upb_def *def) {
  return upb_refcounted_isfrozen(UPB_UPCAST(def));
}

void upb_def_ref(const upb_def *def, const void *owner) {
  upb_refcounted_ref(UPB_UPCAST(def), owner);
}

void upb_def_unref(const upb_def *def, const void *owner) {
  upb_refcounted_unref(UPB_UPCAST(def), owner);
}

void upb_def_donateref(const upb_def *def, const void *from, const void *to) {
  upb_refcounted_donateref(UPB_UPCAST(def), from, to);
}

void upb_def_checkref(const upb_def *def, const void *owner) {
  upb_refcounted_checkref(UPB_UPCAST(def), owner);
}

static bool upb_def_init(upb_def *def, upb_deftype_t type,
                         const struct upb_refcounted_vtbl *vtbl,
                         const void *owner) {
  if (!upb_refcounted_init(UPB_UPCAST(def), vtbl, owner)) return false;
  def->type = type;
  def->fullname = NULL;
  def->came_from_user = false;
  return true;
}

static void upb_def_uninit(upb_def *def) {
  free((void*)def->fullname);
}

static const char *msgdef_name(const upb_msgdef *m) {
  const char *name = upb_def_fullname(UPB_UPCAST(m));
  return name ? name : "(anonymous)";
}

static bool upb_validate_field(upb_fielddef *f, upb_status *s) {
  if (upb_fielddef_name(f) == NULL || upb_fielddef_number(f) == 0) {
    upb_status_seterrmsg(s, "fielddef must have name and number set");
    return false;
  }

  if (!f->type_is_set_) {
    upb_status_seterrmsg(s, "fielddef type was not initialized");
    return false;
  }

  if (upb_fielddef_lazy(f) &&
      upb_fielddef_descriptortype(f) != UPB_DESCRIPTOR_TYPE_MESSAGE) {
    upb_status_seterrmsg(s,
                         "only length-delimited submessage fields may be lazy");
    return false;
  }

  if (upb_fielddef_hassubdef(f)) {
    if (f->subdef_is_symbolic) {
      upb_status_seterrf(s, "field '%s.%s' has not been resolved",
                         msgdef_name(f->msg.def), upb_fielddef_name(f));
      return false;
    }

    const upb_def *subdef = upb_fielddef_subdef(f);
    if (subdef == NULL) {
      upb_status_seterrf(s, "field %s.%s is missing required subdef",
                         msgdef_name(f->msg.def), upb_fielddef_name(f));
      return false;
    }

    if (!upb_def_isfrozen(subdef) && !subdef->came_from_user) {
      upb_status_seterrf(s,
                         "subdef of field %s.%s is not frozen or being frozen",
                         msgdef_name(f->msg.def), upb_fielddef_name(f));
      return false;
    }
  }

  if (upb_fielddef_type(f) == UPB_TYPE_ENUM) {
    bool has_default_name = upb_fielddef_enumhasdefaultstr(f);
    bool has_default_number = upb_fielddef_enumhasdefaultint32(f);

    // Previously verified by upb_validate_enumdef().
    assert(upb_enumdef_numvals(upb_fielddef_enumsubdef(f)) > 0);

    // We've already validated that we have an associated enumdef and that it
    // has at least one member, so at least one of these should be true.
    // Because if the user didn't set anything, we'll pick up the enum's
    // default, but if the user *did* set something we should at least pick up
    // the one they set (int32 or string).
    assert(has_default_name || has_default_number);

    if (!has_default_name) {
      upb_status_seterrf(s,
                         "enum default for field %s.%s (%d) is not in the enum",
                         msgdef_name(f->msg.def), upb_fielddef_name(f),
                         upb_fielddef_defaultint32(f));
      return false;
    }

    if (!has_default_number) {
      upb_status_seterrf(s,
                         "enum default for field %s.%s (%s) is not in the enum",
                         msgdef_name(f->msg.def), upb_fielddef_name(f),
                         upb_fielddef_defaultstr(f, NULL));
      return false;
    }

    // Lift the effective numeric default into the field's default slot, in case
    // we were only getting it "by reference" from the enumdef.
    upb_fielddef_setdefaultint32(f, upb_fielddef_defaultint32(f));
  }

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
  // Ensure that MapEntry submessages only appear as repeated fields, not
  // optional/required (singular) fields.
  if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE &&
      upb_fielddef_msgsubdef(f) != NULL) {
    const upb_msgdef *subdef = upb_fielddef_msgsubdef(f);
    if (upb_msgdef_mapentry(subdef) && !upb_fielddef_isseq(f)) {
      upb_status_seterrf(s,
                         "Field %s refers to mapentry message but is not "
                         "a repeated field",
                         upb_fielddef_name(f) ? upb_fielddef_name(f) :
                         "(unnamed)");
      return false;
    }
  }

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
  return true;
}

static bool upb_validate_enumdef(const upb_enumdef *e, upb_status *s) {
  if (upb_enumdef_numvals(e) == 0) {
    upb_status_seterrf(s, "enum %s has no members (must have at least one)",
                       upb_enumdef_fullname(e));
    return false;
  }

  return true;
}

// All submessage fields are lower than all other fields.
// Secondly, fields are increasing in order.
uint32_t field_rank(const upb_fielddef *f) {
  uint32_t ret = upb_fielddef_number(f);
  const uint32_t high_bit = 1 << 30;
  assert(ret < high_bit);
  if (!upb_fielddef_issubmsg(f))
    ret |= high_bit;
  return ret;
}

int cmp_fields(const void *p1, const void *p2) {
  const upb_fielddef *f1 = *(upb_fielddef*const*)p1;
  const upb_fielddef *f2 = *(upb_fielddef*const*)p2;
  return field_rank(f1) - field_rank(f2);
}

static bool assign_msg_indices(upb_msgdef *m, upb_status *s) {
  // Sort fields.  upb internally relies on UPB_TYPE_MESSAGE fields having the
  // lowest indexes, but we do not publicly guarantee this.
  int n = upb_msgdef_numfields(m);
  upb_fielddef **fields = malloc(n * sizeof(*fields));
  if (!fields) return false;

265
  upb_msg_field_iter j;
266 267
  int i;
  m->submsg_field_count = 0;
268 269 270
  for(i = 0, upb_msg_field_begin(&j, m);
      !upb_msg_field_done(&j);
      upb_msg_field_next(&j), i++) {
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    upb_fielddef *f = upb_msg_iter_field(&j);
    assert(f->msg.def == m);
    if (!upb_validate_field(f, s)) {
      free(fields);
      return false;
    }
    if (upb_fielddef_issubmsg(f)) {
      m->submsg_field_count++;
    }
    fields[i] = f;
  }

  qsort(fields, n, sizeof(*fields), cmp_fields);

  uint32_t selector = UPB_STATIC_SELECTOR_COUNT + m->submsg_field_count;
  for (i = 0; i < n; i++) {
    upb_fielddef *f = fields[i];
    f->index_ = i;
    f->selector_base = selector + upb_handlers_selectorbaseoffset(f);
    selector += upb_handlers_selectorcount(f);
  }
  m->selector_count = selector;

#ifndef NDEBUG
  // Verify that all selectors for the message are distinct.
  //
#define TRY(type) \
  if (upb_handlers_getselector(f, type, &sel)) upb_inttable_insert(&t, sel, v);

  upb_inttable t;
  upb_inttable_init(&t, UPB_CTYPE_BOOL);
  upb_value v = upb_value_bool(true);
  upb_selector_t sel;
  upb_inttable_insert(&t, UPB_STARTMSG_SELECTOR, v);
  upb_inttable_insert(&t, UPB_ENDMSG_SELECTOR, v);
306 307 308
  for(upb_msg_field_begin(&j, m);
      !upb_msg_field_done(&j);
      upb_msg_field_next(&j)) {
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    upb_fielddef *f = upb_msg_iter_field(&j);
    // These calls will assert-fail in upb_table if the value already exists.
    TRY(UPB_HANDLER_INT32);
    TRY(UPB_HANDLER_INT64)
    TRY(UPB_HANDLER_UINT32)
    TRY(UPB_HANDLER_UINT64)
    TRY(UPB_HANDLER_FLOAT)
    TRY(UPB_HANDLER_DOUBLE)
    TRY(UPB_HANDLER_BOOL)
    TRY(UPB_HANDLER_STARTSTR)
    TRY(UPB_HANDLER_STRING)
    TRY(UPB_HANDLER_ENDSTR)
    TRY(UPB_HANDLER_STARTSUBMSG)
    TRY(UPB_HANDLER_ENDSUBMSG)
    TRY(UPB_HANDLER_STARTSEQ)
    TRY(UPB_HANDLER_ENDSEQ)
  }
  upb_inttable_uninit(&t);
#undef TRY
#endif

  free(fields);
  return true;
}

bool upb_def_freeze(upb_def *const* defs, int n, upb_status *s) {
  upb_status_clear(s);

  // First perform validation, in two passes so we can check that we have a
  // transitive closure without needing to search.
  for (int i = 0; i < n; i++) {
    upb_def *def = defs[i];
    if (upb_def_isfrozen(def)) {
      // Could relax this requirement if it's annoying.
      upb_status_seterrmsg(s, "def is already frozen");
      goto err;
    } else if (def->type == UPB_DEF_FIELD) {
      upb_status_seterrmsg(s, "standalone fielddefs can not be frozen");
      goto err;
    } else if (def->type == UPB_DEF_ENUM) {
      if (!upb_validate_enumdef(upb_dyncast_enumdef(def), s)) {
        goto err;
      }
    } else {
      // Set now to detect transitive closure in the second pass.
      def->came_from_user = true;
    }
  }

  // Second pass of validation.  Also assign selector bases and indexes, and
  // compact tables.
  for (int i = 0; i < n; i++) {
    upb_msgdef *m = upb_dyncast_msgdef_mutable(defs[i]);
    upb_enumdef *e = upb_dyncast_enumdef_mutable(defs[i]);
    if (m) {
      upb_inttable_compact(&m->itof);
      if (!assign_msg_indices(m, s)) {
        goto err;
      }
    } else if (e) {
      upb_inttable_compact(&e->iton);
    }
  }

  // Def graph contains FieldDefs between each MessageDef, so double the limit.
  int maxdepth = UPB_MAX_MESSAGE_DEPTH * 2;

  // Validation all passed; freeze the defs.
  bool ret =
      upb_refcounted_freeze((upb_refcounted * const *)defs, n, s, maxdepth);
  assert(!(s && ret != upb_ok(s)));
  return ret;

err:
  for (int i = 0; i < n; i++) {
    defs[i]->came_from_user = false;
  }
  assert(!(s && upb_ok(s)));
  return false;
}


/* upb_enumdef ****************************************************************/

static void upb_enumdef_free(upb_refcounted *r) {
  upb_enumdef *e = (upb_enumdef*)r;
  upb_inttable_iter i;
  upb_inttable_begin(&i, &e->iton);
  for( ; !upb_inttable_done(&i); upb_inttable_next(&i)) {
    // To clean up the upb_strdup() from upb_enumdef_addval().
    free(upb_value_getcstr(upb_inttable_iter_value(&i)));
  }
  upb_strtable_uninit(&e->ntoi);
  upb_inttable_uninit(&e->iton);
  upb_def_uninit(UPB_UPCAST(e));
  free(e);
}

upb_enumdef *upb_enumdef_new(const void *owner) {
  static const struct upb_refcounted_vtbl vtbl = {NULL, &upb_enumdef_free};
  upb_enumdef *e = malloc(sizeof(*e));
  if (!e) return NULL;
  if (!upb_def_init(UPB_UPCAST(e), UPB_DEF_ENUM, &vtbl, owner)) goto err2;
  if (!upb_strtable_init(&e->ntoi, UPB_CTYPE_INT32)) goto err2;
  if (!upb_inttable_init(&e->iton, UPB_CTYPE_CSTR)) goto err1;
  return e;

err1:
  upb_strtable_uninit(&e->ntoi);
err2:
  free(e);
  return NULL;
}

upb_enumdef *upb_enumdef_dup(const upb_enumdef *e, const void *owner) {
  upb_enumdef *new_e = upb_enumdef_new(owner);
  if (!new_e) return NULL;
  upb_enum_iter i;
  for(upb_enum_begin(&i, e); !upb_enum_done(&i); upb_enum_next(&i)) {
    bool success = upb_enumdef_addval(
        new_e, upb_enum_iter_name(&i),upb_enum_iter_number(&i), NULL);
    if (!success) {
      upb_enumdef_unref(new_e, owner);
      return NULL;
    }
  }
  return new_e;
}

bool upb_enumdef_isfrozen(const upb_enumdef *e) {
  return upb_def_isfrozen(UPB_UPCAST(e));
}

void upb_enumdef_ref(const upb_enumdef *e, const void *owner) {
  upb_def_ref(UPB_UPCAST(e), owner);
}

void upb_enumdef_unref(const upb_enumdef *e, const void *owner) {
  upb_def_unref(UPB_UPCAST(e), owner);
}

void upb_enumdef_donateref(
    const upb_enumdef *e, const void *from, const void *to) {
  upb_def_donateref(UPB_UPCAST(e), from, to);
}

void upb_enumdef_checkref(const upb_enumdef *e, const void *owner) {
  upb_def_checkref(UPB_UPCAST(e), owner);
}

bool upb_enumdef_freeze(upb_enumdef *e, upb_status *status) {
  upb_def *d = UPB_UPCAST(e);
  return upb_def_freeze(&d, 1, status);
}

const char *upb_enumdef_fullname(const upb_enumdef *e) {
  return upb_def_fullname(UPB_UPCAST(e));
}

bool upb_enumdef_setfullname(upb_enumdef *e, const char *fullname,
                             upb_status *s) {
  return upb_def_setfullname(UPB_UPCAST(e), fullname, s);
}

bool upb_enumdef_addval(upb_enumdef *e, const char *name, int32_t num,
                        upb_status *status) {
  if (!upb_isident(name, strlen(name), false, status)) {
    return false;
  }
  if (upb_enumdef_ntoiz(e, name, NULL)) {
    upb_status_seterrf(status, "name '%s' is already defined", name);
    return false;
  }
  if (!upb_strtable_insert(&e->ntoi, name, upb_value_int32(num))) {
    upb_status_seterrmsg(status, "out of memory");
    return false;
  }
  if (!upb_inttable_lookup(&e->iton, num, NULL) &&
      !upb_inttable_insert(&e->iton, num, upb_value_cstr(upb_strdup(name)))) {
    upb_status_seterrmsg(status, "out of memory");
    upb_strtable_remove(&e->ntoi, name, NULL);
    return false;
  }
  if (upb_enumdef_numvals(e) == 1) {
    bool ok = upb_enumdef_setdefault(e, num, NULL);
    UPB_ASSERT_VAR(ok, ok);
  }
  return true;
}

int32_t upb_enumdef_default(const upb_enumdef *e) {
  assert(upb_enumdef_iton(e, e->defaultval));
  return e->defaultval;
}

bool upb_enumdef_setdefault(upb_enumdef *e, int32_t val, upb_status *s) {
  assert(!upb_enumdef_isfrozen(e));
  if (!upb_enumdef_iton(e, val)) {
    upb_status_seterrf(s, "number '%d' is not in the enum.", val);
    return false;
  }
  e->defaultval = val;
  return true;
}

int upb_enumdef_numvals(const upb_enumdef *e) {
  return upb_strtable_count(&e->ntoi);
}

void upb_enum_begin(upb_enum_iter *i, const upb_enumdef *e) {
  // We iterate over the ntoi table, to account for duplicate numbers.
  upb_strtable_begin(i, &e->ntoi);
}

void upb_enum_next(upb_enum_iter *iter) { upb_strtable_next(iter); }
bool upb_enum_done(upb_enum_iter *iter) { return upb_strtable_done(iter); }

bool upb_enumdef_ntoi(const upb_enumdef *def, const char *name,
                      size_t len, int32_t *num) {
  upb_value v;
  if (!upb_strtable_lookup2(&def->ntoi, name, len, &v)) {
    return false;
  }
  if (num) *num = upb_value_getint32(v);
  return true;
}

const char *upb_enumdef_iton(const upb_enumdef *def, int32_t num) {
  upb_value v;
  return upb_inttable_lookup32(&def->iton, num, &v) ?
      upb_value_getcstr(v) : NULL;
}

const char *upb_enum_iter_name(upb_enum_iter *iter) {
  return upb_strtable_iter_key(iter);
}

int32_t upb_enum_iter_number(upb_enum_iter *iter) {
  return upb_value_getint32(upb_strtable_iter_value(iter));
}


/* upb_fielddef ***************************************************************/

static void upb_fielddef_init_default(upb_fielddef *f);

static void upb_fielddef_uninit_default(upb_fielddef *f) {
  if (f->type_is_set_ && f->default_is_string && f->defaultval.bytes)
    freestr(f->defaultval.bytes);
}

static void visitfield(const upb_refcounted *r, upb_refcounted_visit *visit,
                       void *closure) {
  const upb_fielddef *f = (const upb_fielddef*)r;
  if (upb_fielddef_containingtype(f)) {
    visit(r, UPB_UPCAST2(upb_fielddef_containingtype(f)), closure);
  }
566 567 568
  if (upb_fielddef_containingoneof(f)) {
    visit(r, UPB_UPCAST2(upb_fielddef_containingoneof(f)), closure);
  }
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
  if (upb_fielddef_subdef(f)) {
    visit(r, UPB_UPCAST(upb_fielddef_subdef(f)), closure);
  }
}

static void freefield(upb_refcounted *r) {
  upb_fielddef *f = (upb_fielddef*)r;
  upb_fielddef_uninit_default(f);
  if (f->subdef_is_symbolic)
    free(f->sub.name);
  upb_def_uninit(UPB_UPCAST(f));
  free(f);
}

static const char *enumdefaultstr(const upb_fielddef *f) {
  assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM);
  const upb_enumdef *e = upb_fielddef_enumsubdef(f);
  if (f->default_is_string && f->defaultval.bytes) {
    // Default was explicitly set as a string.
    str_t *s = f->defaultval.bytes;
    return s->str;
  } else if (e) {
    if (!f->default_is_string) {
      // Default was explicitly set as an integer; look it up in enumdef.
      const char *name = upb_enumdef_iton(e, f->defaultval.sint);
      if (name) {
        return name;
      }
    } else {
      // Default is completely unset; pull enumdef default.
      if (upb_enumdef_numvals(e) > 0) {
        const char *name = upb_enumdef_iton(e, upb_enumdef_default(e));
        assert(name);
        return name;
      }
    }
  }
  return NULL;
}

static bool enumdefaultint32(const upb_fielddef *f, int32_t *val) {
  assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM);
  const upb_enumdef *e = upb_fielddef_enumsubdef(f);
  if (!f->default_is_string) {
    // Default was explicitly set as an integer.
    *val = f->defaultval.sint;
    return true;
  } else if (e) {
    if (f->defaultval.bytes) {
      // Default was explicitly set as a str; try to lookup corresponding int.
      str_t *s = f->defaultval.bytes;
      if (upb_enumdef_ntoiz(e, s->str, val)) {
        return true;
      }
    } else {
      // Default is unset; try to pull in enumdef default.
      if (upb_enumdef_numvals(e) > 0) {
        *val = upb_enumdef_default(e);
        return true;
      }
    }
  }
  return false;
}

upb_fielddef *upb_fielddef_new(const void *owner) {
  static const struct upb_refcounted_vtbl vtbl = {visitfield, freefield};
  upb_fielddef *f = malloc(sizeof(*f));
  if (!f) return NULL;
  if (!upb_def_init(UPB_UPCAST(f), UPB_DEF_FIELD, &vtbl, owner)) {
    free(f);
    return NULL;
  }
  f->msg.def = NULL;
  f->sub.def = NULL;
644
  f->oneof = NULL;
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
  f->subdef_is_symbolic = false;
  f->msg_is_symbolic = false;
  f->label_ = UPB_LABEL_OPTIONAL;
  f->type_ = UPB_TYPE_INT32;
  f->number_ = 0;
  f->type_is_set_ = false;
  f->tagdelim = false;
  f->is_extension_ = false;
  f->lazy_ = false;
  f->packed_ = true;

  // For the moment we default this to UPB_INTFMT_VARIABLE, since it will work
  // with all integer types and is in some since more "default" since the most
  // normal-looking proto2 types int32/int64/uint32/uint64 use variable.
  //
  // Other options to consider:
  // - there is no default; users must set this manually (like type).
  // - default signed integers to UPB_INTFMT_ZIGZAG, since it's more likely to
  //   be an optimal default for signed integers.
  f->intfmt = UPB_INTFMT_VARIABLE;
  return f;
}

upb_fielddef *upb_fielddef_dup(const upb_fielddef *f, const void *owner) {
  upb_fielddef *newf = upb_fielddef_new(owner);
  if (!newf) return NULL;
  upb_fielddef_settype(newf, upb_fielddef_type(f));
  upb_fielddef_setlabel(newf, upb_fielddef_label(f));
  upb_fielddef_setnumber(newf, upb_fielddef_number(f), NULL);
  upb_fielddef_setname(newf, upb_fielddef_name(f), NULL);
  if (f->default_is_string && f->defaultval.bytes) {
    str_t *s = f->defaultval.bytes;
    upb_fielddef_setdefaultstr(newf, s->str, s->len, NULL);
  } else {
    newf->default_is_string = f->default_is_string;
    newf->defaultval = f->defaultval;
  }

  const char *srcname;
  if (f->subdef_is_symbolic) {
    srcname = f->sub.name;  // Might be NULL.
  } else {
    srcname = f->sub.def ? upb_def_fullname(f->sub.def) : NULL;
  }
  if (srcname) {
    char *newname = malloc(strlen(f->sub.def->fullname) + 2);
    if (!newname) {
      upb_fielddef_unref(newf, owner);
      return NULL;
    }
    strcpy(newname, ".");
    strcat(newname, f->sub.def->fullname);
    upb_fielddef_setsubdefname(newf, newname, NULL);
    free(newname);
  }

  return newf;
}

bool upb_fielddef_isfrozen(const upb_fielddef *f) {
  return upb_def_isfrozen(UPB_UPCAST(f));
}

void upb_fielddef_ref(const upb_fielddef *f, const void *owner) {
  upb_def_ref(UPB_UPCAST(f), owner);
}

void upb_fielddef_unref(const upb_fielddef *f, const void *owner) {
  upb_def_unref(UPB_UPCAST(f), owner);
}

void upb_fielddef_donateref(
    const upb_fielddef *f, const void *from, const void *to) {
  upb_def_donateref(UPB_UPCAST(f), from, to);
}

void upb_fielddef_checkref(const upb_fielddef *f, const void *owner) {
  upb_def_checkref(UPB_UPCAST(f), owner);
}

bool upb_fielddef_typeisset(const upb_fielddef *f) {
  return f->type_is_set_;
}

upb_fieldtype_t upb_fielddef_type(const upb_fielddef *f) {
  assert(f->type_is_set_);
  return f->type_;
}

uint32_t upb_fielddef_index(const upb_fielddef *f) {
  return f->index_;
}

upb_label_t upb_fielddef_label(const upb_fielddef *f) {
  return f->label_;
}

upb_intfmt_t upb_fielddef_intfmt(const upb_fielddef *f) {
  return f->intfmt;
}

bool upb_fielddef_istagdelim(const upb_fielddef *f) {
  return f->tagdelim;
}

uint32_t upb_fielddef_number(const upb_fielddef *f) {
  return f->number_;
}

bool upb_fielddef_isextension(const upb_fielddef *f) {
  return f->is_extension_;
}

bool upb_fielddef_lazy(const upb_fielddef *f) {
  return f->lazy_;
}

bool upb_fielddef_packed(const upb_fielddef *f) {
  return f->packed_;
}

const char *upb_fielddef_name(const upb_fielddef *f) {
  return upb_def_fullname(UPB_UPCAST(f));
}

const upb_msgdef *upb_fielddef_containingtype(const upb_fielddef *f) {
  return f->msg_is_symbolic ? NULL : f->msg.def;
}

774 775 776 777
const upb_oneofdef *upb_fielddef_containingoneof(const upb_fielddef *f) {
  return f->oneof;
}

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
upb_msgdef *upb_fielddef_containingtype_mutable(upb_fielddef *f) {
  return (upb_msgdef*)upb_fielddef_containingtype(f);
}

const char *upb_fielddef_containingtypename(upb_fielddef *f) {
  return f->msg_is_symbolic ? f->msg.name : NULL;
}

static void release_containingtype(upb_fielddef *f) {
  if (f->msg_is_symbolic) free(f->msg.name);
}

bool upb_fielddef_setcontainingtypename(upb_fielddef *f, const char *name,
                                        upb_status *s) {
  assert(!upb_fielddef_isfrozen(f));
  if (upb_fielddef_containingtype(f)) {
    upb_status_seterrmsg(s, "field has already been added to a message.");
    return false;
  }
  // TODO: validate name (upb_isident() doesn't quite work atm because this name
  // may have a leading ".").
  release_containingtype(f);
  f->msg.name = upb_strdup(name);
  f->msg_is_symbolic = true;
  return true;
}

bool upb_fielddef_setname(upb_fielddef *f, const char *name, upb_status *s) {
806 807 808 809
  if (upb_fielddef_containingtype(f) || upb_fielddef_containingoneof(f)) {
    upb_status_seterrmsg(s, "Already added to message or oneof");
    return false;
  }
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
  return upb_def_setfullname(UPB_UPCAST(f), name, s);
}

static void chkdefaulttype(const upb_fielddef *f, upb_fieldtype_t type) {
  UPB_UNUSED(f);
  UPB_UNUSED(type);
  assert(f->type_is_set_ && upb_fielddef_type(f) == type);
}

int64_t upb_fielddef_defaultint64(const upb_fielddef *f) {
  chkdefaulttype(f, UPB_TYPE_INT64);
  return f->defaultval.sint;
}

int32_t upb_fielddef_defaultint32(const upb_fielddef *f) {
  if (f->type_is_set_ && upb_fielddef_type(f) == UPB_TYPE_ENUM) {
    int32_t val;
    bool ok = enumdefaultint32(f, &val);
    UPB_ASSERT_VAR(ok, ok);
    return val;
  } else {
    chkdefaulttype(f, UPB_TYPE_INT32);
    return f->defaultval.sint;
  }
}

uint64_t upb_fielddef_defaultuint64(const upb_fielddef *f) {
  chkdefaulttype(f, UPB_TYPE_UINT64);
  return f->defaultval.uint;
}

uint32_t upb_fielddef_defaultuint32(const upb_fielddef *f) {
  chkdefaulttype(f, UPB_TYPE_UINT32);
  return f->defaultval.uint;
}

bool upb_fielddef_defaultbool(const upb_fielddef *f) {
  chkdefaulttype(f, UPB_TYPE_BOOL);
  return f->defaultval.uint;
}

float upb_fielddef_defaultfloat(const upb_fielddef *f) {
  chkdefaulttype(f, UPB_TYPE_FLOAT);
  return f->defaultval.flt;
}

double upb_fielddef_defaultdouble(const upb_fielddef *f) {
  chkdefaulttype(f, UPB_TYPE_DOUBLE);
  return f->defaultval.dbl;
}

const char *upb_fielddef_defaultstr(const upb_fielddef *f, size_t *len) {
  assert(f->type_is_set_);
  assert(upb_fielddef_type(f) == UPB_TYPE_STRING ||
         upb_fielddef_type(f) == UPB_TYPE_BYTES ||
         upb_fielddef_type(f) == UPB_TYPE_ENUM);

  if (upb_fielddef_type(f) == UPB_TYPE_ENUM) {
    const char *ret = enumdefaultstr(f);
    assert(ret);
    // Enum defaults can't have embedded NULLs.
    if (len) *len = strlen(ret);
    return ret;
  }

  if (f->default_is_string) {
    str_t *str = f->defaultval.bytes;
    if (len) *len = str->len;
    return str->str;
  }

  return NULL;
}

static void upb_fielddef_init_default(upb_fielddef *f) {
  f->default_is_string = false;
  switch (upb_fielddef_type(f)) {
    case UPB_TYPE_DOUBLE: f->defaultval.dbl = 0; break;
    case UPB_TYPE_FLOAT: f->defaultval.flt = 0; break;
    case UPB_TYPE_INT32:
    case UPB_TYPE_INT64: f->defaultval.sint = 0; break;
    case UPB_TYPE_UINT64:
    case UPB_TYPE_UINT32:
    case UPB_TYPE_BOOL: f->defaultval.uint = 0; break;
    case UPB_TYPE_STRING:
    case UPB_TYPE_BYTES:
      f->defaultval.bytes = newstr("", 0);
      f->default_is_string = true;
      break;
    case UPB_TYPE_MESSAGE: break;
    case UPB_TYPE_ENUM:
      // This is our special sentinel that indicates "not set" for an enum.
      f->default_is_string = true;
      f->defaultval.bytes = NULL;
      break;
  }
}

const upb_def *upb_fielddef_subdef(const upb_fielddef *f) {
  return f->subdef_is_symbolic ? NULL : f->sub.def;
}

const upb_msgdef *upb_fielddef_msgsubdef(const upb_fielddef *f) {
  const upb_def *def = upb_fielddef_subdef(f);
  return def ? upb_dyncast_msgdef(def) : NULL;
}

const upb_enumdef *upb_fielddef_enumsubdef(const upb_fielddef *f) {
  const upb_def *def = upb_fielddef_subdef(f);
  return def ? upb_dyncast_enumdef(def) : NULL;
}

upb_def *upb_fielddef_subdef_mutable(upb_fielddef *f) {
  return (upb_def*)upb_fielddef_subdef(f);
}

const char *upb_fielddef_subdefname(const upb_fielddef *f) {
  if (f->subdef_is_symbolic) {
    return f->sub.name;
  } else if (f->sub.def) {
    return upb_def_fullname(f->sub.def);
  } else {
    return NULL;
  }
}

bool upb_fielddef_setnumber(upb_fielddef *f, uint32_t number, upb_status *s) {
  if (upb_fielddef_containingtype(f)) {
    upb_status_seterrmsg(
        s, "cannot change field number after adding to a message");
    return false;
  }
  if (number == 0 || number > UPB_MAX_FIELDNUMBER) {
    upb_status_seterrf(s, "invalid field number (%u)", number);
    return false;
  }
  f->number_ = number;
  return true;
}

void upb_fielddef_settype(upb_fielddef *f, upb_fieldtype_t type) {
  assert(!upb_fielddef_isfrozen(f));
  assert(upb_fielddef_checktype(type));
  upb_fielddef_uninit_default(f);
  f->type_ = type;
  f->type_is_set_ = true;
  upb_fielddef_init_default(f);
}

void upb_fielddef_setdescriptortype(upb_fielddef *f, int type) {
  assert(!upb_fielddef_isfrozen(f));
  switch (type) {
    case UPB_DESCRIPTOR_TYPE_DOUBLE:
      upb_fielddef_settype(f, UPB_TYPE_DOUBLE);
      break;
    case UPB_DESCRIPTOR_TYPE_FLOAT:
      upb_fielddef_settype(f, UPB_TYPE_FLOAT);
      break;
    case UPB_DESCRIPTOR_TYPE_INT64:
    case UPB_DESCRIPTOR_TYPE_SFIXED64:
    case UPB_DESCRIPTOR_TYPE_SINT64:
      upb_fielddef_settype(f, UPB_TYPE_INT64);
      break;
    case UPB_DESCRIPTOR_TYPE_UINT64:
    case UPB_DESCRIPTOR_TYPE_FIXED64:
      upb_fielddef_settype(f, UPB_TYPE_UINT64);
      break;
    case UPB_DESCRIPTOR_TYPE_INT32:
    case UPB_DESCRIPTOR_TYPE_SFIXED32:
    case UPB_DESCRIPTOR_TYPE_SINT32:
      upb_fielddef_settype(f, UPB_TYPE_INT32);
      break;
    case UPB_DESCRIPTOR_TYPE_UINT32:
    case UPB_DESCRIPTOR_TYPE_FIXED32:
      upb_fielddef_settype(f, UPB_TYPE_UINT32);
      break;
    case UPB_DESCRIPTOR_TYPE_BOOL:
      upb_fielddef_settype(f, UPB_TYPE_BOOL);
      break;
    case UPB_DESCRIPTOR_TYPE_STRING:
      upb_fielddef_settype(f, UPB_TYPE_STRING);
      break;
    case UPB_DESCRIPTOR_TYPE_BYTES:
      upb_fielddef_settype(f, UPB_TYPE_BYTES);
      break;
    case UPB_DESCRIPTOR_TYPE_GROUP:
    case UPB_DESCRIPTOR_TYPE_MESSAGE:
      upb_fielddef_settype(f, UPB_TYPE_MESSAGE);
      break;
    case UPB_DESCRIPTOR_TYPE_ENUM:
      upb_fielddef_settype(f, UPB_TYPE_ENUM);
      break;
    default: assert(false);
  }

  if (type == UPB_DESCRIPTOR_TYPE_FIXED64 ||
      type == UPB_DESCRIPTOR_TYPE_FIXED32 ||
      type == UPB_DESCRIPTOR_TYPE_SFIXED64 ||
      type == UPB_DESCRIPTOR_TYPE_SFIXED32) {
    upb_fielddef_setintfmt(f, UPB_INTFMT_FIXED);
  } else if (type == UPB_DESCRIPTOR_TYPE_SINT64 ||
             type == UPB_DESCRIPTOR_TYPE_SINT32) {
    upb_fielddef_setintfmt(f, UPB_INTFMT_ZIGZAG);
  } else {
    upb_fielddef_setintfmt(f, UPB_INTFMT_VARIABLE);
  }

  upb_fielddef_settagdelim(f, type == UPB_DESCRIPTOR_TYPE_GROUP);
}

upb_descriptortype_t upb_fielddef_descriptortype(const upb_fielddef *f) {
  switch (upb_fielddef_type(f)) {
    case UPB_TYPE_FLOAT:  return UPB_DESCRIPTOR_TYPE_FLOAT;
    case UPB_TYPE_DOUBLE: return UPB_DESCRIPTOR_TYPE_DOUBLE;
    case UPB_TYPE_BOOL:   return UPB_DESCRIPTOR_TYPE_BOOL;
    case UPB_TYPE_STRING: return UPB_DESCRIPTOR_TYPE_STRING;
    case UPB_TYPE_BYTES:  return UPB_DESCRIPTOR_TYPE_BYTES;
    case UPB_TYPE_ENUM:   return UPB_DESCRIPTOR_TYPE_ENUM;
    case UPB_TYPE_INT32:
      switch (upb_fielddef_intfmt(f)) {
        case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_INT32;
        case UPB_INTFMT_FIXED:    return UPB_DESCRIPTOR_TYPE_SFIXED32;
        case UPB_INTFMT_ZIGZAG:   return UPB_DESCRIPTOR_TYPE_SINT32;
      }
    case UPB_TYPE_INT64:
      switch (upb_fielddef_intfmt(f)) {
        case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_INT64;
        case UPB_INTFMT_FIXED:    return UPB_DESCRIPTOR_TYPE_SFIXED64;
        case UPB_INTFMT_ZIGZAG:   return UPB_DESCRIPTOR_TYPE_SINT64;
      }
    case UPB_TYPE_UINT32:
      switch (upb_fielddef_intfmt(f)) {
        case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_UINT32;
        case UPB_INTFMT_FIXED:    return UPB_DESCRIPTOR_TYPE_FIXED32;
        case UPB_INTFMT_ZIGZAG:   return -1;
      }
    case UPB_TYPE_UINT64:
      switch (upb_fielddef_intfmt(f)) {
        case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_UINT64;
        case UPB_INTFMT_FIXED:    return UPB_DESCRIPTOR_TYPE_FIXED64;
        case UPB_INTFMT_ZIGZAG:   return -1;
      }
    case UPB_TYPE_MESSAGE:
      return upb_fielddef_istagdelim(f) ?
          UPB_DESCRIPTOR_TYPE_GROUP : UPB_DESCRIPTOR_TYPE_MESSAGE;
  }
  return 0;
}

void upb_fielddef_setisextension(upb_fielddef *f, bool is_extension) {
  assert(!upb_fielddef_isfrozen(f));
  f->is_extension_ = is_extension;
}

void upb_fielddef_setlazy(upb_fielddef *f, bool lazy) {
  assert(!upb_fielddef_isfrozen(f));
  f->lazy_ = lazy;
}

void upb_fielddef_setpacked(upb_fielddef *f, bool packed) {
  assert(!upb_fielddef_isfrozen(f));
  f->packed_ = packed;
}

void upb_fielddef_setlabel(upb_fielddef *f, upb_label_t label) {
  assert(!upb_fielddef_isfrozen(f));
  assert(upb_fielddef_checklabel(label));
  f->label_ = label;
}

void upb_fielddef_setintfmt(upb_fielddef *f, upb_intfmt_t fmt) {
  assert(!upb_fielddef_isfrozen(f));
  assert(upb_fielddef_checkintfmt(fmt));
  f->intfmt = fmt;
}

void upb_fielddef_settagdelim(upb_fielddef *f, bool tag_delim) {
  assert(!upb_fielddef_isfrozen(f));
  f->tagdelim = tag_delim;
  f->tagdelim = tag_delim;
}

static bool checksetdefault(upb_fielddef *f, upb_fieldtype_t type) {
  if (!f->type_is_set_ || upb_fielddef_isfrozen(f) ||
      upb_fielddef_type(f) != type) {
    assert(false);
    return false;
  }
  if (f->default_is_string) {
    str_t *s = f->defaultval.bytes;
    assert(s || type == UPB_TYPE_ENUM);
    if (s) freestr(s);
  }
  f->default_is_string = false;
  return true;
}

void upb_fielddef_setdefaultint64(upb_fielddef *f, int64_t value) {
  if (checksetdefault(f, UPB_TYPE_INT64))
    f->defaultval.sint = value;
}

void upb_fielddef_setdefaultint32(upb_fielddef *f, int32_t value) {
  if ((upb_fielddef_type(f) == UPB_TYPE_ENUM &&
       checksetdefault(f, UPB_TYPE_ENUM)) ||
      checksetdefault(f, UPB_TYPE_INT32)) {
    f->defaultval.sint = value;
  }
}

void upb_fielddef_setdefaultuint64(upb_fielddef *f, uint64_t value) {
  if (checksetdefault(f, UPB_TYPE_UINT64))
    f->defaultval.uint = value;
}

void upb_fielddef_setdefaultuint32(upb_fielddef *f, uint32_t value) {
  if (checksetdefault(f, UPB_TYPE_UINT32))
    f->defaultval.uint = value;
}

void upb_fielddef_setdefaultbool(upb_fielddef *f, bool value) {
  if (checksetdefault(f, UPB_TYPE_BOOL))
    f->defaultval.uint = value;
}

void upb_fielddef_setdefaultfloat(upb_fielddef *f, float value) {
  if (checksetdefault(f, UPB_TYPE_FLOAT))
    f->defaultval.flt = value;
}

void upb_fielddef_setdefaultdouble(upb_fielddef *f, double value) {
  if (checksetdefault(f, UPB_TYPE_DOUBLE))
    f->defaultval.dbl = value;
}

bool upb_fielddef_setdefaultstr(upb_fielddef *f, const void *str, size_t len,
                                upb_status *s) {
  assert(upb_fielddef_isstring(f) || f->type_ == UPB_TYPE_ENUM);
  if (f->type_ == UPB_TYPE_ENUM && !upb_isident(str, len, false, s))
    return false;

  if (f->default_is_string) {
    str_t *s = f->defaultval.bytes;
    assert(s || f->type_ == UPB_TYPE_ENUM);
    if (s) freestr(s);
  } else {
    assert(f->type_ == UPB_TYPE_ENUM);
  }

  str_t *str2 = newstr(str, len);
  f->defaultval.bytes = str2;
  f->default_is_string = true;
  return true;
}

void upb_fielddef_setdefaultcstr(upb_fielddef *f, const char *str,
                                 upb_status *s) {
  assert(f->type_is_set_);
  upb_fielddef_setdefaultstr(f, str, str ? strlen(str) : 0, s);
}

bool upb_fielddef_enumhasdefaultint32(const upb_fielddef *f) {
  assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM);
  int32_t val;
  return enumdefaultint32(f, &val);
}

bool upb_fielddef_enumhasdefaultstr(const upb_fielddef *f) {
  assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM);
  return enumdefaultstr(f) != NULL;
}

static bool upb_subdef_typecheck(upb_fielddef *f, const upb_def *subdef,
                                 upb_status *s) {
  if (f->type_ == UPB_TYPE_MESSAGE) {
    if (upb_dyncast_msgdef(subdef)) return true;
    upb_status_seterrmsg(s, "invalid subdef type for this submessage field");
    return false;
  } else if (f->type_ == UPB_TYPE_ENUM) {
    if (upb_dyncast_enumdef(subdef)) return true;
    upb_status_seterrmsg(s, "invalid subdef type for this enum field");
    return false;
  } else {
    upb_status_seterrmsg(s, "only message and enum fields can have a subdef");
    return false;
  }
}

static void release_subdef(upb_fielddef *f) {
  if (f->subdef_is_symbolic) {
    free(f->sub.name);
  } else if (f->sub.def) {
    upb_unref2(f->sub.def, f);
  }
}

bool upb_fielddef_setsubdef(upb_fielddef *f, const upb_def *subdef,
                            upb_status *s) {
  assert(!upb_fielddef_isfrozen(f));
  assert(upb_fielddef_hassubdef(f));
  if (subdef && !upb_subdef_typecheck(f, subdef, s)) return false;
  release_subdef(f);
  f->sub.def = subdef;
  f->subdef_is_symbolic = false;
  if (f->sub.def) upb_ref2(f->sub.def, f);
  return true;
}

bool upb_fielddef_setmsgsubdef(upb_fielddef *f, const upb_msgdef *subdef,
                               upb_status *s) {
  return upb_fielddef_setsubdef(f, UPB_UPCAST(subdef), s);
}

bool upb_fielddef_setenumsubdef(upb_fielddef *f, const upb_enumdef *subdef,
                                upb_status *s) {
  return upb_fielddef_setsubdef(f, UPB_UPCAST(subdef), s);
}

bool upb_fielddef_setsubdefname(upb_fielddef *f, const char *name,
                                upb_status *s) {
  assert(!upb_fielddef_isfrozen(f));
  if (!upb_fielddef_hassubdef(f)) {
    upb_status_seterrmsg(s, "field type does not accept a subdef");
    return false;
  }
  // TODO: validate name (upb_isident() doesn't quite work atm because this name
  // may have a leading ".").
  release_subdef(f);
  f->sub.name = upb_strdup(name);
  f->subdef_is_symbolic = true;
  return true;
}

bool upb_fielddef_issubmsg(const upb_fielddef *f) {
  return upb_fielddef_type(f) == UPB_TYPE_MESSAGE;
}

bool upb_fielddef_isstring(const upb_fielddef *f) {
  return upb_fielddef_type(f) == UPB_TYPE_STRING ||
         upb_fielddef_type(f) == UPB_TYPE_BYTES;
}

bool upb_fielddef_isseq(const upb_fielddef *f) {
  return upb_fielddef_label(f) == UPB_LABEL_REPEATED;
}

bool upb_fielddef_isprimitive(const upb_fielddef *f) {
  return !upb_fielddef_isstring(f) && !upb_fielddef_issubmsg(f);
}

1260 1261 1262 1263 1264
bool upb_fielddef_ismap(const upb_fielddef *f) {
  return upb_fielddef_isseq(f) && upb_fielddef_issubmsg(f) &&
         upb_msgdef_mapentry(upb_fielddef_msgsubdef(f));
}

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
bool upb_fielddef_hassubdef(const upb_fielddef *f) {
  return upb_fielddef_issubmsg(f) || upb_fielddef_type(f) == UPB_TYPE_ENUM;
}

static bool between(int32_t x, int32_t low, int32_t high) {
  return x >= low && x <= high;
}

bool upb_fielddef_checklabel(int32_t label) { return between(label, 1, 3); }
bool upb_fielddef_checktype(int32_t type) { return between(type, 1, 11); }
bool upb_fielddef_checkintfmt(int32_t fmt) { return between(fmt, 1, 3); }

bool upb_fielddef_checkdescriptortype(int32_t type) {
  return between(type, 1, 18);
}

/* upb_msgdef *****************************************************************/

static void visitmsg(const upb_refcounted *r, upb_refcounted_visit *visit,
                     void *closure) {
  const upb_msgdef *m = (const upb_msgdef*)r;
1286 1287 1288 1289
  upb_msg_field_iter i;
  for(upb_msg_field_begin(&i, m);
      !upb_msg_field_done(&i);
      upb_msg_field_next(&i)) {
1290 1291 1292
    upb_fielddef *f = upb_msg_iter_field(&i);
    visit(r, UPB_UPCAST2(f), closure);
  }
1293 1294 1295 1296 1297 1298 1299
  upb_msg_oneof_iter o;
  for(upb_msg_oneof_begin(&o, m);
      !upb_msg_oneof_done(&o);
      upb_msg_oneof_next(&o)) {
    upb_oneofdef *f = upb_msg_iter_oneof(&o);
    visit(r, UPB_UPCAST2(f), closure);
  }
1300 1301 1302 1303
}

static void freemsg(upb_refcounted *r) {
  upb_msgdef *m = (upb_msgdef*)r;
1304
  upb_strtable_uninit(&m->ntoo);
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
  upb_strtable_uninit(&m->ntof);
  upb_inttable_uninit(&m->itof);
  upb_def_uninit(UPB_UPCAST(m));
  free(m);
}

upb_msgdef *upb_msgdef_new(const void *owner) {
  static const struct upb_refcounted_vtbl vtbl = {visitmsg, freemsg};
  upb_msgdef *m = malloc(sizeof(*m));
  if (!m) return NULL;
  if (!upb_def_init(UPB_UPCAST(m), UPB_DEF_MSG, &vtbl, owner)) goto err2;
1316 1317 1318
  if (!upb_inttable_init(&m->itof, UPB_CTYPE_PTR)) goto err3;
  if (!upb_strtable_init(&m->ntof, UPB_CTYPE_PTR)) goto err2;
  if (!upb_strtable_init(&m->ntoo, UPB_CTYPE_PTR)) goto err1;
1319
  m->map_entry = false;
1320 1321 1322
  return m;

err1:
1323
  upb_strtable_uninit(&m->ntof);
1324
err2:
1325 1326
  upb_inttable_uninit(&m->itof);
err3:
1327 1328 1329 1330 1331 1332 1333 1334 1335
  free(m);
  return NULL;
}

upb_msgdef *upb_msgdef_dup(const upb_msgdef *m, const void *owner) {
  upb_msgdef *newm = upb_msgdef_new(owner);
  if (!newm) return NULL;
  bool ok = upb_def_setfullname(UPB_UPCAST(newm),
                                upb_def_fullname(UPB_UPCAST(m)), NULL);
1336
  newm->map_entry = m->map_entry;
1337
  UPB_ASSERT_VAR(ok, ok);
1338 1339 1340 1341
  upb_msg_field_iter i;
  for(upb_msg_field_begin(&i, m);
      !upb_msg_field_done(&i);
      upb_msg_field_next(&i)) {
1342
    upb_fielddef *f = upb_fielddef_dup(upb_msg_iter_field(&i), &f);
1343 1344
    // Fields in oneofs are dup'd below.
    if (upb_fielddef_containingoneof(f)) continue;
1345 1346 1347 1348 1349
    if (!f || !upb_msgdef_addfield(newm, f, &f, NULL)) {
      upb_msgdef_unref(newm, owner);
      return NULL;
    }
  }
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
  upb_msg_oneof_iter o;
  for(upb_msg_oneof_begin(&o, m);
      !upb_msg_oneof_done(&o);
      upb_msg_oneof_next(&o)) {
    upb_oneofdef *f = upb_oneofdef_dup(upb_msg_iter_oneof(&o), &f);
    if (!f || !upb_msgdef_addoneof(newm, f, &f, NULL)) {
      upb_msgdef_unref(newm, owner);
      return NULL;
    }
  }
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
  return newm;
}

bool upb_msgdef_isfrozen(const upb_msgdef *m) {
  return upb_def_isfrozen(UPB_UPCAST(m));
}

void upb_msgdef_ref(const upb_msgdef *m, const void *owner) {
  upb_def_ref(UPB_UPCAST(m), owner);
}

void upb_msgdef_unref(const upb_msgdef *m, const void *owner) {
  upb_def_unref(UPB_UPCAST(m), owner);
}

void upb_msgdef_donateref(
    const upb_msgdef *m, const void *from, const void *to) {
  upb_def_donateref(UPB_UPCAST(m), from, to);
}

void upb_msgdef_checkref(const upb_msgdef *m, const void *owner) {
  upb_def_checkref(UPB_UPCAST(m), owner);
}

bool upb_msgdef_freeze(upb_msgdef *m, upb_status *status) {
  upb_def *d = UPB_UPCAST(m);
  return upb_def_freeze(&d, 1, status);
}

const char *upb_msgdef_fullname(const upb_msgdef *m) {
  return upb_def_fullname(UPB_UPCAST(m));
}

bool upb_msgdef_setfullname(upb_msgdef *m, const char *fullname,
                            upb_status *s) {
  return upb_def_setfullname(UPB_UPCAST(m), fullname, s);
}

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
// Helper: check that the field |f| is safe to add to msgdef |m|. Set an error
// on status |s| and return false if not.
static bool check_field_add(const upb_msgdef *m, const upb_fielddef *f,
                            upb_status *s) {
  if (upb_fielddef_containingtype(f) != NULL) {
    upb_status_seterrmsg(s, "fielddef already belongs to a message");
    return false;
  } else if (upb_fielddef_name(f) == NULL || upb_fielddef_number(f) == 0) {
    upb_status_seterrmsg(s, "field name or number were not set");
    return false;
  } else if (upb_msgdef_ntofz(m, upb_fielddef_name(f)) ||
             upb_msgdef_itof(m, upb_fielddef_number(f))) {
    upb_status_seterrmsg(s, "duplicate field name or number for field");
    return false;
  }
  return true;
}

static void add_field(upb_msgdef *m, upb_fielddef *f, const void *ref_donor) {
  release_containingtype(f);
  f->msg.def = m;
  f->msg_is_symbolic = false;
  upb_inttable_insert(&m->itof, upb_fielddef_number(f), upb_value_ptr(f));
  upb_strtable_insert(&m->ntof, upb_fielddef_name(f), upb_value_ptr(f));
  upb_ref2(f, m);
  upb_ref2(m, f);
  if (ref_donor) upb_fielddef_unref(f, ref_donor);
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
bool upb_msgdef_addfield(upb_msgdef *m, upb_fielddef *f, const void *ref_donor,
                         upb_status *s) {
  // TODO: extensions need to have a separate namespace, because proto2 allows a
  // top-level extension (ie. one not in any package) to have the same name as a
  // field from the message.
  //
  // This also implies that there needs to be a separate lookup-by-name method
  // for extensions.  It seems desirable for iteration to return both extensions
  // and non-extensions though.
  //
  // We also need to validate that the field number is in an extension range iff
  // it is an extension.

1440 1441 1442 1443 1444 1445
  // This method is idempotent. Check if |f| is already part of this msgdef and
  // return immediately if so.
  if (upb_fielddef_containingtype(f) == m) {
    return true;
  }

1446
  // Check constraints for all fields before performing any action.
1447
  if (!check_field_add(m, f, s)) {
1448
    return false;
1449 1450 1451
  } else if (upb_fielddef_containingoneof(f) != NULL) {
    // Fields in a oneof can only be added by adding the oneof to the msgdef.
    upb_status_seterrmsg(s, "fielddef is part of a oneof");
1452 1453 1454 1455
    return false;
  }

  // Constraint checks ok, perform the action.
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
  add_field(m, f, ref_donor);
  return true;
}

bool upb_msgdef_addoneof(upb_msgdef *m, upb_oneofdef *o, const void *ref_donor,
                         upb_status *s) {
  // Check various conditions that would prevent this oneof from being added.
  if (upb_oneofdef_containingtype(o)) {
    upb_status_seterrmsg(s, "oneofdef already belongs to a message");
    return false;
  } else if (upb_oneofdef_name(o) == NULL) {
    upb_status_seterrmsg(s, "oneofdef name was not set");
    return false;
  } else if (upb_msgdef_ntooz(m, upb_oneofdef_name(o))) {
    upb_status_seterrmsg(s, "duplicate oneof name");
    return false;
  }

  // Check that all of the oneof's fields do not conflict with names or numbers
  // of fields already in the message.
  upb_oneof_iter it;
  for (upb_oneof_begin(&it, o); !upb_oneof_done(&it); upb_oneof_next(&it)) {
    const upb_fielddef *f = upb_oneof_iter_field(&it);
    if (!check_field_add(m, f, s)) {
      return false;
    }
  }

  // Everything checks out -- commit now.

  // Add oneof itself first.
  o->parent = m;
  upb_strtable_insert(&m->ntoo, upb_oneofdef_name(o), upb_value_ptr(o));
  upb_ref2(o, m);
  upb_ref2(m, o);

  // Add each field of the oneof directly to the msgdef.
  for (upb_oneof_begin(&it, o); !upb_oneof_done(&it); upb_oneof_next(&it)) {
    upb_fielddef *f = upb_oneof_iter_field(&it);
    add_field(m, f, NULL);
  }

  if (ref_donor) upb_oneofdef_unref(o, ref_donor);
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

  return true;
}

const upb_fielddef *upb_msgdef_itof(const upb_msgdef *m, uint32_t i) {
  upb_value val;
  return upb_inttable_lookup32(&m->itof, i, &val) ?
      upb_value_getptr(val) : NULL;
}

const upb_fielddef *upb_msgdef_ntof(const upb_msgdef *m, const char *name,
                                    size_t len) {
  upb_value val;
  return upb_strtable_lookup2(&m->ntof, name, len, &val) ?
      upb_value_getptr(val) : NULL;
}

1516 1517 1518 1519 1520 1521 1522
const upb_oneofdef *upb_msgdef_ntoo(const upb_msgdef *m, const char *name,
                                    size_t len) {
  upb_value val;
  return upb_strtable_lookup2(&m->ntoo, name, len, &val) ?
      upb_value_getptr(val) : NULL;
}

1523 1524 1525 1526
int upb_msgdef_numfields(const upb_msgdef *m) {
  return upb_strtable_count(&m->ntof);
}

1527 1528 1529 1530
int upb_msgdef_numoneofs(const upb_msgdef *m) {
  return upb_strtable_count(&m->ntoo);
}

1531 1532 1533 1534 1535 1536 1537 1538 1539
void upb_msgdef_setmapentry(upb_msgdef *m, bool map_entry) {
  assert(!upb_msgdef_isfrozen(m));
  m->map_entry = map_entry;
}

bool upb_msgdef_mapentry(const upb_msgdef *m) {
  return m->map_entry;
}

1540
void upb_msg_field_begin(upb_msg_field_iter *iter, const upb_msgdef *m) {
1541 1542 1543
  upb_inttable_begin(iter, &m->itof);
}

1544
void upb_msg_field_next(upb_msg_field_iter *iter) { upb_inttable_next(iter); }
1545

1546 1547 1548
bool upb_msg_field_done(const upb_msg_field_iter *iter) {
  return upb_inttable_done(iter);
}
1549

1550
upb_fielddef *upb_msg_iter_field(const upb_msg_field_iter *iter) {
1551 1552 1553
  return (upb_fielddef*)upb_value_getptr(upb_inttable_iter_value(iter));
}

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
void upb_msg_field_iter_setdone(upb_msg_field_iter *iter) {
  upb_inttable_iter_setdone(iter);
}

void upb_msg_oneof_begin(upb_msg_oneof_iter *iter, const upb_msgdef *m) {
  upb_strtable_begin(iter, &m->ntoo);
}

void upb_msg_oneof_next(upb_msg_oneof_iter *iter) { upb_strtable_next(iter); }

bool upb_msg_oneof_done(const upb_msg_oneof_iter *iter) {
  return upb_strtable_done(iter);
}

upb_oneofdef *upb_msg_iter_oneof(const upb_msg_oneof_iter *iter) {
  return (upb_oneofdef*)upb_value_getptr(upb_strtable_iter_value(iter));
}

void upb_msg_oneof_iter_setdone(upb_msg_oneof_iter *iter) {
  upb_strtable_iter_setdone(iter);
}

/* upb_oneofdef ***************************************************************/

static void visitoneof(const upb_refcounted *r, upb_refcounted_visit *visit,
                       void *closure) {
  const upb_oneofdef *o = (const upb_oneofdef*)r;
  upb_oneof_iter i;
  for (upb_oneof_begin(&i, o); !upb_oneof_done(&i); upb_oneof_next(&i)) {
    const upb_fielddef *f = upb_oneof_iter_field(&i);
    visit(r, UPB_UPCAST2(f), closure);
  }
  if (o->parent) {
    visit(r, UPB_UPCAST2(o->parent), closure);
  }
}

static void freeoneof(upb_refcounted *r) {
  upb_oneofdef *o = (upb_oneofdef*)r;
  upb_strtable_uninit(&o->ntof);
  upb_inttable_uninit(&o->itof);
  upb_def_uninit(UPB_UPCAST(o));
  free(o);
}

upb_oneofdef *upb_oneofdef_new(const void *owner) {
  static const struct upb_refcounted_vtbl vtbl = {visitoneof, freeoneof};
  upb_oneofdef *o = malloc(sizeof(*o));
  o->parent = NULL;
  if (!o) return NULL;
  if (!upb_def_init(UPB_UPCAST(o), UPB_DEF_ONEOF, &vtbl, owner)) goto err2;
  if (!upb_inttable_init(&o->itof, UPB_CTYPE_PTR)) goto err2;
  if (!upb_strtable_init(&o->ntof, UPB_CTYPE_PTR)) goto err1;
  return o;

err1:
  upb_inttable_uninit(&o->itof);
err2:
  free(o);
  return NULL;
}

upb_oneofdef *upb_oneofdef_dup(const upb_oneofdef *o, const void *owner) {
  upb_oneofdef *newo = upb_oneofdef_new(owner);
  if (!newo) return NULL;
  bool ok = upb_def_setfullname(UPB_UPCAST(newo),
                                upb_def_fullname(UPB_UPCAST(o)), NULL);
  UPB_ASSERT_VAR(ok, ok);
  upb_oneof_iter i;
  for (upb_oneof_begin(&i, o); !upb_oneof_done(&i); upb_oneof_next(&i)) {
    upb_fielddef *f = upb_fielddef_dup(upb_oneof_iter_field(&i), &f);
    if (!f || !upb_oneofdef_addfield(newo, f, &f, NULL)) {
      upb_oneofdef_unref(newo, owner);
      return NULL;
    }
  }
  return newo;
}

bool upb_oneofdef_isfrozen(const upb_oneofdef *o) {
  return upb_def_isfrozen(UPB_UPCAST(o));
}

void upb_oneofdef_ref(const upb_oneofdef *o, const void *owner) {
  upb_def_ref(UPB_UPCAST(o), owner);
}

void upb_oneofdef_unref(const upb_oneofdef *o, const void *owner) {
  upb_def_unref(UPB_UPCAST(o), owner);
}

void upb_oneofdef_donateref(const upb_oneofdef *o, const void *from,
                           const void *to) {
  upb_def_donateref(UPB_UPCAST(o), from, to);
}

void upb_oneofdef_checkref(const upb_oneofdef *o, const void *owner) {
  upb_def_checkref(UPB_UPCAST(o), owner);
}

const char *upb_oneofdef_name(const upb_oneofdef *o) {
  return upb_def_fullname(UPB_UPCAST(o));
}

bool upb_oneofdef_setname(upb_oneofdef *o, const char *fullname,
                             upb_status *s) {
  if (upb_oneofdef_containingtype(o)) {
    upb_status_seterrmsg(s, "oneof already added to a message");
    return false;
  }
  return upb_def_setfullname(UPB_UPCAST(o), fullname, s);
}

const upb_msgdef *upb_oneofdef_containingtype(const upb_oneofdef *o) {
  return o->parent;
}

int upb_oneofdef_numfields(const upb_oneofdef *o) {
  return upb_strtable_count(&o->ntof);
}

bool upb_oneofdef_addfield(upb_oneofdef *o, upb_fielddef *f,
                           const void *ref_donor,
                           upb_status *s) {
  assert(!upb_oneofdef_isfrozen(o));
  assert(!o->parent || !upb_msgdef_isfrozen(o->parent));

  // This method is idempotent. Check if |f| is already part of this oneofdef
  // and return immediately if so.
  if (upb_fielddef_containingoneof(f) == o) {
    return true;
  }

  // The field must have an OPTIONAL label.
  if (upb_fielddef_label(f) != UPB_LABEL_OPTIONAL) {
    upb_status_seterrmsg(s, "fields in oneof must have OPTIONAL label");
    return false;
  }

  // Check that no field with this name or number exists already in the oneof.
  // Also check that the field is not already part of a oneof.
  if (upb_fielddef_name(f) == NULL || upb_fielddef_number(f) == 0) {
    upb_status_seterrmsg(s, "field name or number were not set");
    return false;
  } else if (upb_oneofdef_itof(o, upb_fielddef_number(f)) ||
             upb_oneofdef_ntofz(o, upb_fielddef_name(f))) {
    upb_status_seterrmsg(s, "duplicate field name or number");
    return false;
  } else if (upb_fielddef_containingoneof(f) != NULL) {
    upb_status_seterrmsg(s, "fielddef already belongs to a oneof");
    return false;
  }

  // We allow adding a field to the oneof either if the field is not part of a
  // msgdef, or if it is and we are also part of the same msgdef.
  if (o->parent == NULL) {
    // If we're not in a msgdef, the field cannot be either. Otherwise we would
    // need to magically add this oneof to a msgdef to remain consistent, which
    // is surprising behavior.
    if (upb_fielddef_containingtype(f) != NULL) {
      upb_status_seterrmsg(s, "fielddef already belongs to a message, but "
                              "oneof does not");
      return false;
    }
  } else {
    // If we're in a msgdef, the user can add fields that either aren't in any
    // msgdef (in which case they're added to our msgdef) or already a part of
    // our msgdef.
    if (upb_fielddef_containingtype(f) != NULL &&
        upb_fielddef_containingtype(f) != o->parent) {
      upb_status_seterrmsg(s, "fielddef belongs to a different message "
                              "than oneof");
      return false;
    }
  }

  // Commit phase. First add the field to our parent msgdef, if any, because
  // that may fail; then add the field to our own tables.

  if (o->parent != NULL && upb_fielddef_containingtype(f) == NULL) {
    if (!upb_msgdef_addfield((upb_msgdef*)o->parent, f, NULL, s)) {
      return false;
    }
  }

  release_containingtype(f);
  f->oneof = o;
  upb_inttable_insert(&o->itof, upb_fielddef_number(f), upb_value_ptr(f));
  upb_strtable_insert(&o->ntof, upb_fielddef_name(f), upb_value_ptr(f));
  upb_ref2(f, o);
  upb_ref2(o, f);
  if (ref_donor) upb_fielddef_unref(f, ref_donor);

  return true;
}

const upb_fielddef *upb_oneofdef_ntof(const upb_oneofdef *o,
                                      const char *name, size_t length) {
  upb_value val;
  return upb_strtable_lookup2(&o->ntof, name, length, &val) ?
      upb_value_getptr(val) : NULL;
}

const upb_fielddef *upb_oneofdef_itof(const upb_oneofdef *o, uint32_t num) {
  upb_value val;
  return upb_inttable_lookup32(&o->itof, num, &val) ?
      upb_value_getptr(val) : NULL;
}

void upb_oneof_begin(upb_oneof_iter *iter, const upb_oneofdef *o) {
  upb_inttable_begin(iter, &o->itof);
}

void upb_oneof_next(upb_oneof_iter *iter) {
  upb_inttable_next(iter);
}

bool upb_oneof_done(upb_oneof_iter *iter) {
  return upb_inttable_done(iter);
}

upb_fielddef *upb_oneof_iter_field(const upb_oneof_iter *iter) {
  return (upb_fielddef*)upb_value_getptr(upb_inttable_iter_value(iter));
}

void upb_oneof_iter_setdone(upb_oneof_iter *iter) {
1780 1781
  upb_inttable_iter_setdone(iter);
}
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2014 Google Inc.  See LICENSE for details.
 * Author: Josh Haberman <jhaberman@gmail.com>
 */


#include <stdlib.h>
#include <stdio.h>
#include <string.h>

typedef struct cleanup_ent {
  upb_cleanup_func *cleanup;
  void *ud;
  struct cleanup_ent *next;
} cleanup_ent;

static void *seeded_alloc(void *ud, void *ptr, size_t oldsize, size_t size);

/* Default allocator **********************************************************/

// Just use realloc, keeping all allocated blocks in a linked list to destroy at
// the end.

typedef struct mem_block {
  // List is doubly-linked, because in cases where realloc() moves an existing
  // block, we need to be able to remove the old pointer from the list
  // efficiently.
  struct mem_block *prev, *next;
#ifndef NDEBUG
  size_t size;  // Doesn't include mem_block structure.
#endif
  char data[];
} mem_block;

typedef struct {
  mem_block *head;
} default_alloc_ud;

static void *default_alloc(void *_ud, void *ptr, size_t oldsize, size_t size) {
  UPB_UNUSED(oldsize);
  default_alloc_ud *ud = _ud;

  mem_block *from = ptr ? (void*)((char*)ptr - sizeof(mem_block)) : NULL;

#ifndef NDEBUG
  if (from) {
    assert(oldsize <= from->size);
  }
#endif

  mem_block *block = realloc(from, size + sizeof(mem_block));
  if (!block) return NULL;

#ifndef NDEBUG
  block->size = size;
#endif

  if (from) {
    if (block != from) {
      // The block was moved, so pointers in next and prev blocks must be
      // updated to its new location.
      if (block->next) block->next->prev = block;
      if (block->prev) block->prev->next = block;
    }
  } else {
    // Insert at head of linked list.
    block->prev = NULL;
    block->next = ud->head;
    if (block->next) block->next->prev = block;
    ud->head = block;
  }

  return &block->data;
}

static void default_alloc_cleanup(void *_ud) {
  default_alloc_ud *ud = _ud;
  mem_block *block = ud->head;

  while (block) {
    void *to_free = block;
    block = block->next;
    free(to_free);
  }
}


/* Standard error functions ***************************************************/

static bool default_err(void *ud, const upb_status *status) {
  UPB_UNUSED(ud);
  fprintf(stderr, "upb error: %s\n", upb_status_errmsg(status));
  return false;
}

static bool write_err_to(void *ud, const upb_status *status) {
  upb_status *copy_to = ud;
  upb_status_copy(copy_to, status);
  return false;
}


/* upb_env ********************************************************************/

void upb_env_init(upb_env *e) {
  e->ok_ = true;
  e->bytes_allocated = 0;
  e->cleanup_head = NULL;

  default_alloc_ud *ud = (default_alloc_ud*)&e->default_alloc_ud;
  ud->head = NULL;

  // Set default functions.
  upb_env_setallocfunc(e, default_alloc, ud);
  upb_env_seterrorfunc(e, default_err, NULL);
}

void upb_env_uninit(upb_env *e) {
  cleanup_ent *ent = e->cleanup_head;

  while (ent) {
    ent->cleanup(ent->ud);
    ent = ent->next;
  }

  // Must do this after running cleanup functions, because this will delete
  // the memory we store our cleanup entries in!
  if (e->alloc == default_alloc) {
    default_alloc_cleanup(e->alloc_ud);
  }
}

UPB_FORCEINLINE void upb_env_setallocfunc(upb_env *e, upb_alloc_func *alloc,
                                          void *ud) {
  e->alloc = alloc;
  e->alloc_ud = ud;
}

UPB_FORCEINLINE void upb_env_seterrorfunc(upb_env *e, upb_error_func *func,
                                          void *ud) {
  e->err = func;
  e->err_ud = ud;
}

void upb_env_reporterrorsto(upb_env *e, upb_status *status) {
  e->err = write_err_to;
  e->err_ud = status;
}

bool upb_env_ok(const upb_env *e) {
  return e->ok_;
}

bool upb_env_reporterror(upb_env *e, const upb_status *status) {
  e->ok_ = false;
  return e->err(e->err_ud, status);
}

bool upb_env_addcleanup(upb_env *e, upb_cleanup_func *func, void *ud) {
  cleanup_ent *ent = upb_env_malloc(e, sizeof(cleanup_ent));
  if (!ent) return false;

  ent->cleanup = func;
  ent->ud = ud;
  ent->next = e->cleanup_head;
  e->cleanup_head = ent;

  return true;
}

void *upb_env_malloc(upb_env *e, size_t size) {
  e->bytes_allocated += size;
  if (e->alloc == seeded_alloc) {
    // This is equivalent to the next branch, but allows inlining for a
    // measurable perf benefit.
    return seeded_alloc(e->alloc_ud, NULL, 0, size);
  } else {
    return e->alloc(e->alloc_ud, NULL, 0, size);
  }
}

void *upb_env_realloc(upb_env *e, void *ptr, size_t oldsize, size_t size) {
  assert(oldsize <= size);
  char *ret = e->alloc(e->alloc_ud, ptr, oldsize, size);

#ifndef NDEBUG
  // Overwrite non-preserved memory to ensure callers are passing the oldsize
  // that they truly require.
  memset(ret + oldsize, 0xff, size - oldsize);
#endif

  return ret;
}

size_t upb_env_bytesallocated(const upb_env *e) {
  return e->bytes_allocated;
}


/* upb_seededalloc ************************************************************/

// Be conservative and choose 16 in case anyone is using SSE.
static const size_t maxalign = 16;

static size_t align_up(size_t size) {
  return ((size + maxalign - 1) / maxalign) * maxalign;
}

UPB_FORCEINLINE static void *seeded_alloc(void *ud, void *ptr, size_t oldsize,
                                          size_t size) {
  UPB_UNUSED(ptr);

  upb_seededalloc *a = ud;
  size = align_up(size);

  assert(a->mem_limit >= a->mem_ptr);

  if (oldsize == 0 && size <= (size_t)(a->mem_limit - a->mem_ptr)) {
    // Fast path: we can satisfy from the initial allocation.
    void *ret = a->mem_ptr;
    a->mem_ptr += size;
    return ret;
  } else {
    // Slow path: fallback to other allocator.
    a->need_cleanup = true;
    // Is `ptr` part of the user-provided initial block? Don't pass it to the
    // default allocator if so; otherwise, it may try to realloc() the block.
    char *chptr = ptr;
    if (chptr >= a->mem_base && chptr < a->mem_limit) {
      return a->alloc(a->alloc_ud, NULL, 0, size);
    } else {
      return a->alloc(a->alloc_ud, ptr, oldsize, size);
    }
  }
}

void upb_seededalloc_init(upb_seededalloc *a, void *mem, size_t len) {
  a->mem_base = mem;
  a->mem_ptr = mem;
  a->mem_limit = (char*)mem + len;
  a->need_cleanup = false;
  a->returned_allocfunc = false;

  default_alloc_ud *ud = (default_alloc_ud*)&a->default_alloc_ud;
  ud->head = NULL;

  upb_seededalloc_setfallbackalloc(a, default_alloc, ud);
}

void upb_seededalloc_uninit(upb_seededalloc *a) {
  if (a->alloc == default_alloc && a->need_cleanup) {
    default_alloc_cleanup(a->alloc_ud);
  }
}

UPB_FORCEINLINE void upb_seededalloc_setfallbackalloc(upb_seededalloc *a,
                                                      upb_alloc_func *alloc,
                                                      void *ud) {
  assert(!a->returned_allocfunc);
  a->alloc = alloc;
  a->alloc_ud = ud;
}

upb_alloc_func *upb_seededalloc_getallocfunc(upb_seededalloc *a) {
  a->returned_allocfunc = true;
  return seeded_alloc;
}
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2011-2012 Google Inc.  See LICENSE for details.
 * Author: Josh Haberman <jhaberman@gmail.com>
 *
 * TODO(haberman): it's unclear whether a lot of the consistency checks should
 * assert() or return false.
 */


#include <stdlib.h>
#include <string.h>


// Defined for the sole purpose of having a unique pointer value for
// UPB_NO_CLOSURE.
char _upb_noclosure;

static void freehandlers(upb_refcounted *r) {
  upb_handlers *h = (upb_handlers*)r;

  upb_inttable_iter i;
  upb_inttable_begin(&i, &h->cleanup_);
  for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
    void *val = (void*)upb_inttable_iter_key(&i);
    upb_value func_val = upb_inttable_iter_value(&i);
    upb_handlerfree *func = upb_value_getfptr(func_val);
    func(val);
  }

  upb_inttable_uninit(&h->cleanup_);
  upb_msgdef_unref(h->msg, h);
  free(h->sub);
  free(h);
}

static void visithandlers(const upb_refcounted *r, upb_refcounted_visit *visit,
                          void *closure) {
  const upb_handlers *h = (const upb_handlers*)r;
2091 2092 2093 2094
  upb_msg_field_iter i;
  for(upb_msg_field_begin(&i, h->msg);
      !upb_msg_field_done(&i);
      upb_msg_field_next(&i)) {
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
    upb_fielddef *f = upb_msg_iter_field(&i);
    if (!upb_fielddef_issubmsg(f)) continue;
    const upb_handlers *sub = upb_handlers_getsubhandlers(h, f);
    if (sub) visit(r, UPB_UPCAST(sub), closure);
  }
}

static const struct upb_refcounted_vtbl vtbl = {visithandlers, freehandlers};

typedef struct {
  upb_inttable tab;  // maps upb_msgdef* -> upb_handlers*.
  upb_handlers_callback *callback;
  const void *closure;
} dfs_state;

// TODO(haberman): discard upb_handlers* objects that do not actually have any
// handlers set and cannot reach any upb_handlers* object that does.  This is
// slightly tricky to do correctly.
static upb_handlers *newformsg(const upb_msgdef *m, const void *owner,
                               dfs_state *s) {
  upb_handlers *h = upb_handlers_new(m, owner);
  if (!h) return NULL;
  if (!upb_inttable_insertptr(&s->tab, m, upb_value_ptr(h))) goto oom;

  s->callback(s->closure, h);

  // For each submessage field, get or create a handlers object and set it as
  // the subhandlers.
2123 2124 2125 2126
  upb_msg_field_iter i;
  for(upb_msg_field_begin(&i, m);
      !upb_msg_field_done(&i);
      upb_msg_field_next(&i)) {
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
    upb_fielddef *f = upb_msg_iter_field(&i);
    if (!upb_fielddef_issubmsg(f)) continue;

    const upb_msgdef *subdef = upb_downcast_msgdef(upb_fielddef_subdef(f));
    upb_value subm_ent;
    if (upb_inttable_lookupptr(&s->tab, subdef, &subm_ent)) {
      upb_handlers_setsubhandlers(h, f, upb_value_getptr(subm_ent));
    } else {
      upb_handlers *sub_mh = newformsg(subdef, &sub_mh, s);
      if (!sub_mh) goto oom;
      upb_handlers_setsubhandlers(h, f, sub_mh);
      upb_handlers_unref(sub_mh, &sub_mh);
    }
  }
  return h;

oom:
  upb_handlers_unref(h, owner);
  return NULL;
}

// Given a selector for a STARTSUBMSG handler, resolves to a pointer to the
// subhandlers for this submessage field.
#define SUBH(h, selector) (h->sub[selector])

// The selector for a submessage field is the field index.
#define SUBH_F(h, f) SUBH(h, f->index_)

static int32_t trygetsel(upb_handlers *h, const upb_fielddef *f,
                         upb_handlertype_t type) {
  upb_selector_t sel;
  assert(!upb_handlers_isfrozen(h));
  if (upb_handlers_msgdef(h) != upb_fielddef_containingtype(f)) {
    upb_status_seterrf(
        &h->status_, "type mismatch: field %s does not belong to message %s",
        upb_fielddef_name(f), upb_msgdef_fullname(upb_handlers_msgdef(h)));
    return -1;
  }
  if (!upb_handlers_getselector(f, type, &sel)) {
    upb_status_seterrf(
        &h->status_,
        "type mismatch: cannot register handler type %d for field %s",
        type, upb_fielddef_name(f));
    return -1;
  }
  return sel;
}

static upb_selector_t handlers_getsel(upb_handlers *h, const upb_fielddef *f,
                             upb_handlertype_t type) {
  int32_t sel = trygetsel(h, f, type);
  assert(sel >= 0);
  return sel;
}

static const void **returntype(upb_handlers *h, const upb_fielddef *f,
                               upb_handlertype_t type) {
  return &h->table[handlers_getsel(h, f, type)].attr.return_closure_type_;
}

static bool doset(upb_handlers *h, int32_t sel, const upb_fielddef *f,
                  upb_handlertype_t type, upb_func *func,
                  upb_handlerattr *attr) {
  assert(!upb_handlers_isfrozen(h));

  if (sel < 0) {
    upb_status_seterrmsg(&h->status_,
                         "incorrect handler type for this field.");
    return false;
  }

  if (h->table[sel].func) {
    upb_status_seterrmsg(&h->status_,
                         "cannot change handler once it has been set.");
    return false;
  }

  upb_handlerattr set_attr = UPB_HANDLERATTR_INITIALIZER;
  if (attr) {
    set_attr = *attr;
  }

  // Check that the given closure type matches the closure type that has been
  // established for this context (if any).
  const void *closure_type = upb_handlerattr_closuretype(&set_attr);
  const void **context_closure_type;

  if (type == UPB_HANDLER_STRING) {
    context_closure_type = returntype(h, f, UPB_HANDLER_STARTSTR);
  } else if (f && upb_fielddef_isseq(f) &&
             type != UPB_HANDLER_STARTSEQ &&
             type != UPB_HANDLER_ENDSEQ) {
    context_closure_type = returntype(h, f, UPB_HANDLER_STARTSEQ);
  } else {
    context_closure_type = &h->top_closure_type;
  }

  if (closure_type && *context_closure_type &&
      closure_type != *context_closure_type) {
    // TODO(haberman): better message for debugging.
2227 2228 2229 2230 2231 2232 2233 2234
    if (f) {
      upb_status_seterrf(&h->status_,
                         "closure type does not match for field %s",
                         upb_fielddef_name(f));
    } else {
      upb_status_seterrmsg(
          &h->status_, "closure type does not match for message-level handler");
    }
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
    return false;
  }

  if (closure_type)
    *context_closure_type = closure_type;

  // If this is a STARTSEQ or STARTSTR handler, check that the returned pointer
  // matches any pre-existing expectations about what type is expected.
  if (type == UPB_HANDLER_STARTSEQ || type == UPB_HANDLER_STARTSTR) {
    const void *return_type = upb_handlerattr_returnclosuretype(&set_attr);
    const void *table_return_type =
        upb_handlerattr_returnclosuretype(&h->table[sel].attr);
    if (return_type && table_return_type && return_type != table_return_type) {
      upb_status_seterrmsg(&h->status_, "closure return type does not match");
      return false;
    }

    if (table_return_type && !return_type)
      upb_handlerattr_setreturnclosuretype(&set_attr, table_return_type);
  }

  h->table[sel].func = (upb_func*)func;
  h->table[sel].attr = set_attr;
  return true;
}

// Returns the effective closure type for this handler (which will propagate
// from outer frames if this frame has no START* handler).  Not implemented for
// UPB_HANDLER_STRING at the moment since this is not needed.  Returns NULL is
// the effective closure type is unspecified (either no handler was registered
// to specify it or the handler that was registered did not specify the closure
// type).
const void *effective_closure_type(upb_handlers *h, const upb_fielddef *f,
                                   upb_handlertype_t type) {
  assert(type != UPB_HANDLER_STRING);
  const void *ret = h->top_closure_type;
  upb_selector_t sel;
  if (upb_fielddef_isseq(f) &&
      type != UPB_HANDLER_STARTSEQ &&
      type != UPB_HANDLER_ENDSEQ &&
      h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSEQ)].func) {
    ret = upb_handlerattr_returnclosuretype(&h->table[sel].attr);
  }

  if (type == UPB_HANDLER_STRING &&
      h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSTR)].func) {
    ret = upb_handlerattr_returnclosuretype(&h->table[sel].attr);
  }

  // The effective type of the submessage; not used yet.
  // if (type == SUBMESSAGE &&
  //     h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSUBMSG)].func) {
  //   ret = upb_handlerattr_returnclosuretype(&h->table[sel].attr);
  // }

  return ret;
}

// Checks whether the START* handler specified by f & type is missing even
// though it is required to convert the established type of an outer frame
// ("closure_type") into the established type of an inner frame (represented in
// the return closure type of this handler's attr.
bool checkstart(upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type,
                upb_status *status) {
  upb_selector_t sel = handlers_getsel(h, f, type);
  if (h->table[sel].func) return true;
  const void *closure_type = effective_closure_type(h, f, type);
  const upb_handlerattr *attr = &h->table[sel].attr;
  const void *return_closure_type = upb_handlerattr_returnclosuretype(attr);
  if (closure_type && return_closure_type &&
      closure_type != return_closure_type) {
    upb_status_seterrf(status,
                       "expected start handler to return sub type for field %f",
                       upb_fielddef_name(f));
    return false;
  }
  return true;
}

/* Public interface ***********************************************************/

bool upb_handlers_isfrozen(const upb_handlers *h) {
  return upb_refcounted_isfrozen(UPB_UPCAST(h));
}

void upb_handlers_ref(const upb_handlers *h, const void *owner) {
  upb_refcounted_ref(UPB_UPCAST(h), owner);
}

void upb_handlers_unref(const upb_handlers *h, const void *owner) {
  upb_refcounted_unref(UPB_UPCAST(h), owner);
}

void upb_handlers_donateref(
    const upb_handlers *h, const void *from, const void *to) {
  upb_refcounted_donateref(UPB_UPCAST(h), from, to);
}

void upb_handlers_checkref(const upb_handlers *h, const void *owner) {
  upb_refcounted_checkref(UPB_UPCAST(h), owner);
}

upb_handlers *upb_handlers_new(const upb_msgdef *md, const void *owner) {
  assert(upb_msgdef_isfrozen(md));

  int extra = sizeof(upb_handlers_tabent) * (md->selector_count - 1);
  upb_handlers *h = calloc(sizeof(*h) + extra, 1);
  if (!h) return NULL;

  h->msg = md;
  upb_msgdef_ref(h->msg, h);
  upb_status_clear(&h->status_);
  h->sub = calloc(md->submsg_field_count, sizeof(*h->sub));
  if (!h->sub) goto oom;
  if (!upb_refcounted_init(UPB_UPCAST(h), &vtbl, owner)) goto oom;
  if (!upb_inttable_init(&h->cleanup_, UPB_CTYPE_FPTR)) goto oom;

  // calloc() above initialized all handlers to NULL.
  return h;

oom:
  freehandlers(UPB_UPCAST(h));
  return NULL;
}

const upb_handlers *upb_handlers_newfrozen(const upb_msgdef *m,
                                           const void *owner,
                                           upb_handlers_callback *callback,
                                           const void *closure) {
  dfs_state state;
  state.callback = callback;
  state.closure = closure;
  if (!upb_inttable_init(&state.tab, UPB_CTYPE_PTR)) return NULL;

  upb_handlers *ret = newformsg(m, owner, &state);

  upb_inttable_uninit(&state.tab);
  if (!ret) return NULL;

  upb_refcounted *r = UPB_UPCAST(ret);
  bool ok = upb_refcounted_freeze(&r, 1, NULL, UPB_MAX_HANDLER_DEPTH);
  UPB_ASSERT_VAR(ok, ok);

  return ret;
}

const upb_status *upb_handlers_status(upb_handlers *h) {
  assert(!upb_handlers_isfrozen(h));
  return &h->status_;
}

void upb_handlers_clearerr(upb_handlers *h) {
  assert(!upb_handlers_isfrozen(h));
  upb_status_clear(&h->status_);
}

#define SETTER(name, handlerctype, handlertype) \
  bool upb_handlers_set ## name(upb_handlers *h, const upb_fielddef *f, \
                                handlerctype func, upb_handlerattr *attr) { \
    int32_t sel = trygetsel(h, f, handlertype); \
    return doset(h, sel, f, handlertype, (upb_func*)func, attr); \
  }

SETTER(int32,       upb_int32_handlerfunc*,       UPB_HANDLER_INT32);
SETTER(int64,       upb_int64_handlerfunc*,       UPB_HANDLER_INT64);
SETTER(uint32,      upb_uint32_handlerfunc*,      UPB_HANDLER_UINT32);
SETTER(uint64,      upb_uint64_handlerfunc*,      UPB_HANDLER_UINT64);
SETTER(float,       upb_float_handlerfunc*,       UPB_HANDLER_FLOAT);
SETTER(double,      upb_double_handlerfunc*,      UPB_HANDLER_DOUBLE);
SETTER(bool,        upb_bool_handlerfunc*,        UPB_HANDLER_BOOL);
SETTER(startstr,    upb_startstr_handlerfunc*,    UPB_HANDLER_STARTSTR);
SETTER(string,      upb_string_handlerfunc*,      UPB_HANDLER_STRING);
SETTER(endstr,      upb_endfield_handlerfunc*,    UPB_HANDLER_ENDSTR);
SETTER(startseq,    upb_startfield_handlerfunc*,  UPB_HANDLER_STARTSEQ);
SETTER(startsubmsg, upb_startfield_handlerfunc*,  UPB_HANDLER_STARTSUBMSG);
SETTER(endsubmsg,   upb_endfield_handlerfunc*,    UPB_HANDLER_ENDSUBMSG);
SETTER(endseq,      upb_endfield_handlerfunc*,    UPB_HANDLER_ENDSEQ);

#undef SETTER

bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handlerfunc *func,
                              upb_handlerattr *attr) {
  return doset(h, UPB_STARTMSG_SELECTOR, NULL, UPB_HANDLER_INT32,
               (upb_func *)func, attr);
}

bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handlerfunc *func,
                            upb_handlerattr *attr) {
  assert(!upb_handlers_isfrozen(h));
  return doset(h, UPB_ENDMSG_SELECTOR, NULL, UPB_HANDLER_INT32,
               (upb_func *)func, attr);
}

bool upb_handlers_setsubhandlers(upb_handlers *h, const upb_fielddef *f,
                                 const upb_handlers *sub) {
  assert(sub);
  assert(!upb_handlers_isfrozen(h));
  assert(upb_fielddef_issubmsg(f));
  if (SUBH_F(h, f)) return false;  // Can't reset.
  if (UPB_UPCAST(upb_handlers_msgdef(sub)) != upb_fielddef_subdef(f)) {
    return false;
  }
  SUBH_F(h, f) = sub;
  upb_ref2(sub, h);
  return true;
}

const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h,
                                                const upb_fielddef *f) {
  assert(upb_fielddef_issubmsg(f));
  return SUBH_F(h, f);
}

bool upb_handlers_getattr(const upb_handlers *h, upb_selector_t sel,
                          upb_handlerattr *attr) {
  if (!upb_handlers_gethandler(h, sel))
    return false;
  *attr = h->table[sel].attr;
  return true;
}

const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h,
                                                    upb_selector_t sel) {
  // STARTSUBMSG selector in sel is the field's selector base.
  return SUBH(h, sel - UPB_STATIC_SELECTOR_COUNT);
}

const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h) { return h->msg; }

bool upb_handlers_addcleanup(upb_handlers *h, void *p, upb_handlerfree *func) {
  if (upb_inttable_lookupptr(&h->cleanup_, p, NULL)) {
    return false;
  }
  bool ok = upb_inttable_insertptr(&h->cleanup_, p, upb_value_fptr(func));
  UPB_ASSERT_VAR(ok, ok);
  return true;
}


/* "Static" methods ***********************************************************/

bool upb_handlers_freeze(upb_handlers *const*handlers, int n, upb_status *s) {
  // TODO: verify we have a transitive closure.
  for (int i = 0; i < n; i++) {
    upb_handlers *h = handlers[i];

    if (!upb_ok(&h->status_)) {
      upb_status_seterrf(s, "handlers for message %s had error status: %s",
                         upb_msgdef_fullname(upb_handlers_msgdef(h)),
                         upb_status_errmsg(&h->status_));
      return false;
    }

    // Check that there are no closure mismatches due to missing Start* handlers
    // or subhandlers with different type-level types.
2490 2491 2492 2493
    upb_msg_field_iter j;
    for(upb_msg_field_begin(&j, h->msg);
        !upb_msg_field_done(&j);
        upb_msg_field_next(&j)) {
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631

      const upb_fielddef *f = upb_msg_iter_field(&j);
      if (upb_fielddef_isseq(f)) {
        if (!checkstart(h, f, UPB_HANDLER_STARTSEQ, s))
          return false;
      }

      if (upb_fielddef_isstring(f)) {
        if (!checkstart(h, f, UPB_HANDLER_STARTSTR, s))
          return false;
      }

      if (upb_fielddef_issubmsg(f)) {
        bool hashandler = false;
        if (upb_handlers_gethandler(
                h, handlers_getsel(h, f, UPB_HANDLER_STARTSUBMSG)) ||
            upb_handlers_gethandler(
                h, handlers_getsel(h, f, UPB_HANDLER_ENDSUBMSG))) {
          hashandler = true;
        }

        if (upb_fielddef_isseq(f) &&
            (upb_handlers_gethandler(
                 h, handlers_getsel(h, f, UPB_HANDLER_STARTSEQ)) ||
             upb_handlers_gethandler(
                 h, handlers_getsel(h, f, UPB_HANDLER_ENDSEQ)))) {
          hashandler = true;
        }

        if (hashandler && !upb_handlers_getsubhandlers(h, f)) {
          // For now we add an empty subhandlers in this case.  It makes the
          // decoder code generator simpler, because it only has to handle two
          // cases (submessage has handlers or not) as opposed to three
          // (submessage has handlers in enclosing message but no subhandlers).
          //
          // This makes parsing less efficient in the case that we want to
          // notice a submessage but skip its contents (like if we're testing
          // for submessage presence or counting the number of repeated
          // submessages).  In this case we will end up parsing the submessage
          // field by field and throwing away the results for each, instead of
          // skipping the whole delimited thing at once.  If this is an issue we
          // can revisit it, but do remember that this only arises when you have
          // handlers (startseq/startsubmsg/endsubmsg/endseq) set for the
          // submessage but no subhandlers.  The uses cases for this are
          // limited.
          upb_handlers *sub = upb_handlers_new(upb_fielddef_msgsubdef(f), &sub);
          upb_handlers_setsubhandlers(h, f, sub);
          upb_handlers_unref(sub, &sub);
        }

        // TODO(haberman): check type of submessage.
        // This is slightly tricky; also consider whether we should check that
        // they match at setsubhandlers time.
      }
    }
  }

  if (!upb_refcounted_freeze((upb_refcounted*const*)handlers, n, s,
                             UPB_MAX_HANDLER_DEPTH)) {
    return false;
  }

  return true;
}

upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f) {
  switch (upb_fielddef_type(f)) {
    case UPB_TYPE_INT32:
    case UPB_TYPE_ENUM: return UPB_HANDLER_INT32;
    case UPB_TYPE_INT64: return UPB_HANDLER_INT64;
    case UPB_TYPE_UINT32: return UPB_HANDLER_UINT32;
    case UPB_TYPE_UINT64: return UPB_HANDLER_UINT64;
    case UPB_TYPE_FLOAT: return UPB_HANDLER_FLOAT;
    case UPB_TYPE_DOUBLE: return UPB_HANDLER_DOUBLE;
    case UPB_TYPE_BOOL: return UPB_HANDLER_BOOL;
    default: assert(false); return -1;  // Invalid input.
  }
}

bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type,
                              upb_selector_t *s) {
  switch (type) {
    case UPB_HANDLER_INT32:
    case UPB_HANDLER_INT64:
    case UPB_HANDLER_UINT32:
    case UPB_HANDLER_UINT64:
    case UPB_HANDLER_FLOAT:
    case UPB_HANDLER_DOUBLE:
    case UPB_HANDLER_BOOL:
      if (!upb_fielddef_isprimitive(f) ||
          upb_handlers_getprimitivehandlertype(f) != type)
        return false;
      *s = f->selector_base;
      break;
    case UPB_HANDLER_STRING:
      if (upb_fielddef_isstring(f)) {
        *s = f->selector_base;
      } else if (upb_fielddef_lazy(f)) {
        *s = f->selector_base + 3;
      } else {
        return false;
      }
      break;
    case UPB_HANDLER_STARTSTR:
      if (upb_fielddef_isstring(f) || upb_fielddef_lazy(f)) {
        *s = f->selector_base + 1;
      } else {
        return false;
      }
      break;
    case UPB_HANDLER_ENDSTR:
      if (upb_fielddef_isstring(f) || upb_fielddef_lazy(f)) {
        *s = f->selector_base + 2;
      } else {
        return false;
      }
      break;
    case UPB_HANDLER_STARTSEQ:
      if (!upb_fielddef_isseq(f)) return false;
      *s = f->selector_base - 2;
      break;
    case UPB_HANDLER_ENDSEQ:
      if (!upb_fielddef_isseq(f)) return false;
      *s = f->selector_base - 1;
      break;
    case UPB_HANDLER_STARTSUBMSG:
      if (!upb_fielddef_issubmsg(f)) return false;
      // Selectors for STARTSUBMSG are at the beginning of the table so that the
      // selector can also be used as an index into the "sub" array of
      // subhandlers.  The indexes for the two into these two tables are the
      // same, except that in the handler table the static selectors come first.
      *s = f->index_ + UPB_STATIC_SELECTOR_COUNT;
      break;
    case UPB_HANDLER_ENDSUBMSG:
      if (!upb_fielddef_issubmsg(f)) return false;
      *s = f->selector_base;
      break;
  }
2632
  assert((size_t)*s < upb_fielddef_containingtype(f)->selector_count);
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
  return true;
}

uint32_t upb_handlers_selectorbaseoffset(const upb_fielddef *f) {
  return upb_fielddef_isseq(f) ? 2 : 0;
}

uint32_t upb_handlers_selectorcount(const upb_fielddef *f) {
  uint32_t ret = 1;
  if (upb_fielddef_isseq(f)) ret += 2;    // STARTSEQ/ENDSEQ
  if (upb_fielddef_isstring(f)) ret += 2; // [STRING]/STARTSTR/ENDSTR
  if (upb_fielddef_issubmsg(f)) {
    // ENDSUBMSG (STARTSUBMSG is at table beginning)
    ret += 0;
    if (upb_fielddef_lazy(f)) {
      // STARTSTR/ENDSTR/STRING (for lazy)
      ret += 3;
    }
  }
  return ret;
}


/* upb_handlerattr ************************************************************/

void upb_handlerattr_init(upb_handlerattr *attr) {
  upb_handlerattr from = UPB_HANDLERATTR_INITIALIZER;
  memcpy(attr, &from, sizeof(*attr));
}

void upb_handlerattr_uninit(upb_handlerattr *attr) {
  UPB_UNUSED(attr);
}

bool upb_handlerattr_sethandlerdata(upb_handlerattr *attr, const void *hd) {
  attr->handler_data_ = hd;
  return true;
}

bool upb_handlerattr_setclosuretype(upb_handlerattr *attr, const void *type) {
  attr->closure_type_ = type;
  return true;
}

const void *upb_handlerattr_closuretype(const upb_handlerattr *attr) {
  return attr->closure_type_;
}

bool upb_handlerattr_setreturnclosuretype(upb_handlerattr *attr,
                                          const void *type) {
  attr->return_closure_type_ = type;
  return true;
}

const void *upb_handlerattr_returnclosuretype(const upb_handlerattr *attr) {
  return attr->return_closure_type_;
}

bool upb_handlerattr_setalwaysok(upb_handlerattr *attr, bool alwaysok) {
  attr->alwaysok_ = alwaysok;
  return true;
}

bool upb_handlerattr_alwaysok(const upb_handlerattr *attr) {
  return attr->alwaysok_;
}

/* upb_bufhandle **************************************************************/

size_t upb_bufhandle_objofs(const upb_bufhandle *h) {
  return h->objofs_;
}

/* upb_byteshandler ***********************************************************/

void upb_byteshandler_init(upb_byteshandler* h) {
  memset(h, 0, sizeof(*h));
}

// For when we support handlerfree callbacks.
void upb_byteshandler_uninit(upb_byteshandler* h) {
  UPB_UNUSED(h);
}

bool upb_byteshandler_setstartstr(upb_byteshandler *h,
                                  upb_startstr_handlerfunc *func, void *d) {
  h->table[UPB_STARTSTR_SELECTOR].func = (upb_func*)func;
  h->table[UPB_STARTSTR_SELECTOR].attr.handler_data_ = d;
  return true;
}

bool upb_byteshandler_setstring(upb_byteshandler *h,
                                upb_string_handlerfunc *func, void *d) {
  h->table[UPB_STRING_SELECTOR].func = (upb_func*)func;
  h->table[UPB_STRING_SELECTOR].attr.handler_data_ = d;
  return true;
}

bool upb_byteshandler_setendstr(upb_byteshandler *h,
                                upb_endfield_handlerfunc *func, void *d) {
  h->table[UPB_ENDSTR_SELECTOR].func = (upb_func*)func;
  h->table[UPB_ENDSTR_SELECTOR].attr.handler_data_ = d;
  return true;
}
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2012 Google Inc.  See LICENSE for details.
 * Author: Josh Haberman <jhaberman@gmail.com>
 *
 * Our key invariants are:
 * 1. reference cycles never span groups
 * 2. for ref2(to, from), we increment to's count iff group(from) != group(to)
 *
 * The previous two are how we avoid leaking cycles.  Other important
 * invariants are:
 * 3. for mutable objects "from" and "to", if there exists a ref2(to, from)
 *    this implies group(from) == group(to).  (In practice, what we implement
 *    is even stronger; "from" and "to" will share a group if there has *ever*
 *    been a ref2(to, from), but all that is necessary for correctness is the
 *    weaker one).
 * 4. mutable and immutable objects are never in the same group.
 */


#include <setjmp.h>
#include <stdlib.h>

static void freeobj(upb_refcounted *o);

const char untracked_val;
const void *UPB_UNTRACKED_REF = &untracked_val;

/* arch-specific atomic primitives  *******************************************/

#ifdef UPB_THREAD_UNSAFE  //////////////////////////////////////////////////////

static void atomic_inc(uint32_t *a) { (*a)++; }
static bool atomic_dec(uint32_t *a) { return --(*a) == 0; }

#elif defined(__GNUC__) || defined(__clang__) //////////////////////////////////

static void atomic_inc(uint32_t *a) { __sync_fetch_and_add(a, 1); }
static bool atomic_dec(uint32_t *a) { return __sync_sub_and_fetch(a, 1) == 0; }

#elif defined(WIN32) ///////////////////////////////////////////////////////////

#include <Windows.h>

static void atomic_inc(upb_atomic_t *a) { InterlockedIncrement(&a->val); }
static bool atomic_dec(upb_atomic_t *a) {
  return InterlockedDecrement(&a->val) == 0;
}

#else
#error Atomic primitives not defined for your platform/CPU.  \
       Implement them or compile with UPB_THREAD_UNSAFE.
#endif

// All static objects point to this refcount.
// It is special-cased in ref/unref below.
uint32_t static_refcount = -1;

// We can avoid atomic ops for statically-declared objects.
// This is a minor optimization but nice since we can avoid degrading under
// contention in this case.

static void refgroup(uint32_t *group) {
  if (group != &static_refcount)
    atomic_inc(group);
}

static bool unrefgroup(uint32_t *group) {
  if (group == &static_refcount) {
    return false;
  } else {
    return atomic_dec(group);
  }
}


/* Reference tracking (debug only) ********************************************/

#ifdef UPB_DEBUG_REFS

#ifdef UPB_THREAD_UNSAFE

static void upb_lock() {}
static void upb_unlock() {}

#else

// User must define functions that lock/unlock a global mutex and link this
// file against them.
void upb_lock();
void upb_unlock();

#endif

// UPB_DEBUG_REFS mode counts on being able to malloc() memory in some
// code-paths that can normally never fail, like upb_refcounted_ref().  Since
// we have no way to propagage out-of-memory errors back to the user, and since
// these errors can only occur in UPB_DEBUG_REFS mode, we immediately fail.
#define CHECK_OOM(predicate) if (!(predicate)) { assert(predicate); exit(1); }

typedef struct {
  int count;  // How many refs there are (duplicates only allowed for ref2).
  bool is_ref2;
} trackedref;

static trackedref *trackedref_new(bool is_ref2) {
  trackedref *ret = malloc(sizeof(*ret));
  CHECK_OOM(ret);
  ret->count = 1;
  ret->is_ref2 = is_ref2;
  return ret;
}

static void track(const upb_refcounted *r, const void *owner, bool ref2) {
  assert(owner);
  if (owner == UPB_UNTRACKED_REF) return;

  upb_lock();
  upb_value v;
  if (upb_inttable_lookupptr(r->refs, owner, &v)) {
    trackedref *ref = upb_value_getptr(v);
    // Since we allow multiple ref2's for the same to/from pair without
    // allocating separate memory for each one, we lose the fine-grained
    // tracking behavior we get with regular refs.  Since ref2s only happen
    // inside upb, we'll accept this limitation until/unless there is a really
    // difficult upb-internal bug that can't be figured out without it.
    assert(ref2);
    assert(ref->is_ref2);
    ref->count++;
  } else {
    trackedref *ref = trackedref_new(ref2);
    bool ok = upb_inttable_insertptr(r->refs, owner, upb_value_ptr(ref));
    CHECK_OOM(ok);
    if (ref2) {
      // We know this cast is safe when it is a ref2, because it's coming from
      // another refcounted object.
      const upb_refcounted *from = owner;
      assert(!upb_inttable_lookupptr(from->ref2s, r, NULL));
      ok = upb_inttable_insertptr(from->ref2s, r, upb_value_ptr(NULL));
      CHECK_OOM(ok);
    }
  }
  upb_unlock();
}

static void untrack(const upb_refcounted *r, const void *owner, bool ref2) {
  assert(owner);
  if (owner == UPB_UNTRACKED_REF) return;

  upb_lock();
  upb_value v;
  bool found = upb_inttable_lookupptr(r->refs, owner, &v);
  // This assert will fail if an owner attempts to release a ref it didn't have.
  UPB_ASSERT_VAR(found, found);
  trackedref *ref = upb_value_getptr(v);
  assert(ref->is_ref2 == ref2);
  if (--ref->count == 0) {
    free(ref);
    upb_inttable_removeptr(r->refs, owner, NULL);
    if (ref2) {
      // We know this cast is safe when it is a ref2, because it's coming from
      // another refcounted object.
      const upb_refcounted *from = owner;
      bool removed = upb_inttable_removeptr(from->ref2s, r, NULL);
      assert(removed);
    }
  }
  upb_unlock();
}

static void checkref(const upb_refcounted *r, const void *owner, bool ref2) {
  upb_lock();
  upb_value v;
  bool found = upb_inttable_lookupptr(r->refs, owner, &v);
  UPB_ASSERT_VAR(found, found);
  trackedref *ref = upb_value_getptr(v);
  assert(ref->is_ref2 == ref2);
  upb_unlock();
}

// Populates the given UPB_CTYPE_INT32 inttable with counts of ref2's that
// originate from the given owner.
static void getref2s(const upb_refcounted *owner, upb_inttable *tab) {
  upb_lock();
  upb_inttable_iter i;
  upb_inttable_begin(&i, owner->ref2s);
  for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
    upb_refcounted *to = (upb_refcounted*)upb_inttable_iter_key(&i);

    // To get the count we need to look in the target's table.
    upb_value v;
    bool found = upb_inttable_lookupptr(to->refs, owner, &v);
    assert(found);
    trackedref *ref = upb_value_getptr(v);
    upb_value count = upb_value_int32(ref->count);

    bool ok = upb_inttable_insertptr(tab, to, count);
    CHECK_OOM(ok);
  }
  upb_unlock();
}

typedef struct {
  upb_inttable ref2;
  const upb_refcounted *obj;
} check_state;

static void visit_check(const upb_refcounted *obj, const upb_refcounted *subobj,
                        void *closure) {
  check_state *s = closure;
  assert(obj == s->obj);
  assert(subobj);
  upb_inttable *ref2 = &s->ref2;
  upb_value v;
  bool removed = upb_inttable_removeptr(ref2, subobj, &v);
  // The following assertion will fail if the visit() function visits a subobj
  // that it did not have a ref2 on, or visits the same subobj too many times.
  assert(removed);
  int32_t newcount = upb_value_getint32(v) - 1;
  if (newcount > 0) {
    upb_inttable_insert(ref2, (uintptr_t)subobj, upb_value_int32(newcount));
  }
}

static void visit(const upb_refcounted *r, upb_refcounted_visit *v,
                  void *closure) {
  // In DEBUG_REFS mode we know what existing ref2 refs there are, so we know
  // exactly the set of nodes that visit() should visit.  So we verify visit()'s
  // correctness here.
  check_state state;
  state.obj = r;
  bool ok = upb_inttable_init(&state.ref2, UPB_CTYPE_INT32);
  CHECK_OOM(ok);
  getref2s(r, &state.ref2);

  // This should visit any children in the ref2 table.
  if (r->vtbl->visit) r->vtbl->visit(r, visit_check, &state);

  // This assertion will fail if the visit() function missed any children.
  assert(upb_inttable_count(&state.ref2) == 0);
  upb_inttable_uninit(&state.ref2);
  if (r->vtbl->visit) r->vtbl->visit(r, v, closure);
}

static bool trackinit(upb_refcounted *r) {
  r->refs = malloc(sizeof(*r->refs));
  r->ref2s = malloc(sizeof(*r->ref2s));
  if (!r->refs || !r->ref2s) goto err1;

  if (!upb_inttable_init(r->refs, UPB_CTYPE_PTR)) goto err1;
  if (!upb_inttable_init(r->ref2s, UPB_CTYPE_PTR)) goto err2;
  return true;

err2:
  upb_inttable_uninit(r->refs);
err1:
  free(r->refs);
  free(r->ref2s);
  return false;
}

static void trackfree(const upb_refcounted *r) {
  upb_inttable_uninit(r->refs);
  upb_inttable_uninit(r->ref2s);
  free(r->refs);
  free(r->ref2s);
}

#else

static void track(const upb_refcounted *r, const void *owner, bool ref2) {
  UPB_UNUSED(r);
  UPB_UNUSED(owner);
  UPB_UNUSED(ref2);
}

static void untrack(const upb_refcounted *r, const void *owner, bool ref2) {
  UPB_UNUSED(r);
  UPB_UNUSED(owner);
  UPB_UNUSED(ref2);
}

static void checkref(const upb_refcounted *r, const void *owner, bool ref2) {
  UPB_UNUSED(r);
  UPB_UNUSED(owner);
  UPB_UNUSED(ref2);
}

static bool trackinit(upb_refcounted *r) {
  UPB_UNUSED(r);
  return true;
}

static void trackfree(const upb_refcounted *r) {
  UPB_UNUSED(r);
}

static void visit(const upb_refcounted *r, upb_refcounted_visit *v,
                  void *closure) {
  if (r->vtbl->visit) r->vtbl->visit(r, v, closure);
}

#endif  // UPB_DEBUG_REFS


/* freeze() *******************************************************************/

// The freeze() operation is by far the most complicated part of this scheme.
// We compute strongly-connected components and then mutate the graph such that
// we preserve the invariants documented at the top of this file.  And we must
// handle out-of-memory errors gracefully (without leaving the graph
// inconsistent), which adds to the fun.

// The state used by the freeze operation (shared across many functions).
typedef struct {
  int depth;
  int maxdepth;
  uint64_t index;
  // Maps upb_refcounted* -> attributes (color, etc).  attr layout varies by
  // color.
  upb_inttable objattr;
  upb_inttable stack;   // stack of upb_refcounted* for Tarjan's algorithm.
  upb_inttable groups;  // array of uint32_t*, malloc'd refcounts for new groups
  upb_status *status;
  jmp_buf err;
} tarjan;

static void release_ref2(const upb_refcounted *obj,
                         const upb_refcounted *subobj,
                         void *closure);

// Node attributes /////////////////////////////////////////////////////////////

// After our analysis phase all nodes will be either GRAY or WHITE.

typedef enum {
  BLACK = 0,  // Object has not been seen.
  GRAY,   // Object has been found via a refgroup but may not be reachable.
  GREEN,  // Object is reachable and is currently on the Tarjan stack.
  WHITE,  // Object is reachable and has been assigned a group (SCC).
} color_t;

UPB_NORETURN static void err(tarjan *t) { longjmp(t->err, 1); }
UPB_NORETURN static void oom(tarjan *t) {
  upb_status_seterrmsg(t->status, "out of memory");
  err(t);
}

static uint64_t trygetattr(const tarjan *t, const upb_refcounted *r) {
  upb_value v;
  return upb_inttable_lookupptr(&t->objattr, r, &v) ?
      upb_value_getuint64(v) : 0;
}

static uint64_t getattr(const tarjan *t, const upb_refcounted *r) {
  upb_value v;
  bool found = upb_inttable_lookupptr(&t->objattr, r, &v);
  UPB_ASSERT_VAR(found, found);
  return upb_value_getuint64(v);
}

static void setattr(tarjan *t, const upb_refcounted *r, uint64_t attr) {
  upb_inttable_removeptr(&t->objattr, r, NULL);
  upb_inttable_insertptr(&t->objattr, r, upb_value_uint64(attr));
}

static color_t color(tarjan *t, const upb_refcounted *r) {
  return trygetattr(t, r) & 0x3;  // Color is always stored in the low 2 bits.
}

static void set_gray(tarjan *t, const upb_refcounted *r) {
  assert(color(t, r) == BLACK);
  setattr(t, r, GRAY);
}

// Pushes an obj onto the Tarjan stack and sets it to GREEN.
static void push(tarjan *t, const upb_refcounted *r) {
  assert(color(t, r) == BLACK || color(t, r) == GRAY);
  // This defines the attr layout for the GREEN state.  "index" and "lowlink"
  // get 31 bits, which is plenty (limit of 2B objects frozen at a time).
  setattr(t, r, GREEN | (t->index << 2) | (t->index << 33));
  if (++t->index == 0x80000000) {
    upb_status_seterrmsg(t->status, "too many objects to freeze");
    err(t);
  }
  upb_inttable_push(&t->stack, upb_value_ptr((void*)r));
}

// Pops an obj from the Tarjan stack and sets it to WHITE, with a ptr to its
// SCC group.
static upb_refcounted *pop(tarjan *t) {
  upb_refcounted *r = upb_value_getptr(upb_inttable_pop(&t->stack));
  assert(color(t, r) == GREEN);
  // This defines the attr layout for nodes in the WHITE state.
  // Top of group stack is [group, NULL]; we point at group.
  setattr(t, r, WHITE | (upb_inttable_count(&t->groups) - 2) << 8);
  return r;
}

static void tarjan_newgroup(tarjan *t) {
  uint32_t *group = malloc(sizeof(*group));
  if (!group) oom(t);
  // Push group and empty group leader (we'll fill in leader later).
  if (!upb_inttable_push(&t->groups, upb_value_ptr(group)) ||
      !upb_inttable_push(&t->groups, upb_value_ptr(NULL))) {
    free(group);
    oom(t);
  }
  *group = 0;
}

static uint32_t idx(tarjan *t, const upb_refcounted *r) {
  assert(color(t, r) == GREEN);
  return (getattr(t, r) >> 2) & 0x7FFFFFFF;
}

static uint32_t lowlink(tarjan *t, const upb_refcounted *r) {
  if (color(t, r) == GREEN) {
    return getattr(t, r) >> 33;
  } else {
    return UINT32_MAX;
  }
}

static void set_lowlink(tarjan *t, const upb_refcounted *r, uint32_t lowlink) {
  assert(color(t, r) == GREEN);
  setattr(t, r, ((uint64_t)lowlink << 33) | (getattr(t, r) & 0x1FFFFFFFF));
}

static uint32_t *group(tarjan *t, upb_refcounted *r) {
  assert(color(t, r) == WHITE);
  uint64_t groupnum = getattr(t, r) >> 8;
  upb_value v;
  bool found = upb_inttable_lookup(&t->groups, groupnum, &v);
  UPB_ASSERT_VAR(found, found);
  return upb_value_getptr(v);
}

// If the group leader for this object's group has not previously been set,
// the given object is assigned to be its leader.
static upb_refcounted *groupleader(tarjan *t, upb_refcounted *r) {
  assert(color(t, r) == WHITE);
  uint64_t leader_slot = (getattr(t, r) >> 8) + 1;
  upb_value v;
  bool found = upb_inttable_lookup(&t->groups, leader_slot, &v);
  UPB_ASSERT_VAR(found, found);
  if (upb_value_getptr(v)) {
    return upb_value_getptr(v);
  } else {
    upb_inttable_remove(&t->groups, leader_slot, NULL);
    upb_inttable_insert(&t->groups, leader_slot, upb_value_ptr(r));
    return r;
  }
}


// Tarjan's algorithm //////////////////////////////////////////////////////////

// See:
//   http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
static void do_tarjan(const upb_refcounted *obj, tarjan *t);

static void tarjan_visit(const upb_refcounted *obj,
                         const upb_refcounted *subobj,
                         void *closure) {
  tarjan *t = closure;
  if (++t->depth > t->maxdepth) {
    upb_status_seterrf(t->status, "graph too deep to freeze (%d)", t->maxdepth);
    err(t);
  } else if (subobj->is_frozen || color(t, subobj) == WHITE) {
    // Do nothing: we don't want to visit or color already-frozen nodes,
    // and WHITE nodes have already been assigned a SCC.
  } else if (color(t, subobj) < GREEN) {
    // Subdef has not yet been visited; recurse on it.
    do_tarjan(subobj, t);
    set_lowlink(t, obj, UPB_MIN(lowlink(t, obj), lowlink(t, subobj)));
  } else if (color(t, subobj) == GREEN) {
    // Subdef is in the stack and hence in the current SCC.
    set_lowlink(t, obj, UPB_MIN(lowlink(t, obj), idx(t, subobj)));
  }
  --t->depth;
}

static void do_tarjan(const upb_refcounted *obj, tarjan *t) {
  if (color(t, obj) == BLACK) {
    // We haven't seen this object's group; mark the whole group GRAY.
    const upb_refcounted *o = obj;
    do { set_gray(t, o); } while ((o = o->next) != obj);
  }

  push(t, obj);
  visit(obj, tarjan_visit, t);
  if (lowlink(t, obj) == idx(t, obj)) {
    tarjan_newgroup(t);
    while (pop(t) != obj)
      ;
  }
}


// freeze() ////////////////////////////////////////////////////////////////////

static void crossref(const upb_refcounted *r, const upb_refcounted *subobj,
                     void *_t) {
  tarjan *t = _t;
  assert(color(t, r) > BLACK);
  if (color(t, subobj) > BLACK && r->group != subobj->group) {
    // Previously this ref was not reflected in subobj->group because they
    // were in the same group; now that they are split a ref must be taken.
    refgroup(subobj->group);
  }
}

static bool freeze(upb_refcounted *const*roots, int n, upb_status *s,
                   int maxdepth) {
  volatile bool ret = false;

  // We run in two passes so that we can allocate all memory before performing
  // any mutation of the input -- this allows us to leave the input unchanged
  // in the case of memory allocation failure.
  tarjan t;
  t.index = 0;
  t.depth = 0;
  t.maxdepth = maxdepth;
  t.status = s;
  if (!upb_inttable_init(&t.objattr, UPB_CTYPE_UINT64)) goto err1;
  if (!upb_inttable_init(&t.stack, UPB_CTYPE_PTR)) goto err2;
  if (!upb_inttable_init(&t.groups, UPB_CTYPE_PTR)) goto err3;
  if (setjmp(t.err) != 0) goto err4;


  for (int i = 0; i < n; i++) {
    if (color(&t, roots[i]) < GREEN) {
      do_tarjan(roots[i], &t);
    }
  }

  // If we've made it this far, no further errors are possible so it's safe to
  // mutate the objects without risk of leaving them in an inconsistent state.
  ret = true;

  // The transformation that follows requires care.  The preconditions are:
  // - all objects in attr map are WHITE or GRAY, and are in mutable groups
  //   (groups of all mutable objs)
  // - no ref2(to, from) refs have incremented count(to) if both "to" and
  //   "from" are in our attr map (this follows from invariants (2) and (3))

  // Pass 1: we remove WHITE objects from their mutable groups, and add them to
  // new groups  according to the SCC's we computed.  These new groups will
  // consist of only frozen objects.  None will be immediately collectible,
  // because WHITE objects are by definition reachable from one of "roots",
  // which the caller must own refs on.
  upb_inttable_iter i;
  upb_inttable_begin(&i, &t.objattr);
  for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
    upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&i);
    // Since removal from a singly-linked list requires access to the object's
    // predecessor, we consider obj->next instead of obj for moving.  With the
    // while() loop we guarantee that we will visit every node's predecessor.
    // Proof:
    //  1. every node's predecessor is in our attr map.
    //  2. though the loop body may change a node's predecessor, it will only
    //     change it to be the node we are currently operating on, so with a
    //     while() loop we guarantee ourselves the chance to remove each node.
    while (color(&t, obj->next) == WHITE &&
           group(&t, obj->next) != obj->next->group) {
      // Remove from old group.
      upb_refcounted *move = obj->next;
      if (obj == move) {
        // Removing the last object from a group.
        assert(*obj->group == obj->individual_count);
        free(obj->group);
      } else {
        obj->next = move->next;
        // This may decrease to zero; we'll collect GRAY objects (if any) that
        // remain in the group in the third pass.
        assert(*move->group >= move->individual_count);
        *move->group -= move->individual_count;
      }

      // Add to new group.
      upb_refcounted *leader = groupleader(&t, move);
      if (move == leader) {
        // First object added to new group is its leader.
        move->group = group(&t, move);
        move->next = move;
        *move->group = move->individual_count;
      } else {
        // Group already has at least one object in it.
        assert(leader->group == group(&t, move));
        move->group = group(&t, move);
        move->next = leader->next;
        leader->next = move;
        *move->group += move->individual_count;
      }

      move->is_frozen = true;
    }
  }

  // Pass 2: GRAY and WHITE objects "obj" with ref2(to, obj) references must
  // increment count(to) if group(obj) != group(to) (which could now be the
  // case if "to" was just frozen).
  upb_inttable_begin(&i, &t.objattr);
  for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
    upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&i);
    visit(obj, crossref, &t);
  }

  // Pass 3: GRAY objects are collected if their group's refcount dropped to
  // zero when we removed its white nodes.  This can happen if they had only
  // been kept alive by virtue of sharing a group with an object that was just
  // frozen.
  //
  // It is important that we do this last, since the GRAY object's free()
  // function could call unref2() on just-frozen objects, which will decrement
  // refs that were added in pass 2.
  upb_inttable_begin(&i, &t.objattr);
  for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
    upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&i);
    if (obj->group == NULL || *obj->group == 0) {
      if (obj->group) {
        // We eagerly free() the group's count (since we can't easily determine
        // the group's remaining size it's the easiest way to ensure it gets
        // done).
        free(obj->group);

        // Visit to release ref2's (done in a separate pass since release_ref2
        // depends on o->group being unmodified so it can test merged()).
        upb_refcounted *o = obj;
        do { visit(o, release_ref2, NULL); } while ((o = o->next) != obj);

        // Mark "group" fields as NULL so we know to free the objects later in
        // this loop, but also don't try to delete the group twice.
        o = obj;
        do { o->group = NULL; } while ((o = o->next) != obj);
      }
      freeobj(obj);
    }
  }

err4:
  if (!ret) {
    upb_inttable_begin(&i, &t.groups);
    for(; !upb_inttable_done(&i); upb_inttable_next(&i))
      free(upb_value_getptr(upb_inttable_iter_value(&i)));
  }
  upb_inttable_uninit(&t.groups);
err3:
  upb_inttable_uninit(&t.stack);
err2:
  upb_inttable_uninit(&t.objattr);
err1:
  return ret;
}


/* Misc internal functions  ***************************************************/

static bool merged(const upb_refcounted *r, const upb_refcounted *r2) {
  return r->group == r2->group;
}

static void merge(upb_refcounted *r, upb_refcounted *from) {
  if (merged(r, from)) return;
  *r->group += *from->group;
  free(from->group);
  upb_refcounted *base = from;

  // Set all refcount pointers in the "from" chain to the merged refcount.
  //
  // TODO(haberman): this linear algorithm can result in an overall O(n^2) bound
  // if the user continuously extends a group by one object.  Prevent this by
  // using one of the techniques in this paper:
  //     ftp://www.ncedc.org/outgoing/geomorph/dino/orals/p245-tarjan.pdf
  do { from->group = r->group; } while ((from = from->next) != base);

  // Merge the two circularly linked lists by swapping their next pointers.
  upb_refcounted *tmp = r->next;
  r->next = base->next;
  base->next = tmp;
}

static void unref(const upb_refcounted *r);

static void release_ref2(const upb_refcounted *obj,
                         const upb_refcounted *subobj,
                         void *closure) {
  UPB_UNUSED(closure);
  untrack(subobj, obj, true);
  if (!merged(obj, subobj)) {
    assert(subobj->is_frozen);
    unref(subobj);
  }
}

static void unref(const upb_refcounted *r) {
  if (unrefgroup(r->group)) {
    free(r->group);

    // In two passes, since release_ref2 needs a guarantee that any subobjs
    // are alive.
    const upb_refcounted *o = r;
    do { visit(o, release_ref2, NULL); } while((o = o->next) != r);

    o = r;
    do {
      const upb_refcounted *next = o->next;
      assert(o->is_frozen || o->individual_count == 0);
      freeobj((upb_refcounted*)o);
      o = next;
    } while(o != r);
  }
}

static void freeobj(upb_refcounted *o) {
  trackfree(o);
  o->vtbl->free((upb_refcounted*)o);
}


/* Public interface ***********************************************************/

bool upb_refcounted_init(upb_refcounted *r,
                         const struct upb_refcounted_vtbl *vtbl,
                         const void *owner) {
  r->next = r;
  r->vtbl = vtbl;
  r->individual_count = 0;
  r->is_frozen = false;
  r->group = malloc(sizeof(*r->group));
  if (!r->group) return false;
  *r->group = 0;
  if (!trackinit(r)) {
    free(r->group);
    return false;
  }
  upb_refcounted_ref(r, owner);
  return true;
}

bool upb_refcounted_isfrozen(const upb_refcounted *r) {
  return r->is_frozen;
}

void upb_refcounted_ref(const upb_refcounted *r, const void *owner) {
  track(r, owner, false);
  if (!r->is_frozen)
    ((upb_refcounted*)r)->individual_count++;
  refgroup(r->group);
}

void upb_refcounted_unref(const upb_refcounted *r, const void *owner) {
  untrack(r, owner, false);
  if (!r->is_frozen)
    ((upb_refcounted*)r)->individual_count--;
  unref(r);
}

void upb_refcounted_ref2(const upb_refcounted *r, upb_refcounted *from) {
  assert(!from->is_frozen);  // Non-const pointer implies this.
  track(r, from, true);
  if (r->is_frozen) {
    refgroup(r->group);
  } else {
    merge((upb_refcounted*)r, from);
  }
}

void upb_refcounted_unref2(const upb_refcounted *r, upb_refcounted *from) {
  assert(!from->is_frozen);  // Non-const pointer implies this.
  untrack(r, from, true);
  if (r->is_frozen) {
    unref(r);
  } else {
    assert(merged(r, from));
  }
}

void upb_refcounted_donateref(
    const upb_refcounted *r, const void *from, const void *to) {
  assert(from != to);
  if (to != NULL)
    upb_refcounted_ref(r, to);
  if (from != NULL)
    upb_refcounted_unref(r, from);
}

void upb_refcounted_checkref(const upb_refcounted *r, const void *owner) {
  checkref(r, owner, false);
}

bool upb_refcounted_freeze(upb_refcounted *const*roots, int n, upb_status *s,
                           int maxdepth) {
  for (int i = 0; i < n; i++) {
    assert(!roots[i]->is_frozen);
  }
  return freeze(roots, n, s, maxdepth);
}
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2013 Google Inc.  See LICENSE for details.
 * Author: Josh Haberman <jhaberman@gmail.com>
 */


#include <stdlib.h>

// Fallback implementation if the shim is not specialized by the JIT.
#define SHIM_WRITER(type, ctype)                                              \
  bool upb_shim_set ## type (void *c, const void *hd, ctype val) {            \
    uint8_t *m = c;                                                           \
    const upb_shim_data *d = hd;                                              \
    if (d->hasbit > 0)                                                        \
      *(uint8_t*)&m[d->hasbit / 8] |= 1 << (d->hasbit % 8);                   \
    *(ctype*)&m[d->offset] = val;                                             \
    return true;                                                              \
  }                                                                           \

SHIM_WRITER(double, double)
SHIM_WRITER(float,  float)
SHIM_WRITER(int32,  int32_t)
SHIM_WRITER(int64,  int64_t)
SHIM_WRITER(uint32, uint32_t)
SHIM_WRITER(uint64, uint64_t)
SHIM_WRITER(bool,   bool)
#undef SHIM_WRITER

bool upb_shim_set(upb_handlers *h, const upb_fielddef *f, size_t offset,
                  int32_t hasbit) {
  upb_shim_data *d = malloc(sizeof(*d));
  if (!d) return false;
  d->offset = offset;
  d->hasbit = hasbit;

  upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
  upb_handlerattr_sethandlerdata(&attr, d);
  upb_handlerattr_setalwaysok(&attr, true);
  upb_handlers_addcleanup(h, d, free);

#define TYPE(u, l) \
  case UPB_TYPE_##u: \
    ok = upb_handlers_set##l(h, f, upb_shim_set##l, &attr); break;

  bool ok = false;

  switch (upb_fielddef_type(f)) {
    TYPE(INT64,  int64);
    TYPE(INT32,  int32);
    TYPE(ENUM,   int32);
    TYPE(UINT64, uint64);
    TYPE(UINT32, uint32);
    TYPE(DOUBLE, double);
    TYPE(FLOAT,  float);
    TYPE(BOOL,   bool);
    default: assert(false); break;
  }
#undef TYPE

  upb_handlerattr_uninit(&attr);
  return ok;
}

const upb_shim_data *upb_shim_getdata(const upb_handlers *h, upb_selector_t s,
                                      upb_fieldtype_t *type) {
  upb_func *f = upb_handlers_gethandler(h, s);

  if ((upb_int64_handlerfunc*)f == upb_shim_setint64) {
    *type = UPB_TYPE_INT64;
  } else if ((upb_int32_handlerfunc*)f == upb_shim_setint32) {
    *type = UPB_TYPE_INT32;
  } else if ((upb_uint64_handlerfunc*)f == upb_shim_setuint64) {
    *type = UPB_TYPE_UINT64;
  } else if ((upb_uint32_handlerfunc*)f == upb_shim_setuint32) {
    *type = UPB_TYPE_UINT32;
  } else if ((upb_double_handlerfunc*)f == upb_shim_setdouble) {
    *type = UPB_TYPE_DOUBLE;
  } else if ((upb_float_handlerfunc*)f == upb_shim_setfloat) {
    *type = UPB_TYPE_FLOAT;
  } else if ((upb_bool_handlerfunc*)f == upb_shim_setbool) {
    *type = UPB_TYPE_BOOL;
  } else {
    return NULL;
  }

  return (const upb_shim_data*)upb_handlers_gethandlerdata(h, s);
}
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2008-2012 Google Inc.  See LICENSE for details.
 * Author: Josh Haberman <jhaberman@gmail.com>
 */


#include <stdlib.h>
#include <string.h>

bool upb_symtab_isfrozen(const upb_symtab *s) {
  return upb_refcounted_isfrozen(UPB_UPCAST(s));
}

void upb_symtab_ref(const upb_symtab *s, const void *owner) {
  upb_refcounted_ref(UPB_UPCAST(s), owner);
}

void upb_symtab_unref(const upb_symtab *s, const void *owner) {
  upb_refcounted_unref(UPB_UPCAST(s), owner);
}

void upb_symtab_donateref(
    const upb_symtab *s, const void *from, const void *to) {
  upb_refcounted_donateref(UPB_UPCAST(s), from, to);
}

void upb_symtab_checkref(const upb_symtab *s, const void *owner) {
  upb_refcounted_checkref(UPB_UPCAST(s), owner);
}

static void upb_symtab_free(upb_refcounted *r) {
  upb_symtab *s = (upb_symtab*)r;
  upb_strtable_iter i;
  upb_strtable_begin(&i, &s->symtab);
  for (; !upb_strtable_done(&i); upb_strtable_next(&i)) {
    const upb_def *def = upb_value_getptr(upb_strtable_iter_value(&i));
    upb_def_unref(def, s);
  }
  upb_strtable_uninit(&s->symtab);
  free(s);
}


upb_symtab *upb_symtab_new(const void *owner) {
  static const struct upb_refcounted_vtbl vtbl = {NULL, &upb_symtab_free};
  upb_symtab *s = malloc(sizeof(*s));
  upb_refcounted_init(UPB_UPCAST(s), &vtbl, owner);
  upb_strtable_init(&s->symtab, UPB_CTYPE_PTR);
  return s;
}

void upb_symtab_freeze(upb_symtab *s) {
  assert(!upb_symtab_isfrozen(s));
  upb_refcounted *r = UPB_UPCAST(s);
  // The symtab does not take ref2's (see refcounted.h) on the defs, because
  // defs cannot refer back to the table and therefore cannot create cycles.  So
  // 0 will suffice for maxdepth here.
  bool ok = upb_refcounted_freeze(&r, 1, NULL, 0);
  UPB_ASSERT_VAR(ok, ok);
}

const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym) {
  upb_value v;
  upb_def *ret = upb_strtable_lookup(&s->symtab, sym, &v) ?
      upb_value_getptr(v) : NULL;
  return ret;
}

const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym) {
  upb_value v;
  upb_def *def = upb_strtable_lookup(&s->symtab, sym, &v) ?
      upb_value_getptr(v) : NULL;
  return def ? upb_dyncast_msgdef(def) : NULL;
}

const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym) {
  upb_value v;
  upb_def *def = upb_strtable_lookup(&s->symtab, sym, &v) ?
      upb_value_getptr(v) : NULL;
  return def ? upb_dyncast_enumdef(def) : NULL;
}

// Given a symbol and the base symbol inside which it is defined, find the
// symbol's definition in t.
static upb_def *upb_resolvename(const upb_strtable *t,
                                const char *base, const char *sym) {
  if(strlen(sym) == 0) return NULL;
  if(sym[0] == '.') {
    // Symbols starting with '.' are absolute, so we do a single lookup.
    // Slice to omit the leading '.'
    upb_value v;
    return upb_strtable_lookup(t, sym + 1, &v) ? upb_value_getptr(v) : NULL;
  } else {
    // Remove components from base until we find an entry or run out.
    // TODO: This branch is totally broken, but currently not used.
    (void)base;
    assert(false);
    return NULL;
  }
}

const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base,
                                  const char *sym) {
  upb_def *ret = upb_resolvename(&s->symtab, base, sym);
  return ret;
}

// Searches def and its children to find defs that have the same name as any
// def in "addtab."  Returns true if any where found, and as a side-effect adds
// duplicates of these defs into addtab.
//
// We use a modified depth-first traversal that traverses each SCC (which we
// already computed) as if it were a single node.  This allows us to traverse
// the possibly-cyclic graph as if it were a DAG and to dup the correct set of
// nodes with O(n) time.
static bool upb_resolve_dfs(const upb_def *def, upb_strtable *addtab,
                            const void *new_owner, upb_inttable *seen,
                            upb_status *s) {
  // Memoize results of this function for efficiency (since we're traversing a
  // DAG this is not needed to limit the depth of the search).
  upb_value v;
  if (upb_inttable_lookup(seen, (uintptr_t)def, &v))
    return upb_value_getbool(v);

  // Visit submessages for all messages in the SCC.
  bool need_dup = false;
  const upb_def *base = def;
  do {
    assert(upb_def_isfrozen(def));
    if (def->type == UPB_DEF_FIELD) continue;
    upb_value v;
    if (upb_strtable_lookup(addtab, upb_def_fullname(def), &v)) {
      need_dup = true;
    }

    // For messages, continue the recursion by visiting all subdefs.
    const upb_msgdef *m = upb_dyncast_msgdef(def);
    if (m) {
3766 3767 3768 3769
      upb_msg_field_iter i;
      for(upb_msg_field_begin(&i, m);
          !upb_msg_field_done(&i);
          upb_msg_field_next(&i)) {
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
        upb_fielddef *f = upb_msg_iter_field(&i);
        if (!upb_fielddef_hassubdef(f)) continue;
        // |= to avoid short-circuit; we need its side-effects.
        need_dup |= upb_resolve_dfs(
            upb_fielddef_subdef(f), addtab, new_owner, seen, s);
        if (!upb_ok(s)) return false;
      }
    }
  } while ((def = (upb_def*)def->base.next) != base);

  if (need_dup) {
    // Dup any defs that don't already have entries in addtab.
    def = base;
    do {
      if (def->type == UPB_DEF_FIELD) continue;
      const char *name = upb_def_fullname(def);
      if (!upb_strtable_lookup(addtab, name, NULL)) {
        upb_def *newdef = upb_def_dup(def, new_owner);
        if (!newdef) goto oom;
        newdef->came_from_user = false;
        if (!upb_strtable_insert(addtab, name, upb_value_ptr(newdef)))
          goto oom;
      }
    } while ((def = (upb_def*)def->base.next) != base);
  }

  upb_inttable_insert(seen, (uintptr_t)def, upb_value_bool(need_dup));
  return need_dup;

oom:
  upb_status_seterrmsg(s, "out of memory");
  return false;
}

// TODO(haberman): we need a lot more testing of error conditions.
// The came_from_user stuff in particular is not tested.
bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, int n, void *ref_donor,
                    upb_status *status) {
  assert(!upb_symtab_isfrozen(s));
  upb_def **add_defs = NULL;
  upb_strtable addtab;
  if (!upb_strtable_init(&addtab, UPB_CTYPE_PTR)) {
    upb_status_seterrmsg(status, "out of memory");
    return false;
  }

  // Add new defs to our "add" set.
  for (int i = 0; i < n; i++) {
    upb_def *def = defs[i];
    if (upb_def_isfrozen(def)) {
      upb_status_seterrmsg(status, "added defs must be mutable");
      goto err;
    }
    assert(!upb_def_isfrozen(def));
    const char *fullname = upb_def_fullname(def);
    if (!fullname) {
      upb_status_seterrmsg(
          status, "Anonymous defs cannot be added to a symtab");
      goto err;
    }

    upb_fielddef *f = upb_dyncast_fielddef_mutable(def);

    if (f) {
      if (!upb_fielddef_containingtypename(f)) {
        upb_status_seterrmsg(status,
                             "Standalone fielddefs must have a containing type "
                             "(extendee) name set");
        goto err;
      }
    } else {
      if (upb_strtable_lookup(&addtab, fullname, NULL)) {
        upb_status_seterrf(status, "Conflicting defs named '%s'", fullname);
        goto err;
      }
      // We need this to back out properly, because if there is a failure we
      // need to donate the ref back to the caller.
      def->came_from_user = true;
      upb_def_donateref(def, ref_donor, s);
      if (!upb_strtable_insert(&addtab, fullname, upb_value_ptr(def)))
        goto oom_err;
    }
  }

  // Add standalone fielddefs (ie. extensions) to the appropriate messages.
  // If the appropriate message only exists in the existing symtab, duplicate
  // it so we have a mutable copy we can add the fields to.
  for (int i = 0; i < n; i++) {
    upb_def *def = defs[i];
    upb_fielddef *f = upb_dyncast_fielddef_mutable(def);
    if (!f) continue;
    const char *msgname = upb_fielddef_containingtypename(f);
    // We validated this earlier in this function.
    assert(msgname);

    // If the extendee name is absolutely qualified, move past the initial ".".
    // TODO(haberman): it is not obvious what it would mean if this was not
    // absolutely qualified.
    if (msgname[0] == '.') {
      msgname++;
    }

    upb_value v;
    upb_msgdef *m;
    if (upb_strtable_lookup(&addtab, msgname, &v)) {
      // Extendee is in the set of defs the user asked us to add.
      m = upb_value_getptr(v);
    } else {
      // Need to find and dup the extendee from the existing symtab.
      const upb_msgdef *frozen_m = upb_symtab_lookupmsg(s, msgname);
      if (!frozen_m) {
        upb_status_seterrf(status,
                           "Tried to extend message %s that does not exist "
                           "in this SymbolTable.",
                           msgname);
        goto err;
      }
      m = upb_msgdef_dup(frozen_m, s);
      if (!m) goto oom_err;
      if (!upb_strtable_insert(&addtab, msgname, upb_value_ptr(m))) {
        upb_msgdef_unref(m, s);
        goto oom_err;
      }
    }

    if (!upb_msgdef_addfield(m, f, ref_donor, status)) {
      goto err;
    }
  }

  // Add dups of any existing def that can reach a def with the same name as
  // anything in our "add" set.
  upb_inttable seen;
  if (!upb_inttable_init(&seen, UPB_CTYPE_BOOL)) goto oom_err;
  upb_strtable_iter i;
  upb_strtable_begin(&i, &s->symtab);
  for (; !upb_strtable_done(&i); upb_strtable_next(&i)) {
    upb_def *def = upb_value_getptr(upb_strtable_iter_value(&i));
    upb_resolve_dfs(def, &addtab, s, &seen, status);
    if (!upb_ok(status)) goto err;
  }
  upb_inttable_uninit(&seen);

  // Now using the table, resolve symbolic references for subdefs.
  upb_strtable_begin(&i, &addtab);
  for (; !upb_strtable_done(&i); upb_strtable_next(&i)) {
    upb_def *def = upb_value_getptr(upb_strtable_iter_value(&i));
    upb_msgdef *m = upb_dyncast_msgdef_mutable(def);
    if (!m) continue;
    // Type names are resolved relative to the message in which they appear.
    const char *base = upb_msgdef_fullname(m);

3922 3923 3924 3925
    upb_msg_field_iter j;
    for(upb_msg_field_begin(&j, m);
        !upb_msg_field_done(&j);
        upb_msg_field_next(&j)) {
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
      upb_fielddef *f = upb_msg_iter_field(&j);
      const char *name = upb_fielddef_subdefname(f);
      if (name && !upb_fielddef_subdef(f)) {
        // Try the lookup in the current set of to-be-added defs first. If not
        // there, try existing defs.
        upb_def *subdef = upb_resolvename(&addtab, base, name);
        if (subdef == NULL) {
          subdef = upb_resolvename(&s->symtab, base, name);
        }
        if (subdef == NULL) {
          upb_status_seterrf(
              status, "couldn't resolve name '%s' in message '%s'", name, base);
          goto err;
        } else if (!upb_fielddef_setsubdef(f, subdef, status)) {
          goto err;
        }
      }
    }
  }

  // We need an array of the defs in addtab, for passing to upb_def_freeze.
  add_defs = malloc(sizeof(void*) * upb_strtable_count(&addtab));
  if (add_defs == NULL) goto oom_err;
  upb_strtable_begin(&i, &addtab);
  for (n = 0; !upb_strtable_done(&i); upb_strtable_next(&i)) {
    add_defs[n++] = upb_value_getptr(upb_strtable_iter_value(&i));
  }

  if (!upb_def_freeze(add_defs, n, status)) goto err;

  // This must be delayed until all errors have been detected, since error
  // recovery code uses this table to cleanup defs.
  upb_strtable_uninit(&addtab);

  // TODO(haberman) we don't properly handle errors after this point (like
  // OOM in upb_strtable_insert() below).
  for (int i = 0; i < n; i++) {
    upb_def *def = add_defs[i];
    const char *name = upb_def_fullname(def);
    upb_value v;
    if (upb_strtable_remove(&s->symtab, name, &v)) {
      const upb_def *def = upb_value_getptr(v);
      upb_def_unref(def, s);
    }
    bool success = upb_strtable_insert(&s->symtab, name, upb_value_ptr(def));
    UPB_ASSERT_VAR(success, success == true);
  }
  free(add_defs);
  return true;

oom_err:
  upb_status_seterrmsg(status, "out of memory");
err: {
    // For defs the user passed in, we need to donate the refs back.  For defs
    // we dup'd, we need to just unref them.
    upb_strtable_iter i;
    upb_strtable_begin(&i, &addtab);
    for (; !upb_strtable_done(&i); upb_strtable_next(&i)) {
      upb_def *def = upb_value_getptr(upb_strtable_iter_value(&i));
      bool came_from_user = def->came_from_user;
      def->came_from_user = false;
      if (came_from_user) {
        upb_def_donateref(def, s, ref_donor);
      } else {
        upb_def_unref(def, s);
      }
    }
  }
  upb_strtable_uninit(&addtab);
  free(add_defs);
  assert(!upb_ok(status));
  return false;
}

// Iteration.

static void advance_to_matching(upb_symtab_iter *iter) {
  if (iter->type == UPB_DEF_ANY)
    return;

  while (!upb_strtable_done(&iter->iter) &&
         iter->type != upb_symtab_iter_def(iter)->type) {
    upb_strtable_next(&iter->iter);
  }
}

void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s,
                      upb_deftype_t type) {
  upb_strtable_begin(&iter->iter, &s->symtab);
  iter->type = type;
  advance_to_matching(iter);
}

void upb_symtab_next(upb_symtab_iter *iter) {
  upb_strtable_next(&iter->iter);
  advance_to_matching(iter);
}

bool upb_symtab_done(const upb_symtab_iter *iter) {
  return upb_strtable_done(&iter->iter);
}

const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter) {
  return upb_value_getptr(upb_strtable_iter_value(&iter->iter));
}
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2009 Google Inc.  See LICENSE for details.
 * Author: Josh Haberman <jhaberman@gmail.com>
 *
 * Implementation is heavily inspired by Lua's ltable.c.
 */


#include <stdlib.h>
#include <string.h>

#define UPB_MAXARRSIZE 16  // 64k.

// From Chromium.
#define ARRAY_SIZE(x) \
    ((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x])))))

static const double MAX_LOAD = 0.85;

// The minimum utilization of the array part of a mixed hash/array table.  This
// is a speed/memory-usage tradeoff (though it's not straightforward because of
// cache effects).  The lower this is, the more memory we'll use.
static const double MIN_DENSITY = 0.1;

bool is_pow2(uint64_t v) { return v == 0 || (v & (v - 1)) == 0; }

int log2ceil(uint64_t v) {
  int ret = 0;
  bool pow2 = is_pow2(v);
  while (v >>= 1) ret++;
  ret = pow2 ? ret : ret + 1;  // Ceiling.
  return UPB_MIN(UPB_MAXARRSIZE, ret);
}

char *upb_strdup(const char *s) {
4068 4069 4070 4071
  return upb_strdup2(s, strlen(s));
}

char *upb_strdup2(const char *s, size_t len) {
4072 4073
  // Prevent overflow errors.
  if (len == SIZE_MAX) return NULL;
4074 4075 4076
  // Always null-terminate, even if binary data; but don't rely on the input to
  // have a null-terminating byte since it may be a raw binary buffer.
  size_t n = len + 1;
4077
  char *p = malloc(n);
4078 4079 4080 4081
  if (p) {
    memcpy(p, s, len);
    p[len] = 0;
  }
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
  return p;
}

// A type to represent the lookup key of either a strtable or an inttable.
typedef struct {
  upb_tabkey key;
} lookupkey_t;

static lookupkey_t strkey2(const char *str, size_t len) {
  lookupkey_t k;
4092 4093
  k.key.s.str = (char*)str;
  k.key.s.length = len;
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
  return k;
}

static lookupkey_t intkey(uintptr_t key) {
  lookupkey_t k;
  k.key = upb_intkey(key);
  return k;
}

typedef uint32_t hashfunc_t(upb_tabkey key);
typedef bool eqlfunc_t(upb_tabkey k1, lookupkey_t k2);

/* Base table (shared code) ***************************************************/

// For when we need to cast away const.
static upb_tabent *mutable_entries(upb_table *t) {
  return (upb_tabent*)t->entries;
}

static bool isfull(upb_table *t) {
  return (double)(t->count + 1) / upb_table_size(t) > MAX_LOAD;
}

static bool init(upb_table *t, upb_ctype_t ctype, uint8_t size_lg2) {
  t->count = 0;
  t->ctype = ctype;
  t->size_lg2 = size_lg2;
  t->mask = upb_table_size(t) ? upb_table_size(t) - 1 : 0;
  size_t bytes = upb_table_size(t) * sizeof(upb_tabent);
  if (bytes > 0) {
    t->entries = malloc(bytes);
    if (!t->entries) return false;
    memset(mutable_entries(t), 0, bytes);
  } else {
    t->entries = NULL;
  }
  return true;
}

static void uninit(upb_table *t) { free(mutable_entries(t)); }

static upb_tabent *emptyent(upb_table *t) {
  upb_tabent *e = mutable_entries(t) + upb_table_size(t);
  while (1) { if (upb_tabent_isempty(--e)) return e; assert(e > t->entries); }
}

static upb_tabent *getentry_mutable(upb_table *t, uint32_t hash) {
  return (upb_tabent*)upb_getentry(t, hash);
}

static const upb_tabent *findentry(const upb_table *t, lookupkey_t key,
                                   uint32_t hash, eqlfunc_t *eql) {
  if (t->size_lg2 == 0) return NULL;
  const upb_tabent *e = upb_getentry(t, hash);
  if (upb_tabent_isempty(e)) return NULL;
  while (1) {
    if (eql(e->key, key)) return e;
    if ((e = e->next) == NULL) return NULL;
  }
}

static upb_tabent *findentry_mutable(upb_table *t, lookupkey_t key,
                                     uint32_t hash, eqlfunc_t *eql) {
  return (upb_tabent*)findentry(t, key, hash, eql);
}

static bool lookup(const upb_table *t, lookupkey_t key, upb_value *v,
                   uint32_t hash, eqlfunc_t *eql) {
  const upb_tabent *e = findentry(t, key, hash, eql);
  if (e) {
    if (v) {
      _upb_value_setval(v, e->val, t->ctype);
    }
    return true;
  } else {
    return false;
  }
}

// The given key must not already exist in the table.
static void insert(upb_table *t, lookupkey_t key, upb_value val,
                   uint32_t hash, hashfunc_t *hashfunc, eqlfunc_t *eql) {
  UPB_UNUSED(eql);
  assert(findentry(t, key, hash, eql) == NULL);
  assert(val.ctype == t->ctype);
  t->count++;
  upb_tabent *mainpos_e = getentry_mutable(t, hash);
  upb_tabent *our_e = mainpos_e;
  if (upb_tabent_isempty(mainpos_e)) {
    // Our main position is empty; use it.
    our_e->next = NULL;
  } else {
    // Collision.
    upb_tabent *new_e = emptyent(t);
    // Head of collider's chain.
    upb_tabent *chain = getentry_mutable(t, hashfunc(mainpos_e->key));
    if (chain == mainpos_e) {
      // Existing ent is in its main posisiton (it has the same hash as us, and
      // is the head of our chain).  Insert to new ent and append to this chain.
      new_e->next = mainpos_e->next;
      mainpos_e->next = new_e;
      our_e = new_e;
    } else {
      // Existing ent is not in its main position (it is a node in some other
      // chain).  This implies that no existing ent in the table has our hash.
      // Evict it (updating its chain) and use its ent for head of our chain.
      *new_e = *mainpos_e;  // copies next.
      while (chain->next != mainpos_e) {
        chain = (upb_tabent*)chain->next;
        assert(chain);
      }
      chain->next = new_e;
      our_e = mainpos_e;
      our_e->next = NULL;
    }
  }
  our_e->key = key.key;
  our_e->val = val.val;
  assert(findentry(t, key, hash, eql) == our_e);
}

static bool rm(upb_table *t, lookupkey_t key, upb_value *val,
               upb_tabkey *removed, uint32_t hash, eqlfunc_t *eql) {
  upb_tabent *chain = getentry_mutable(t, hash);
  if (upb_tabent_isempty(chain)) return false;
  if (eql(chain->key, key)) {
    // Element to remove is at the head of its chain.
    t->count--;
    if (val) {
      _upb_value_setval(val, chain->val, t->ctype);
    }
    if (chain->next) {
      upb_tabent *move = (upb_tabent*)chain->next;
      *chain = *move;
      if (removed) *removed = move->key;
      move->key.num = 0;  // Make the slot empty.
    } else {
      if (removed) *removed = chain->key;
      chain->key.num = 0;  // Make the slot empty.
    }
    return true;
  } else {
    // Element to remove is either in a non-head position or not in the table.
    while (chain->next && !eql(chain->next->key, key))
      chain = (upb_tabent*)chain->next;
    if (chain->next) {
      // Found element to remove.
      if (val) {
        _upb_value_setval(val, chain->next->val, t->ctype);
      }
      upb_tabent *rm = (upb_tabent*)chain->next;
      if (removed) *removed = rm->key;
      rm->key.num = 0;
      chain->next = rm->next;
      t->count--;
      return true;
    } else {
      return false;
    }
  }
}

static size_t next(const upb_table *t, size_t i) {
  do {
    if (++i >= upb_table_size(t))
      return SIZE_MAX;
  } while(upb_tabent_isempty(&t->entries[i]));

  return i;
}

static size_t begin(const upb_table *t) {
  return next(t, -1);
}


/* upb_strtable ***************************************************************/

// A simple "subclass" of upb_table that only adds a hash function for strings.

static uint32_t strhash(upb_tabkey key) {
4275
  return MurmurHash2(key.s.str, key.s.length, 0);
4276 4277 4278
}

static bool streql(upb_tabkey k1, lookupkey_t k2) {
4279 4280
  return k1.s.length == k2.key.s.length &&
         memcmp(k1.s.str, k2.key.s.str, k1.s.length) == 0;
4281 4282 4283 4284 4285 4286 4287 4288
}

bool upb_strtable_init(upb_strtable *t, upb_ctype_t ctype) {
  return init(&t->t, ctype, 2);
}

void upb_strtable_uninit(upb_strtable *t) {
  for (size_t i = 0; i < upb_table_size(&t->t); i++)
4289
    free((void*)t->t.entries[i].key.s.str);
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
  uninit(&t->t);
}

bool upb_strtable_resize(upb_strtable *t, size_t size_lg2) {
  upb_strtable new_table;
  if (!init(&new_table.t, t->t.ctype, size_lg2))
    return false;
  upb_strtable_iter i;
  upb_strtable_begin(&i, t);
  for ( ; !upb_strtable_done(&i); upb_strtable_next(&i)) {
4300 4301 4302 4303 4304
    upb_strtable_insert2(
        &new_table,
        upb_strtable_iter_key(&i),
        upb_strtable_iter_keylength(&i),
        upb_strtable_iter_value(&i));
4305 4306 4307 4308 4309 4310
  }
  upb_strtable_uninit(t);
  *t = new_table;
  return true;
}

4311 4312
bool upb_strtable_insert2(upb_strtable *t, const char *k, size_t len,
                          upb_value v) {
4313 4314 4315 4316 4317 4318
  if (isfull(&t->t)) {
    // Need to resize.  New table of double the size, add old elements to it.
    if (!upb_strtable_resize(t, t->t.size_lg2 + 1)) {
      return false;
    }
  }
4319
  if ((k = upb_strdup2(k, len)) == NULL) return false;
4320

4321 4322 4323
  lookupkey_t key = strkey2(k, len);
  uint32_t hash = MurmurHash2(key.key.s.str, key.key.s.length, 0);
  insert(&t->t, key, v, hash, &strhash, &streql);
4324 4325 4326 4327 4328 4329 4330 4331 4332
  return true;
}

bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len,
                          upb_value *v) {
  uint32_t hash = MurmurHash2(key, len, 0);
  return lookup(&t->t, strkey2(key, len), v, hash, &streql);
}

4333 4334
bool upb_strtable_remove2(upb_strtable *t, const char *key, size_t len,
                         upb_value *val) {
4335 4336
  uint32_t hash = MurmurHash2(key, strlen(key), 0);
  upb_tabkey tabkey;
4337 4338
  if (rm(&t->t, strkey2(key, len), val, &tabkey, hash, &streql)) {
    free((void*)tabkey.s.str);
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
    return true;
  } else {
    return false;
  }
}

// Iteration

static const upb_tabent *str_tabent(const upb_strtable_iter *i) {
  return &i->t->t.entries[i->index];
}

void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t) {
  i->t = t;
  i->index = begin(&t->t);
}

void upb_strtable_next(upb_strtable_iter *i) {
  i->index = next(&i->t->t, i->index);
}

bool upb_strtable_done(const upb_strtable_iter *i) {
  return i->index >= upb_table_size(&i->t->t) ||
         upb_tabent_isempty(str_tabent(i));
}

const char *upb_strtable_iter_key(upb_strtable_iter *i) {
  assert(!upb_strtable_done(i));
4367 4368 4369 4370 4371 4372
  return str_tabent(i)->key.s.str;
}

size_t upb_strtable_iter_keylength(upb_strtable_iter *i) {
  assert(!upb_strtable_done(i));
  return str_tabent(i)->key.s.length;
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
}

upb_value upb_strtable_iter_value(const upb_strtable_iter *i) {
  assert(!upb_strtable_done(i));
  return _upb_value_val(str_tabent(i)->val, i->t->t.ctype);
}

void upb_strtable_iter_setdone(upb_strtable_iter *i) {
  i->index = SIZE_MAX;
}

bool upb_strtable_iter_isequal(const upb_strtable_iter *i1,
                               const upb_strtable_iter *i2) {
  if (upb_strtable_done(i1) && upb_strtable_done(i2))
    return true;
  return i1->t == i2->t && i1->index == i2->index;
}


/* upb_inttable ***************************************************************/

// For inttables we use a hybrid structure where small keys are kept in an
// array and large keys are put in the hash table.

static uint32_t inthash(upb_tabkey key) { return upb_inthash(key.num); }

static bool inteql(upb_tabkey k1, lookupkey_t k2) {
  return k1.num == k2.key.num;
}

static _upb_value *mutable_array(upb_inttable *t) {
  return (_upb_value*)t->array;
}

static _upb_value *inttable_val(upb_inttable *t, uintptr_t key) {
  if (key < t->array_size) {
    return upb_arrhas(t->array[key]) ? &(mutable_array(t)[key]) : NULL;
  } else {
    upb_tabent *e =
        findentry_mutable(&t->t, intkey(key), upb_inthash(key), &inteql);
    return e ? &e->val : NULL;
  }
}

static const _upb_value *inttable_val_const(const upb_inttable *t,
                                            uintptr_t key) {
  return inttable_val((upb_inttable*)t, key);
}

size_t upb_inttable_count(const upb_inttable *t) {
  return t->t.count + t->array_count;
}

static void check(upb_inttable *t) {
  UPB_UNUSED(t);
#if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG)
  // This check is very expensive (makes inserts/deletes O(N)).
  size_t count = 0;
  upb_inttable_iter i;
  upb_inttable_begin(&i, t);
  for(; !upb_inttable_done(&i); upb_inttable_next(&i), count++) {
    assert(upb_inttable_lookup(t, upb_inttable_iter_key(&i), NULL));
  }
  assert(count == upb_inttable_count(t));
#endif
}

bool upb_inttable_sizedinit(upb_inttable *t, upb_ctype_t ctype,
                            size_t asize, int hsize_lg2) {
  if (!init(&t->t, ctype, hsize_lg2)) return false;
  // Always make the array part at least 1 long, so that we know key 0
  // won't be in the hash part, which simplifies things.
  t->array_size = UPB_MAX(1, asize);
  t->array_count = 0;
  size_t array_bytes = t->array_size * sizeof(upb_value);
  t->array = malloc(array_bytes);
  if (!t->array) {
    uninit(&t->t);
    return false;
  }
  memset(mutable_array(t), 0xff, array_bytes);
  check(t);
  return true;
}

bool upb_inttable_init(upb_inttable *t, upb_ctype_t ctype) {
  return upb_inttable_sizedinit(t, ctype, 0, 4);
}

void upb_inttable_uninit(upb_inttable *t) {
  uninit(&t->t);
  free(mutable_array(t));
}

bool upb_inttable_insert(upb_inttable *t, uintptr_t key, upb_value val) {
  assert(upb_arrhas(val.val));
  if (key < t->array_size) {
    assert(!upb_arrhas(t->array[key]));
    t->array_count++;
    mutable_array(t)[key] = val.val;
  } else {
    if (isfull(&t->t)) {
      // Need to resize the hash part, but we re-use the array part.
      upb_table new_table;
      if (!init(&new_table, t->t.ctype, t->t.size_lg2 + 1))
        return false;
      size_t i;
      for (i = begin(&t->t); i < upb_table_size(&t->t); i = next(&t->t, i)) {
        const upb_tabent *e = &t->t.entries[i];
        upb_value v;
        _upb_value_setval(&v, e->val, t->t.ctype);
        uint32_t hash = upb_inthash(e->key.num);
        insert(&new_table, intkey(e->key.num), v, hash, &inthash, &inteql);
      }

      assert(t->t.count == new_table.count);

      uninit(&t->t);
      t->t = new_table;
    }
    insert(&t->t, intkey(key), val, upb_inthash(key), &inthash, &inteql);
  }
  check(t);
  return true;
}

bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v) {
  const _upb_value *table_v = inttable_val_const(t, key);
  if (!table_v) return false;
  if (v) _upb_value_setval(v, *table_v, t->t.ctype);
  return true;
}

bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val) {
  _upb_value *table_v = inttable_val(t, key);
  if (!table_v) return false;
  *table_v = val.val;
  return true;
}

bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val) {
  bool success;
  if (key < t->array_size) {
    if (upb_arrhas(t->array[key])) {
      t->array_count--;
      if (val) {
        _upb_value_setval(val, t->array[key], t->t.ctype);
      }
      _upb_value empty = UPB_ARRAY_EMPTYENT;
      mutable_array(t)[key] = empty;
      success = true;
    } else {
      success = false;
    }
  } else {
    upb_tabkey removed;
    uint32_t hash = upb_inthash(key);
    success = rm(&t->t, intkey(key), val, &removed, hash, &inteql);
  }
  check(t);
  return success;
}

bool upb_inttable_push(upb_inttable *t, upb_value val) {
  return upb_inttable_insert(t, upb_inttable_count(t), val);
}

upb_value upb_inttable_pop(upb_inttable *t) {
  upb_value val;
  bool ok = upb_inttable_remove(t, upb_inttable_count(t) - 1, &val);
  UPB_ASSERT_VAR(ok, ok);
  return val;
}

bool upb_inttable_insertptr(upb_inttable *t, const void *key, upb_value val) {
  return upb_inttable_insert(t, (uintptr_t)key, val);
}

bool upb_inttable_lookupptr(const upb_inttable *t, const void *key,
                            upb_value *v) {
  return upb_inttable_lookup(t, (uintptr_t)key, v);
}

bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val) {
  return upb_inttable_remove(t, (uintptr_t)key, val);
}

void upb_inttable_compact(upb_inttable *t) {
  // Create a power-of-two histogram of the table keys.
  int counts[UPB_MAXARRSIZE + 1] = {0};
  uintptr_t max_key = 0;
  upb_inttable_iter i;
  upb_inttable_begin(&i, t);
  for (; !upb_inttable_done(&i); upb_inttable_next(&i)) {
    uintptr_t key = upb_inttable_iter_key(&i);
    if (key > max_key) {
      max_key = key;
    }
    counts[log2ceil(key)]++;
  }

4574
  size_t arr_size = 1;
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
  int arr_count = upb_inttable_count(t);

  if (upb_inttable_count(t) >= max_key * MIN_DENSITY) {
    // We can put 100% of the entries in the array part.
    arr_size = max_key + 1;
  } else {
    // Find the largest power of two that satisfies the MIN_DENSITY definition.
    for (int size_lg2 = ARRAY_SIZE(counts) - 1; size_lg2 > 1; size_lg2--) {
      arr_size = 1 << size_lg2;
      arr_count -= counts[size_lg2];
      if (arr_count >= arr_size * MIN_DENSITY) {
        break;
      }
    }
  }

  // Array part must always be at least 1 entry large to catch lookups of key
  // 0.  Key 0 must always be in the array part because "0" in the hash part
  // denotes an empty entry.
  arr_size = UPB_MAX(arr_size, 1);

  // Insert all elements into new, perfectly-sized table.
  int hash_count = upb_inttable_count(t) - arr_count;
  int hash_size = hash_count ? (hash_count / MAX_LOAD) + 1 : 0;
  int hashsize_lg2 = log2ceil(hash_size);
  assert(hash_count >= 0);

  upb_inttable new_t;
  upb_inttable_sizedinit(&new_t, t->t.ctype, arr_size, hashsize_lg2);
  upb_inttable_begin(&i, t);
  for (; !upb_inttable_done(&i); upb_inttable_next(&i)) {
    uintptr_t k = upb_inttable_iter_key(&i);
    upb_inttable_insert(&new_t, k, upb_inttable_iter_value(&i));
  }
  assert(new_t.array_size == arr_size);
  assert(new_t.t.size_lg2 == hashsize_lg2);
  upb_inttable_uninit(t);
  *t = new_t;
}

// Iteration.

static const upb_tabent *int_tabent(const upb_inttable_iter *i) {
  assert(!i->array_part);
  return &i->t->t.entries[i->index];
}

static _upb_value int_arrent(const upb_inttable_iter *i) {
  assert(i->array_part);
  return i->t->array[i->index];
}

void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t) {
  i->t = t;
  i->index = -1;
  i->array_part = true;
  upb_inttable_next(i);
}

void upb_inttable_next(upb_inttable_iter *iter) {
  const upb_inttable *t = iter->t;
  if (iter->array_part) {
    while (++iter->index < t->array_size) {
      if (upb_arrhas(int_arrent(iter))) {
        return;
      }
    }
    iter->array_part = false;
    iter->index = begin(&t->t);
  } else {
    iter->index = next(&t->t, iter->index);
  }
}

bool upb_inttable_done(const upb_inttable_iter *i) {
  if (i->array_part) {
    return i->index >= i->t->array_size ||
           !upb_arrhas(int_arrent(i));
  } else {
    return i->index >= upb_table_size(&i->t->t) ||
           upb_tabent_isempty(int_tabent(i));
  }
}

uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i) {
  assert(!upb_inttable_done(i));
  return i->array_part ? i->index : int_tabent(i)->key.num;
}

upb_value upb_inttable_iter_value(const upb_inttable_iter *i) {
  assert(!upb_inttable_done(i));
  return _upb_value_val(
      i->array_part ? i->t->array[i->index] : int_tabent(i)->val,
      i->t->t.ctype);
}

void upb_inttable_iter_setdone(upb_inttable_iter *i) {
  i->index = SIZE_MAX;
  i->array_part = false;
}

bool upb_inttable_iter_isequal(const upb_inttable_iter *i1,
                                          const upb_inttable_iter *i2) {
  if (upb_inttable_done(i1) && upb_inttable_done(i2))
    return true;
  return i1->t == i2->t && i1->index == i2->index &&
         i1->array_part == i2->array_part;
}

#ifdef UPB_UNALIGNED_READS_OK
//-----------------------------------------------------------------------------
// MurmurHash2, by Austin Appleby (released as public domain).
// Reformatted and C99-ified by Joshua Haberman.
// Note - This code makes a few assumptions about how your machine behaves -
//   1. We can read a 4-byte value from any address without crashing
//   2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t
// And it has a few limitations -
//   1. It will not work incrementally.
//   2. It will not produce the same results on little-endian and big-endian
//      machines.
uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed) {
  // 'm' and 'r' are mixing constants generated offline.
  // They're not really 'magic', they just happen to work well.
  const uint32_t m = 0x5bd1e995;
  const int32_t r = 24;

  // Initialize the hash to a 'random' value
  uint32_t h = seed ^ len;

  // Mix 4 bytes at a time into the hash
  const uint8_t * data = (const uint8_t *)key;
  while(len >= 4) {
    uint32_t k = *(uint32_t *)data;

    k *= m;
    k ^= k >> r;
    k *= m;

    h *= m;
    h ^= k;

    data += 4;
    len -= 4;
  }

  // Handle the last few bytes of the input array
  switch(len) {
    case 3: h ^= data[2] << 16;
    case 2: h ^= data[1] << 8;
    case 1: h ^= data[0]; h *= m;
  };

  // Do a few final mixes of the hash to ensure the last few
  // bytes are well-incorporated.
  h ^= h >> 13;
  h *= m;
  h ^= h >> 15;

  return h;
}

#else // !UPB_UNALIGNED_READS_OK

//-----------------------------------------------------------------------------
// MurmurHashAligned2, by Austin Appleby
// Same algorithm as MurmurHash2, but only does aligned reads - should be safer
// on certain platforms.
// Performance will be lower than MurmurHash2

#define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; }

uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed) {
  const uint32_t m = 0x5bd1e995;
  const int32_t r = 24;
  const uint8_t * data = (const uint8_t *)key;
  uint32_t h = seed ^ len;
  uint8_t align = (uintptr_t)data & 3;

  if(align && (len >= 4)) {
    // Pre-load the temp registers
    uint32_t t = 0, d = 0;

    switch(align) {
      case 1: t |= data[2] << 16;
      case 2: t |= data[1] << 8;
      case 3: t |= data[0];
    }

    t <<= (8 * align);

    data += 4-align;
    len -= 4-align;

    int32_t sl = 8 * (4-align);
    int32_t sr = 8 * align;

    // Mix

    while(len >= 4) {
      d = *(uint32_t *)data;
      t = (t >> sr) | (d << sl);

      uint32_t k = t;

      MIX(h,k,m);

      t = d;

      data += 4;
      len -= 4;
    }

    // Handle leftover data in temp registers

    d = 0;

    if(len >= align) {
      switch(align) {
        case 3: d |= data[2] << 16;
        case 2: d |= data[1] << 8;
        case 1: d |= data[0];
      }

      uint32_t k = (t >> sr) | (d << sl);
      MIX(h,k,m);

      data += align;
      len -= align;

      //----------
      // Handle tail bytes

      switch(len) {
        case 3: h ^= data[2] << 16;
        case 2: h ^= data[1] << 8;
        case 1: h ^= data[0]; h *= m;
      };
    } else {
      switch(len) {
        case 3: d |= data[2] << 16;
        case 2: d |= data[1] << 8;
        case 1: d |= data[0];
        case 0: h ^= (t >> sr) | (d << sl); h *= m;
      }
    }

    h ^= h >> 13;
    h *= m;
    h ^= h >> 15;

    return h;
  } else {
    while(len >= 4) {
      uint32_t k = *(uint32_t *)data;

      MIX(h,k,m);

      data += 4;
      len -= 4;
    }

    //----------
    // Handle tail bytes

    switch(len) {
      case 3: h ^= data[2] << 16;
      case 2: h ^= data[1] << 8;
      case 1: h ^= data[0]; h *= m;
    };

    h ^= h >> 13;
    h *= m;
    h ^= h >> 15;

    return h;
  }
}
#undef MIX

#endif // UPB_UNALIGNED_READS_OK
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2009-2012 Google Inc.  See LICENSE for details.
 * Author: Josh Haberman <jhaberman@gmail.com>
 */

#include <errno.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

bool upb_dumptostderr(void *closure, const upb_status* status) {
  UPB_UNUSED(closure);
  fprintf(stderr, "%s\n", upb_status_errmsg(status));
  return false;
}

// Guarantee null-termination and provide ellipsis truncation.
// It may be tempting to "optimize" this by initializing these final
// four bytes up-front and then being careful never to overwrite them,
// this is safer and simpler.
static void nullz(upb_status *status) {
  const char *ellipsis = "...";
  size_t len = strlen(ellipsis);
  assert(sizeof(status->msg) > len);
  memcpy(status->msg + sizeof(status->msg) - len, ellipsis, len);
}

void upb_status_clear(upb_status *status) {
Chris Fallin's avatar
Chris Fallin committed
4888 4889 4890 4891
  if (!status) return;
  status->ok_ = true;
  status->code_ = 0;
  status->msg[0] = '\0';
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800
}

bool upb_ok(const upb_status *status) { return status->ok_; }

upb_errorspace *upb_status_errspace(const upb_status *status) {
  return status->error_space_;
}

int upb_status_errcode(const upb_status *status) { return status->code_; }

const char *upb_status_errmsg(const upb_status *status) { return status->msg; }

void upb_status_seterrmsg(upb_status *status, const char *msg) {
  if (!status) return;
  status->ok_ = false;
  strncpy(status->msg, msg, sizeof(status->msg));
  nullz(status);
}

void upb_status_seterrf(upb_status *status, const char *fmt, ...) {
  va_list args;
  va_start(args, fmt);
  upb_status_vseterrf(status, fmt, args);
  va_end(args);
}

void upb_status_vseterrf(upb_status *status, const char *fmt, va_list args) {
  if (!status) return;
  status->ok_ = false;
  vsnprintf(status->msg, sizeof(status->msg), fmt, args);
  nullz(status);
}

void upb_status_seterrcode(upb_status *status, upb_errorspace *space,
                           int code) {
  if (!status) return;
  status->ok_ = false;
  status->error_space_ = space;
  status->code_ = code;
  space->set_message(status, code);
}

void upb_status_copy(upb_status *to, const upb_status *from) {
  if (!to) return;
  *to = *from;
}
// This file was generated by upbc (the upb compiler).
// Do not edit -- your changes will be discarded when the file is
// regenerated.


static const upb_msgdef msgs[20];
static const upb_fielddef fields[81];
static const upb_enumdef enums[4];
static const upb_tabent strentries[236];
static const upb_tabent intentries[14];
static const _upb_value arrays[232];

#ifdef UPB_DEBUG_REFS
static upb_inttable reftables[212];
#endif

static const upb_msgdef msgs[20] = {
  UPB_MSGDEF_INIT("google.protobuf.DescriptorProto", 27, 6, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[0], 8, 7), UPB_STRTABLE_INIT(7, 15, UPB_CTYPE_PTR, 4, &strentries[0]),&reftables[0], &reftables[1]),
  UPB_MSGDEF_INIT("google.protobuf.DescriptorProto.ExtensionRange", 4, 0, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[8], 3, 2), UPB_STRTABLE_INIT(2, 3, UPB_CTYPE_PTR, 2, &strentries[16]),&reftables[2], &reftables[3]),
  UPB_MSGDEF_INIT("google.protobuf.EnumDescriptorProto", 11, 2, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[11], 4, 3), UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_PTR, 2, &strentries[20]),&reftables[4], &reftables[5]),
  UPB_MSGDEF_INIT("google.protobuf.EnumOptions", 7, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[0], &arrays[15], 8, 1), UPB_STRTABLE_INIT(2, 3, UPB_CTYPE_PTR, 2, &strentries[24]),&reftables[6], &reftables[7]),
  UPB_MSGDEF_INIT("google.protobuf.EnumValueDescriptorProto", 8, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[23], 4, 3), UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_PTR, 2, &strentries[28]),&reftables[8], &reftables[9]),
  UPB_MSGDEF_INIT("google.protobuf.EnumValueOptions", 6, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[2], &arrays[27], 4, 0), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[32]),&reftables[10], &reftables[11]),
  UPB_MSGDEF_INIT("google.protobuf.FieldDescriptorProto", 19, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[31], 9, 8), UPB_STRTABLE_INIT(8, 15, UPB_CTYPE_PTR, 4, &strentries[36]),&reftables[12], &reftables[13]),
  UPB_MSGDEF_INIT("google.protobuf.FieldOptions", 14, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[4], &arrays[40], 32, 6), UPB_STRTABLE_INIT(7, 15, UPB_CTYPE_PTR, 4, &strentries[52]),&reftables[14], &reftables[15]),
  UPB_MSGDEF_INIT("google.protobuf.FileDescriptorProto", 39, 6, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[72], 12, 11), UPB_STRTABLE_INIT(11, 15, UPB_CTYPE_PTR, 4, &strentries[68]),&reftables[16], &reftables[17]),
  UPB_MSGDEF_INIT("google.protobuf.FileDescriptorSet", 6, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[84], 2, 1), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[84]),&reftables[18], &reftables[19]),
  UPB_MSGDEF_INIT("google.protobuf.FileOptions", 21, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[6], &arrays[86], 64, 9), UPB_STRTABLE_INIT(10, 15, UPB_CTYPE_PTR, 4, &strentries[88]),&reftables[20], &reftables[21]),
  UPB_MSGDEF_INIT("google.protobuf.MessageOptions", 8, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[8], &arrays[150], 16, 2), UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_PTR, 2, &strentries[104]),&reftables[22], &reftables[23]),
  UPB_MSGDEF_INIT("google.protobuf.MethodDescriptorProto", 13, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[166], 5, 4), UPB_STRTABLE_INIT(4, 7, UPB_CTYPE_PTR, 3, &strentries[108]),&reftables[24], &reftables[25]),
  UPB_MSGDEF_INIT("google.protobuf.MethodOptions", 6, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[10], &arrays[171], 4, 0), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[116]),&reftables[26], &reftables[27]),
  UPB_MSGDEF_INIT("google.protobuf.ServiceDescriptorProto", 11, 2, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[175], 4, 3), UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_PTR, 2, &strentries[120]),&reftables[28], &reftables[29]),
  UPB_MSGDEF_INIT("google.protobuf.ServiceOptions", 6, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[12], &arrays[179], 4, 0), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[124]),&reftables[30], &reftables[31]),
  UPB_MSGDEF_INIT("google.protobuf.SourceCodeInfo", 6, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[183], 2, 1), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[128]),&reftables[32], &reftables[33]),
  UPB_MSGDEF_INIT("google.protobuf.SourceCodeInfo.Location", 14, 0, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[185], 5, 4), UPB_STRTABLE_INIT(4, 7, UPB_CTYPE_PTR, 3, &strentries[132]),&reftables[34], &reftables[35]),
  UPB_MSGDEF_INIT("google.protobuf.UninterpretedOption", 18, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[190], 9, 7), UPB_STRTABLE_INIT(7, 15, UPB_CTYPE_PTR, 4, &strentries[140]),&reftables[36], &reftables[37]),
  UPB_MSGDEF_INIT("google.protobuf.UninterpretedOption.NamePart", 6, 0, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[199], 3, 2), UPB_STRTABLE_INIT(2, 3, UPB_CTYPE_PTR, 2, &strentries[156]),&reftables[38], &reftables[39]),
};

static const upb_fielddef fields[81] = {
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "aggregate_value", 8, &msgs[18], NULL, 15, 6, {0},&reftables[40], &reftables[41]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "allow_alias", 2, &msgs[3], NULL, 6, 1, {0},&reftables[42], &reftables[43]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "cc_generic_services", 16, &msgs[10], NULL, 17, 6, {0},&reftables[44], &reftables[45]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "ctype", 1, &msgs[7], UPB_UPCAST(&enums[2]), 6, 1, {0},&reftables[46], &reftables[47]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "default_value", 7, &msgs[6], NULL, 16, 7, {0},&reftables[48], &reftables[49]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_STRING, 0, false, false, false, false, "dependency", 3, &msgs[8], NULL, 30, 8, {0},&reftables[50], &reftables[51]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "deprecated", 3, &msgs[7], NULL, 8, 3, {0},&reftables[52], &reftables[53]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_DOUBLE, 0, false, false, false, false, "double_value", 6, &msgs[18], NULL, 11, 4, {0},&reftables[54], &reftables[55]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "end", 2, &msgs[1], NULL, 3, 1, {0},&reftables[56], &reftables[57]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "enum_type", 4, &msgs[0], UPB_UPCAST(&msgs[2]), 16, 2, {0},&reftables[58], &reftables[59]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "enum_type", 5, &msgs[8], UPB_UPCAST(&msgs[2]), 13, 1, {0},&reftables[60], &reftables[61]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "experimental_map_key", 9, &msgs[7], NULL, 10, 5, {0},&reftables[62], &reftables[63]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "extendee", 2, &msgs[6], NULL, 7, 2, {0},&reftables[64], &reftables[65]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "extension", 7, &msgs[8], UPB_UPCAST(&msgs[6]), 19, 3, {0},&reftables[66], &reftables[67]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "extension", 6, &msgs[0], UPB_UPCAST(&msgs[6]), 22, 4, {0},&reftables[68], &reftables[69]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "extension_range", 5, &msgs[0], UPB_UPCAST(&msgs[1]), 19, 3, {0},&reftables[70], &reftables[71]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "field", 2, &msgs[0], UPB_UPCAST(&msgs[6]), 10, 0, {0},&reftables[72], &reftables[73]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "file", 1, &msgs[9], UPB_UPCAST(&msgs[8]), 5, 0, {0},&reftables[74], &reftables[75]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "go_package", 11, &msgs[10], NULL, 14, 5, {0},&reftables[76], &reftables[77]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "identifier_value", 3, &msgs[18], NULL, 6, 1, {0},&reftables[78], &reftables[79]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "input_type", 2, &msgs[12], NULL, 7, 2, {0},&reftables[80], &reftables[81]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REQUIRED, UPB_TYPE_BOOL, 0, false, false, false, false, "is_extension", 2, &msgs[19], NULL, 5, 1, {0},&reftables[82], &reftables[83]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "java_generate_equals_and_hash", 20, &msgs[10], NULL, 20, 9, {0},&reftables[84], &reftables[85]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "java_generic_services", 17, &msgs[10], NULL, 18, 7, {0},&reftables[86], &reftables[87]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "java_multiple_files", 10, &msgs[10], NULL, 13, 4, {0},&reftables[88], &reftables[89]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "java_outer_classname", 8, &msgs[10], NULL, 9, 2, {0},&reftables[90], &reftables[91]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "java_package", 1, &msgs[10], NULL, 6, 1, {0},&reftables[92], &reftables[93]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "label", 4, &msgs[6], UPB_UPCAST(&enums[0]), 11, 4, {0},&reftables[94], &reftables[95]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "lazy", 5, &msgs[7], NULL, 9, 4, {0},&reftables[96], &reftables[97]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "leading_comments", 3, &msgs[17], NULL, 8, 2, {0},&reftables[98], &reftables[99]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "location", 1, &msgs[16], UPB_UPCAST(&msgs[17]), 5, 0, {0},&reftables[100], &reftables[101]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "message_set_wire_format", 1, &msgs[11], NULL, 6, 1, {0},&reftables[102], &reftables[103]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "message_type", 4, &msgs[8], UPB_UPCAST(&msgs[0]), 10, 0, {0},&reftables[104], &reftables[105]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "method", 2, &msgs[14], UPB_UPCAST(&msgs[12]), 6, 0, {0},&reftables[106], &reftables[107]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[8], NULL, 22, 6, {0},&reftables[108], &reftables[109]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[14], NULL, 8, 2, {0},&reftables[110], &reftables[111]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "name", 2, &msgs[18], UPB_UPCAST(&msgs[19]), 5, 0, {0},&reftables[112], &reftables[113]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[4], NULL, 4, 1, {0},&reftables[114], &reftables[115]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[0], NULL, 24, 6, {0},&reftables[116], &reftables[117]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[12], NULL, 4, 1, {0},&reftables[118], &reftables[119]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[2], NULL, 8, 2, {0},&reftables[120], &reftables[121]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[6], NULL, 4, 1, {0},&reftables[122], &reftables[123]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REQUIRED, UPB_TYPE_STRING, 0, false, false, false, false, "name_part", 1, &msgs[19], NULL, 2, 0, {0},&reftables[124], &reftables[125]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT64, UPB_INTFMT_VARIABLE, false, false, false, false, "negative_int_value", 5, &msgs[18], NULL, 10, 3, {0},&reftables[126], &reftables[127]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "nested_type", 3, &msgs[0], UPB_UPCAST(&msgs[0]), 13, 1, {0},&reftables[128], &reftables[129]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "no_standard_descriptor_accessor", 2, &msgs[11], NULL, 7, 2, {0},&reftables[130], &reftables[131]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "number", 3, &msgs[6], NULL, 10, 3, {0},&reftables[132], &reftables[133]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "number", 2, &msgs[4], NULL, 7, 2, {0},&reftables[134], &reftables[135]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "optimize_for", 9, &msgs[10], UPB_UPCAST(&enums[3]), 12, 3, {0},&reftables[136], &reftables[137]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 7, &msgs[0], UPB_UPCAST(&msgs[11]), 23, 5, {0},&reftables[138], &reftables[139]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 3, &msgs[2], UPB_UPCAST(&msgs[3]), 7, 1, {0},&reftables[140], &reftables[141]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 8, &msgs[6], UPB_UPCAST(&msgs[7]), 3, 0, {0},&reftables[142], &reftables[143]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 3, &msgs[4], UPB_UPCAST(&msgs[5]), 3, 0, {0},&reftables[144], &reftables[145]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 8, &msgs[8], UPB_UPCAST(&msgs[10]), 20, 4, {0},&reftables[146], &reftables[147]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 3, &msgs[14], UPB_UPCAST(&msgs[15]), 7, 1, {0},&reftables[148], &reftables[149]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 4, &msgs[12], UPB_UPCAST(&msgs[13]), 3, 0, {0},&reftables[150], &reftables[151]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "output_type", 3, &msgs[12], NULL, 10, 3, {0},&reftables[152], &reftables[153]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "package", 2, &msgs[8], NULL, 25, 7, {0},&reftables[154], &reftables[155]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "packed", 2, &msgs[7], NULL, 7, 2, {0},&reftables[156], &reftables[157]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, true, "path", 1, &msgs[17], NULL, 4, 0, {0},&reftables[158], &reftables[159]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_UINT64, UPB_INTFMT_VARIABLE, false, false, false, false, "positive_int_value", 4, &msgs[18], NULL, 9, 2, {0},&reftables[160], &reftables[161]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "public_dependency", 10, &msgs[8], NULL, 35, 9, {0},&reftables[162], &reftables[163]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "py_generic_services", 18, &msgs[10], NULL, 19, 8, {0},&reftables[164], &reftables[165]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "service", 6, &msgs[8], UPB_UPCAST(&msgs[14]), 16, 2, {0},&reftables[166], &reftables[167]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "source_code_info", 9, &msgs[8], UPB_UPCAST(&msgs[16]), 21, 5, {0},&reftables[168], &reftables[169]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, true, "span", 2, &msgs[17], NULL, 7, 1, {0},&reftables[170], &reftables[171]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "start", 1, &msgs[1], NULL, 2, 0, {0},&reftables[172], &reftables[173]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BYTES, 0, false, false, false, false, "string_value", 7, &msgs[18], NULL, 12, 5, {0},&reftables[174], &reftables[175]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "trailing_comments", 4, &msgs[17], NULL, 11, 3, {0},&reftables[176], &reftables[177]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "type", 5, &msgs[6], UPB_UPCAST(&enums[1]), 12, 5, {0},&reftables[178], &reftables[179]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "type_name", 6, &msgs[6], NULL, 13, 6, {0},&reftables[180], &reftables[181]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[5], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[182], &reftables[183]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[15], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[184], &reftables[185]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[3], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[186], &reftables[187]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[13], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[188], &reftables[189]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[10], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[190], &reftables[191]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[11], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[192], &reftables[193]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[7], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[194], &reftables[195]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "value", 2, &msgs[2], UPB_UPCAST(&msgs[4]), 6, 0, {0},&reftables[196], &reftables[197]),
  UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "weak", 10, &msgs[7], NULL, 13, 6, {0},&reftables[198], &reftables[199]),
  UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "weak_dependency", 11, &msgs[8], NULL, 38, 10, {0},&reftables[200], &reftables[201]),
};

static const upb_enumdef enums[4] = {
  UPB_ENUMDEF_INIT("google.protobuf.FieldDescriptorProto.Label", UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_INT32, 2, &strentries[160]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[202], 4, 3), 0, &reftables[202], &reftables[203]),
  UPB_ENUMDEF_INIT("google.protobuf.FieldDescriptorProto.Type", UPB_STRTABLE_INIT(18, 31, UPB_CTYPE_INT32, 5, &strentries[164]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[206], 19, 18), 0, &reftables[204], &reftables[205]),
  UPB_ENUMDEF_INIT("google.protobuf.FieldOptions.CType", UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_INT32, 2, &strentries[196]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[225], 3, 3), 0, &reftables[206], &reftables[207]),
  UPB_ENUMDEF_INIT("google.protobuf.FileOptions.OptimizeMode", UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_INT32, 2, &strentries[200]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[228], 4, 3), 0, &reftables[208], &reftables[209]),
};

static const upb_tabent strentries[236] = {
  {UPB_TABKEY_STR("extension"), UPB_VALUE_INIT_CONSTPTR(&fields[14]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[38]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("field"), UPB_VALUE_INIT_CONSTPTR(&fields[16]), NULL},
  {UPB_TABKEY_STR("extension_range"), UPB_VALUE_INIT_CONSTPTR(&fields[15]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("nested_type"), UPB_VALUE_INIT_CONSTPTR(&fields[44]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[49]), NULL},
  {UPB_TABKEY_STR("enum_type"), UPB_VALUE_INIT_CONSTPTR(&fields[9]), &strentries[14]},
  {UPB_TABKEY_STR("start"), UPB_VALUE_INIT_CONSTPTR(&fields[66]), NULL},
  {UPB_TABKEY_STR("end"), UPB_VALUE_INIT_CONSTPTR(&fields[8]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("value"), UPB_VALUE_INIT_CONSTPTR(&fields[78]), NULL},
  {UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[50]), NULL},
  {UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[40]), &strentries[22]},
  {UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[73]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("allow_alias"), UPB_VALUE_INIT_CONSTPTR(&fields[1]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("number"), UPB_VALUE_INIT_CONSTPTR(&fields[47]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[52]), NULL},
  {UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[37]), &strentries[30]},
  {UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[71]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("label"), UPB_VALUE_INIT_CONSTPTR(&fields[27]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[41]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("number"), UPB_VALUE_INIT_CONSTPTR(&fields[46]), &strentries[49]},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("type_name"), UPB_VALUE_INIT_CONSTPTR(&fields[70]), NULL},
  {UPB_TABKEY_STR("extendee"), UPB_VALUE_INIT_CONSTPTR(&fields[12]), NULL},
  {UPB_TABKEY_STR("type"), UPB_VALUE_INIT_CONSTPTR(&fields[69]), &strentries[48]},
  {UPB_TABKEY_STR("default_value"), UPB_VALUE_INIT_CONSTPTR(&fields[4]), NULL},
  {UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[51]), NULL},
  {UPB_TABKEY_STR("experimental_map_key"), UPB_VALUE_INIT_CONSTPTR(&fields[11]), &strentries[67]},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("weak"), UPB_VALUE_INIT_CONSTPTR(&fields[79]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("packed"), UPB_VALUE_INIT_CONSTPTR(&fields[58]), NULL},
  {UPB_TABKEY_STR("lazy"), UPB_VALUE_INIT_CONSTPTR(&fields[28]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("ctype"), UPB_VALUE_INIT_CONSTPTR(&fields[3]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("deprecated"), UPB_VALUE_INIT_CONSTPTR(&fields[6]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[77]), NULL},
  {UPB_TABKEY_STR("extension"), UPB_VALUE_INIT_CONSTPTR(&fields[13]), NULL},
  {UPB_TABKEY_STR("weak_dependency"), UPB_VALUE_INIT_CONSTPTR(&fields[80]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[34]), NULL},
  {UPB_TABKEY_STR("service"), UPB_VALUE_INIT_CONSTPTR(&fields[63]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("source_code_info"), UPB_VALUE_INIT_CONSTPTR(&fields[64]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("dependency"), UPB_VALUE_INIT_CONSTPTR(&fields[5]), NULL},
  {UPB_TABKEY_STR("message_type"), UPB_VALUE_INIT_CONSTPTR(&fields[32]), NULL},
  {UPB_TABKEY_STR("package"), UPB_VALUE_INIT_CONSTPTR(&fields[57]), NULL},
  {UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[53]), &strentries[82]},
  {UPB_TABKEY_STR("enum_type"), UPB_VALUE_INIT_CONSTPTR(&fields[10]), NULL},
  {UPB_TABKEY_STR("public_dependency"), UPB_VALUE_INIT_CONSTPTR(&fields[61]), &strentries[81]},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("file"), UPB_VALUE_INIT_CONSTPTR(&fields[17]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[75]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("cc_generic_services"), UPB_VALUE_INIT_CONSTPTR(&fields[2]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("java_multiple_files"), UPB_VALUE_INIT_CONSTPTR(&fields[24]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("java_generic_services"), UPB_VALUE_INIT_CONSTPTR(&fields[23]), &strentries[102]},
  {UPB_TABKEY_STR("java_generate_equals_and_hash"), UPB_VALUE_INIT_CONSTPTR(&fields[22]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("go_package"), UPB_VALUE_INIT_CONSTPTR(&fields[18]), NULL},
  {UPB_TABKEY_STR("java_package"), UPB_VALUE_INIT_CONSTPTR(&fields[26]), NULL},
  {UPB_TABKEY_STR("optimize_for"), UPB_VALUE_INIT_CONSTPTR(&fields[48]), NULL},
  {UPB_TABKEY_STR("py_generic_services"), UPB_VALUE_INIT_CONSTPTR(&fields[62]), NULL},
  {UPB_TABKEY_STR("java_outer_classname"), UPB_VALUE_INIT_CONSTPTR(&fields[25]), NULL},
  {UPB_TABKEY_STR("message_set_wire_format"), UPB_VALUE_INIT_CONSTPTR(&fields[31]), &strentries[106]},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[76]), NULL},
  {UPB_TABKEY_STR("no_standard_descriptor_accessor"), UPB_VALUE_INIT_CONSTPTR(&fields[45]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[39]), NULL},
  {UPB_TABKEY_STR("input_type"), UPB_VALUE_INIT_CONSTPTR(&fields[20]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("output_type"), UPB_VALUE_INIT_CONSTPTR(&fields[56]), NULL},
  {UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[55]), NULL},
  {UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[74]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[54]), &strentries[122]},
  {UPB_TABKEY_STR("method"), UPB_VALUE_INIT_CONSTPTR(&fields[33]), NULL},
  {UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[35]), &strentries[121]},
  {UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[72]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("location"), UPB_VALUE_INIT_CONSTPTR(&fields[30]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("span"), UPB_VALUE_INIT_CONSTPTR(&fields[65]), &strentries[139]},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("trailing_comments"), UPB_VALUE_INIT_CONSTPTR(&fields[68]), NULL},
  {UPB_TABKEY_STR("leading_comments"), UPB_VALUE_INIT_CONSTPTR(&fields[29]), &strentries[137]},
  {UPB_TABKEY_STR("path"), UPB_VALUE_INIT_CONSTPTR(&fields[59]), NULL},
  {UPB_TABKEY_STR("double_value"), UPB_VALUE_INIT_CONSTPTR(&fields[7]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[36]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("negative_int_value"), UPB_VALUE_INIT_CONSTPTR(&fields[43]), NULL},
  {UPB_TABKEY_STR("aggregate_value"), UPB_VALUE_INIT_CONSTPTR(&fields[0]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("positive_int_value"), UPB_VALUE_INIT_CONSTPTR(&fields[60]), NULL},
  {UPB_TABKEY_STR("identifier_value"), UPB_VALUE_INIT_CONSTPTR(&fields[19]), NULL},
  {UPB_TABKEY_STR("string_value"), UPB_VALUE_INIT_CONSTPTR(&fields[67]), &strentries[154]},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("is_extension"), UPB_VALUE_INIT_CONSTPTR(&fields[21]), NULL},
  {UPB_TABKEY_STR("name_part"), UPB_VALUE_INIT_CONSTPTR(&fields[42]), NULL},
  {UPB_TABKEY_STR("LABEL_REQUIRED"), UPB_VALUE_INIT_INT32(2), &strentries[162]},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("LABEL_REPEATED"), UPB_VALUE_INIT_INT32(3), NULL},
  {UPB_TABKEY_STR("LABEL_OPTIONAL"), UPB_VALUE_INIT_INT32(1), NULL},
  {UPB_TABKEY_STR("TYPE_FIXED64"), UPB_VALUE_INIT_INT32(6), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("TYPE_STRING"), UPB_VALUE_INIT_INT32(9), NULL},
  {UPB_TABKEY_STR("TYPE_FLOAT"), UPB_VALUE_INIT_INT32(2), &strentries[193]},
  {UPB_TABKEY_STR("TYPE_DOUBLE"), UPB_VALUE_INIT_INT32(1), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("TYPE_INT32"), UPB_VALUE_INIT_INT32(5), NULL},
  {UPB_TABKEY_STR("TYPE_SFIXED32"), UPB_VALUE_INIT_INT32(15), NULL},
  {UPB_TABKEY_STR("TYPE_FIXED32"), UPB_VALUE_INIT_INT32(7), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("TYPE_MESSAGE"), UPB_VALUE_INIT_INT32(11), &strentries[194]},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("TYPE_INT64"), UPB_VALUE_INIT_INT32(3), &strentries[191]},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("TYPE_ENUM"), UPB_VALUE_INIT_INT32(14), NULL},
  {UPB_TABKEY_STR("TYPE_UINT32"), UPB_VALUE_INIT_INT32(13), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("TYPE_UINT64"), UPB_VALUE_INIT_INT32(4), &strentries[190]},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("TYPE_SFIXED64"), UPB_VALUE_INIT_INT32(16), NULL},
  {UPB_TABKEY_STR("TYPE_BYTES"), UPB_VALUE_INIT_INT32(12), NULL},
  {UPB_TABKEY_STR("TYPE_SINT64"), UPB_VALUE_INIT_INT32(18), NULL},
  {UPB_TABKEY_STR("TYPE_BOOL"), UPB_VALUE_INIT_INT32(8), NULL},
  {UPB_TABKEY_STR("TYPE_GROUP"), UPB_VALUE_INIT_INT32(10), NULL},
  {UPB_TABKEY_STR("TYPE_SINT32"), UPB_VALUE_INIT_INT32(17), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("CORD"), UPB_VALUE_INIT_INT32(1), NULL},
  {UPB_TABKEY_STR("STRING"), UPB_VALUE_INIT_INT32(0), &strentries[197]},
  {UPB_TABKEY_STR("STRING_PIECE"), UPB_VALUE_INIT_INT32(2), NULL},
  {UPB_TABKEY_STR("CODE_SIZE"), UPB_VALUE_INIT_INT32(2), NULL},
  {UPB_TABKEY_STR("SPEED"), UPB_VALUE_INIT_INT32(1), &strentries[203]},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("LITE_RUNTIME"), UPB_VALUE_INIT_INT32(3), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("google.protobuf.SourceCodeInfo.Location"), UPB_VALUE_INIT_CONSTPTR(&msgs[17]), NULL},
  {UPB_TABKEY_STR("google.protobuf.UninterpretedOption"), UPB_VALUE_INIT_CONSTPTR(&msgs[18]), NULL},
  {UPB_TABKEY_STR("google.protobuf.FileDescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[8]), NULL},
  {UPB_TABKEY_STR("google.protobuf.MethodDescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[12]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("google.protobuf.EnumValueOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[5]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("google.protobuf.DescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[0]), &strentries[228]},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("google.protobuf.SourceCodeInfo"), UPB_VALUE_INIT_CONSTPTR(&msgs[16]), NULL},
  {UPB_TABKEY_STR("google.protobuf.FieldDescriptorProto.Type"), UPB_VALUE_INIT_CONSTPTR(&enums[1]), NULL},
  {UPB_TABKEY_STR("google.protobuf.DescriptorProto.ExtensionRange"), UPB_VALUE_INIT_CONSTPTR(&msgs[1]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_STR("google.protobuf.EnumValueDescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[4]), NULL},
  {UPB_TABKEY_STR("google.protobuf.FieldOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[7]), NULL},
  {UPB_TABKEY_STR("google.protobuf.FileOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[10]), NULL},
  {UPB_TABKEY_STR("google.protobuf.EnumDescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[2]), &strentries[233]},
  {UPB_TABKEY_STR("google.protobuf.FieldDescriptorProto.Label"), UPB_VALUE_INIT_CONSTPTR(&enums[0]), NULL},
  {UPB_TABKEY_STR("google.protobuf.ServiceDescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[14]), NULL},
  {UPB_TABKEY_STR("google.protobuf.FieldOptions.CType"), UPB_VALUE_INIT_CONSTPTR(&enums[2]), &strentries[229]},
  {UPB_TABKEY_STR("google.protobuf.FileDescriptorSet"), UPB_VALUE_INIT_CONSTPTR(&msgs[9]), &strentries[235]},
  {UPB_TABKEY_STR("google.protobuf.EnumOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[3]), NULL},
  {UPB_TABKEY_STR("google.protobuf.FieldDescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[6]), NULL},
  {UPB_TABKEY_STR("google.protobuf.FileOptions.OptimizeMode"), UPB_VALUE_INIT_CONSTPTR(&enums[3]), &strentries[221]},
  {UPB_TABKEY_STR("google.protobuf.ServiceOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[15]), NULL},
  {UPB_TABKEY_STR("google.protobuf.MessageOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[11]), NULL},
  {UPB_TABKEY_STR("google.protobuf.MethodOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[13]), &strentries[226]},
  {UPB_TABKEY_STR("google.protobuf.UninterpretedOption.NamePart"), UPB_VALUE_INIT_CONSTPTR(&msgs[19]), NULL},
};

static const upb_tabent intentries[14] = {
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[73]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[71]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[77]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[75]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[76]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[74]), NULL},
  {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
  {UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[72]), NULL},
};

static const _upb_value arrays[232] = {
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[38]),
  UPB_VALUE_INIT_CONSTPTR(&fields[16]),
  UPB_VALUE_INIT_CONSTPTR(&fields[44]),
  UPB_VALUE_INIT_CONSTPTR(&fields[9]),
  UPB_VALUE_INIT_CONSTPTR(&fields[15]),
  UPB_VALUE_INIT_CONSTPTR(&fields[14]),
  UPB_VALUE_INIT_CONSTPTR(&fields[49]),
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[66]),
  UPB_VALUE_INIT_CONSTPTR(&fields[8]),
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[40]),
  UPB_VALUE_INIT_CONSTPTR(&fields[78]),
  UPB_VALUE_INIT_CONSTPTR(&fields[50]),
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[1]),
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[37]),
  UPB_VALUE_INIT_CONSTPTR(&fields[47]),
  UPB_VALUE_INIT_CONSTPTR(&fields[52]),
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[41]),
  UPB_VALUE_INIT_CONSTPTR(&fields[12]),
  UPB_VALUE_INIT_CONSTPTR(&fields[46]),
  UPB_VALUE_INIT_CONSTPTR(&fields[27]),
  UPB_VALUE_INIT_CONSTPTR(&fields[69]),
  UPB_VALUE_INIT_CONSTPTR(&fields[70]),
  UPB_VALUE_INIT_CONSTPTR(&fields[4]),
  UPB_VALUE_INIT_CONSTPTR(&fields[51]),
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[3]),
  UPB_VALUE_INIT_CONSTPTR(&fields[58]),
  UPB_VALUE_INIT_CONSTPTR(&fields[6]),
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[28]),
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[11]),
  UPB_VALUE_INIT_CONSTPTR(&fields[79]),
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[34]),
  UPB_VALUE_INIT_CONSTPTR(&fields[57]),
  UPB_VALUE_INIT_CONSTPTR(&fields[5]),
  UPB_VALUE_INIT_CONSTPTR(&fields[32]),
  UPB_VALUE_INIT_CONSTPTR(&fields[10]),
  UPB_VALUE_INIT_CONSTPTR(&fields[63]),
  UPB_VALUE_INIT_CONSTPTR(&fields[13]),
  UPB_VALUE_INIT_CONSTPTR(&fields[53]),
  UPB_VALUE_INIT_CONSTPTR(&fields[64]),
  UPB_VALUE_INIT_CONSTPTR(&fields[61]),
  UPB_VALUE_INIT_CONSTPTR(&fields[80]),
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[17]),
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[26]),
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[25]),
  UPB_VALUE_INIT_CONSTPTR(&fields[48]),
  UPB_VALUE_INIT_CONSTPTR(&fields[24]),
  UPB_VALUE_INIT_CONSTPTR(&fields[18]),
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[2]),
  UPB_VALUE_INIT_CONSTPTR(&fields[23]),
  UPB_VALUE_INIT_CONSTPTR(&fields[62]),
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[22]),
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[31]),
  UPB_VALUE_INIT_CONSTPTR(&fields[45]),
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[39]),
  UPB_VALUE_INIT_CONSTPTR(&fields[20]),
  UPB_VALUE_INIT_CONSTPTR(&fields[56]),
  UPB_VALUE_INIT_CONSTPTR(&fields[55]),
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[35]),
  UPB_VALUE_INIT_CONSTPTR(&fields[33]),
  UPB_VALUE_INIT_CONSTPTR(&fields[54]),
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[30]),
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[59]),
  UPB_VALUE_INIT_CONSTPTR(&fields[65]),
  UPB_VALUE_INIT_CONSTPTR(&fields[29]),
  UPB_VALUE_INIT_CONSTPTR(&fields[68]),
  UPB_ARRAY_EMPTYENT,
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[36]),
  UPB_VALUE_INIT_CONSTPTR(&fields[19]),
  UPB_VALUE_INIT_CONSTPTR(&fields[60]),
  UPB_VALUE_INIT_CONSTPTR(&fields[43]),
  UPB_VALUE_INIT_CONSTPTR(&fields[7]),
  UPB_VALUE_INIT_CONSTPTR(&fields[67]),
  UPB_VALUE_INIT_CONSTPTR(&fields[0]),
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR(&fields[42]),
  UPB_VALUE_INIT_CONSTPTR(&fields[21]),
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR("LABEL_OPTIONAL"),
  UPB_VALUE_INIT_CONSTPTR("LABEL_REQUIRED"),
  UPB_VALUE_INIT_CONSTPTR("LABEL_REPEATED"),
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR("TYPE_DOUBLE"),
  UPB_VALUE_INIT_CONSTPTR("TYPE_FLOAT"),
  UPB_VALUE_INIT_CONSTPTR("TYPE_INT64"),
  UPB_VALUE_INIT_CONSTPTR("TYPE_UINT64"),
  UPB_VALUE_INIT_CONSTPTR("TYPE_INT32"),
  UPB_VALUE_INIT_CONSTPTR("TYPE_FIXED64"),
  UPB_VALUE_INIT_CONSTPTR("TYPE_FIXED32"),
  UPB_VALUE_INIT_CONSTPTR("TYPE_BOOL"),
  UPB_VALUE_INIT_CONSTPTR("TYPE_STRING"),
  UPB_VALUE_INIT_CONSTPTR("TYPE_GROUP"),
  UPB_VALUE_INIT_CONSTPTR("TYPE_MESSAGE"),
  UPB_VALUE_INIT_CONSTPTR("TYPE_BYTES"),
  UPB_VALUE_INIT_CONSTPTR("TYPE_UINT32"),
  UPB_VALUE_INIT_CONSTPTR("TYPE_ENUM"),
  UPB_VALUE_INIT_CONSTPTR("TYPE_SFIXED32"),
  UPB_VALUE_INIT_CONSTPTR("TYPE_SFIXED64"),
  UPB_VALUE_INIT_CONSTPTR("TYPE_SINT32"),
  UPB_VALUE_INIT_CONSTPTR("TYPE_SINT64"),
  UPB_VALUE_INIT_CONSTPTR("STRING"),
  UPB_VALUE_INIT_CONSTPTR("CORD"),
  UPB_VALUE_INIT_CONSTPTR("STRING_PIECE"),
  UPB_ARRAY_EMPTYENT,
  UPB_VALUE_INIT_CONSTPTR("SPEED"),
  UPB_VALUE_INIT_CONSTPTR("CODE_SIZE"),
  UPB_VALUE_INIT_CONSTPTR("LITE_RUNTIME"),
};

static const upb_symtab symtab = UPB_SYMTAB_INIT(UPB_STRTABLE_INIT(24, 31, UPB_CTYPE_PTR, 5, &strentries[204]), &reftables[210], &reftables[211]);

const upb_symtab *upbdefs_google_protobuf_descriptor(const void *owner) {
  upb_symtab_ref(&symtab, owner);
  return &symtab;
}

#ifdef UPB_DEBUG_REFS
static upb_inttable reftables[212] = {
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
  UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
};
#endif

/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2008-2009 Google Inc.  See LICENSE for details.
 * Author: Josh Haberman <jhaberman@gmail.com>
 *
 * XXX: The routines in this file that consume a string do not currently
 * support having the string span buffers.  In the future, as upb_sink and
 * its buffering/sharing functionality evolve there should be an easy and
 * idiomatic way of correctly handling this case.  For now, we accept this
 * limitation since we currently only parse descriptors from single strings.
 */


#include <errno.h>
#include <stdlib.h>
#include <string.h>

5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
// upb_deflist is an internal-only dynamic array for storing a growing list of
// upb_defs.
typedef struct {
  upb_def **defs;
  size_t len;
  size_t size;
  bool owned;
} upb_deflist;

// We keep a stack of all the messages scopes we are currently in, as well as
// the top-level file scope.  This is necessary to correctly qualify the
// definitions that are contained inside.  "name" tracks the name of the
// message or package (a bare name -- not qualified by any enclosing scopes).
typedef struct {
  char *name;
  // Index of the first def that is under this scope.  For msgdefs, the
  // msgdef itself is at start-1.
  int start;
} upb_descreader_frame;

// The maximum number of nested declarations that are allowed, ie.
// message Foo {
//   message Bar {
//     message Baz {
//     }
//   }
// }
//
// This is a resource limit that affects how big our runtime stack can grow.
// TODO: make this a runtime-settable property of the Reader instance.
#define UPB_MAX_MESSAGE_NESTING 64

struct upb_descreader {
  upb_sink sink;
  upb_deflist defs;
  upb_descreader_frame stack[UPB_MAX_MESSAGE_NESTING];
  int stack_len;

  uint32_t number;
  char *name;
  bool saw_number;
  bool saw_name;

  char *default_string;

  upb_fielddef *f;
};

5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099
static char *upb_strndup(const char *buf, size_t n) {
  char *ret = malloc(n + 1);
  if (!ret) return NULL;
  memcpy(ret, buf, n);
  ret[n] = '\0';
  return ret;
}

// Returns a newly allocated string that joins input strings together, for
// example:
//   join("Foo.Bar", "Baz") -> "Foo.Bar.Baz"
//   join("", "Baz") -> "Baz"
// Caller owns a ref on the returned string.
static char *upb_join(const char *base, const char *name) {
  if (!base || strlen(base) == 0) {
    return upb_strdup(name);
  } else {
    char *ret = malloc(strlen(base) + strlen(name) + 2);
    ret[0] = '\0';
    strcat(ret, base);
    strcat(ret, ".");
    strcat(ret, name);
    return ret;
  }
}


/* upb_deflist ****************************************************************/

void upb_deflist_init(upb_deflist *l) {
  l->size = 0;
  l->defs = NULL;
  l->len = 0;
  l->owned = true;
}

void upb_deflist_uninit(upb_deflist *l) {
  if (l->owned)
    for(size_t i = 0; i < l->len; i++)
      upb_def_unref(l->defs[i], l);
  free(l->defs);
}

bool upb_deflist_push(upb_deflist *l, upb_def *d) {
  if(++l->len >= l->size) {
    size_t new_size = UPB_MAX(l->size, 4);
    new_size *= 2;
    l->defs = realloc(l->defs, new_size * sizeof(void *));
    if (!l->defs) return false;
    l->size = new_size;
  }
  l->defs[l->len - 1] = d;
  return true;
}

void upb_deflist_donaterefs(upb_deflist *l, void *owner) {
  assert(l->owned);
  for (size_t i = 0; i < l->len; i++)
    upb_def_donateref(l->defs[i], l, owner);
  l->owned = false;
}

static upb_def *upb_deflist_last(upb_deflist *l) {
  return l->defs[l->len-1];
}

// Qualify the defname for all defs starting with offset "start" with "str".
static void upb_deflist_qualify(upb_deflist *l, char *str, int32_t start) {
  for (uint32_t i = start; i < l->len; i++) {
    upb_def *def = l->defs[i];
    char *name = upb_join(str, upb_def_fullname(def));
    upb_def_setfullname(def, name, NULL);
    free(name);
  }
}


/* upb_descreader  ************************************************************/

static upb_msgdef *upb_descreader_top(upb_descreader *r) {
  assert(r->stack_len > 1);
  int index = r->stack[r->stack_len-1].start - 1;
  assert(index >= 0);
  return upb_downcast_msgdef_mutable(r->defs.defs[index]);
}

static upb_def *upb_descreader_last(upb_descreader *r) {
  return upb_deflist_last(&r->defs);
}

// Start/end handlers for FileDescriptorProto and DescriptorProto (the two
// entities that have names and can contain sub-definitions.
void upb_descreader_startcontainer(upb_descreader *r) {
  upb_descreader_frame *f = &r->stack[r->stack_len++];
  f->start = r->defs.len;
  f->name = NULL;
}

void upb_descreader_endcontainer(upb_descreader *r) {
  upb_descreader_frame *f = &r->stack[--r->stack_len];
  upb_deflist_qualify(&r->defs, f->name, f->start);
  free(f->name);
  f->name = NULL;
}

void upb_descreader_setscopename(upb_descreader *r, char *str) {
  upb_descreader_frame *f = &r->stack[r->stack_len-1];
  free(f->name);
  f->name = str;
}

// Handlers for google.protobuf.FileDescriptorProto.
static bool file_startmsg(void *r, const void *hd) {
  UPB_UNUSED(hd);
  upb_descreader_startcontainer(r);
  return true;
}

static bool file_endmsg(void *closure, const void *hd, upb_status *status) {
  UPB_UNUSED(hd);
  UPB_UNUSED(status);
  upb_descreader *r = closure;
  upb_descreader_endcontainer(r);
  return true;
}

static size_t file_onpackage(void *closure, const void *hd, const char *buf,
                             size_t n, const upb_bufhandle *handle) {
  UPB_UNUSED(hd);
  UPB_UNUSED(handle);
  upb_descreader *r = closure;
  // XXX: see comment at the top of the file.
  upb_descreader_setscopename(r, upb_strndup(buf, n));
  return n;
}

// Handlers for google.protobuf.EnumValueDescriptorProto.
static bool enumval_startmsg(void *closure, const void *hd) {
  UPB_UNUSED(hd);
  upb_descreader *r = closure;
  r->saw_number = false;
  r->saw_name = false;
  return true;
}

static size_t enumval_onname(void *closure, const void *hd, const char *buf,
                             size_t n, const upb_bufhandle *handle) {
  UPB_UNUSED(hd);
  UPB_UNUSED(handle);
  upb_descreader *r = closure;
  // XXX: see comment at the top of the file.
  free(r->name);
  r->name = upb_strndup(buf, n);
  r->saw_name = true;
  return n;
}

static bool enumval_onnumber(void *closure, const void *hd, int32_t val) {
  UPB_UNUSED(hd);
  upb_descreader *r = closure;
  r->number = val;
  r->saw_number = true;
  return true;
}

static bool enumval_endmsg(void *closure, const void *hd, upb_status *status) {
  UPB_UNUSED(hd);
  upb_descreader *r = closure;
  if(!r->saw_number || !r->saw_name) {
    upb_status_seterrmsg(status, "Enum value missing name or number.");
    return false;
  }
  upb_enumdef *e = upb_downcast_enumdef_mutable(upb_descreader_last(r));
  upb_enumdef_addval(e, r->name, r->number, status);
  free(r->name);
  r->name = NULL;
  return true;
}


// Handlers for google.protobuf.EnumDescriptorProto.
static bool enum_startmsg(void *closure, const void *hd) {
  UPB_UNUSED(hd);
  upb_descreader *r = closure;
  upb_deflist_push(&r->defs, UPB_UPCAST(upb_enumdef_new(&r->defs)));
  return true;
}

static bool enum_endmsg(void *closure, const void *hd, upb_status *status) {
  UPB_UNUSED(hd);
  upb_descreader *r = closure;
  upb_enumdef *e = upb_downcast_enumdef_mutable(upb_descreader_last(r));
  if (upb_def_fullname(upb_descreader_last(r)) == NULL) {
    upb_status_seterrmsg(status, "Enum had no name.");
    return false;
  }
  if (upb_enumdef_numvals(e) == 0) {
    upb_status_seterrmsg(status, "Enum had no values.");
    return false;
  }
  return true;
}

static size_t enum_onname(void *closure, const void *hd, const char *buf,
                          size_t n, const upb_bufhandle *handle) {
  UPB_UNUSED(hd);
  UPB_UNUSED(handle);
  upb_descreader *r = closure;
  // XXX: see comment at the top of the file.
  char *fullname = upb_strndup(buf, n);
  upb_def_setfullname(upb_descreader_last(r), fullname, NULL);
  free(fullname);
  return n;
}

// Handlers for google.protobuf.FieldDescriptorProto
static bool field_startmsg(void *closure, const void *hd) {
  UPB_UNUSED(hd);
  upb_descreader *r = closure;
  r->f = upb_fielddef_new(&r->defs);
  free(r->default_string);
  r->default_string = NULL;

  // fielddefs default to packed, but descriptors default to non-packed.
  upb_fielddef_setpacked(r->f, false);
  return true;
}

// Converts the default value in string "str" into "d".  Passes a ref on str.
// Returns true on success.
static bool parse_default(char *str, upb_fielddef *f) {
  bool success = true;
  char *end;
  switch (upb_fielddef_type(f)) {
    case UPB_TYPE_INT32: {
      long val = strtol(str, &end, 0);
      if (val > INT32_MAX || val < INT32_MIN || errno == ERANGE || *end)
        success = false;
      else
        upb_fielddef_setdefaultint32(f, val);
      break;
    }
    case UPB_TYPE_INT64: {
      long long val = strtoll(str, &end, 0);
      if (val > INT64_MAX || val < INT64_MIN || errno == ERANGE || *end)
        success = false;
      else
        upb_fielddef_setdefaultint64(f, val);
      break;
    }
    case UPB_TYPE_UINT32: {
6100
      unsigned long val = strtoul(str, &end, 0);
6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
      if (val > UINT32_MAX || errno == ERANGE || *end)
        success = false;
      else
        upb_fielddef_setdefaultuint32(f, val);
      break;
    }
    case UPB_TYPE_UINT64: {
      unsigned long long val = strtoull(str, &end, 0);
      if (val > UINT64_MAX || errno == ERANGE || *end)
        success = false;
      else
        upb_fielddef_setdefaultuint64(f, val);
      break;
    }
    case UPB_TYPE_DOUBLE: {
      double val = strtod(str, &end);
      if (errno == ERANGE || *end)
        success = false;
      else
        upb_fielddef_setdefaultdouble(f, val);
      break;
    }
    case UPB_TYPE_FLOAT: {
      float val = strtof(str, &end);
      if (errno == ERANGE || *end)
        success = false;
      else
        upb_fielddef_setdefaultfloat(f, val);
      break;
    }
    case UPB_TYPE_BOOL: {
      if (strcmp(str, "false") == 0)
        upb_fielddef_setdefaultbool(f, false);
      else if (strcmp(str, "true") == 0)
        upb_fielddef_setdefaultbool(f, true);
      else
        success = false;
      break;
    }
    default: abort();
  }
  return success;
}

static bool field_endmsg(void *closure, const void *hd, upb_status *status) {
  UPB_UNUSED(hd);
  upb_descreader *r = closure;
  upb_fielddef *f = r->f;
  // TODO: verify that all required fields were present.
  assert(upb_fielddef_number(f) != 0);
  assert(upb_fielddef_name(f) != NULL);
  assert((upb_fielddef_subdefname(f) != NULL) == upb_fielddef_hassubdef(f));

  if (r->default_string) {
    if (upb_fielddef_issubmsg(f)) {
      upb_status_seterrmsg(status, "Submessages cannot have defaults.");
      return false;
    }
    if (upb_fielddef_isstring(f) || upb_fielddef_type(f) == UPB_TYPE_ENUM) {
      upb_fielddef_setdefaultcstr(f, r->default_string, NULL);
    } else {
      if (r->default_string && !parse_default(r->default_string, f)) {
        // We don't worry too much about giving a great error message since the
        // compiler should have ensured this was correct.
        upb_status_seterrmsg(status, "Error converting default value.");
        return false;
      }
    }
  }
  return true;
}

static bool field_onlazy(void *closure, const void *hd, bool val) {
  UPB_UNUSED(hd);
  upb_descreader *r = closure;
  upb_fielddef_setlazy(r->f, val);
  return true;
}

static bool field_onpacked(void *closure, const void *hd, bool val) {
  UPB_UNUSED(hd);
  upb_descreader *r = closure;
  upb_fielddef_setpacked(r->f, val);
  return true;
}

static bool field_ontype(void *closure, const void *hd, int32_t val) {
  UPB_UNUSED(hd);
  upb_descreader *r = closure;
  upb_fielddef_setdescriptortype(r->f, val);
  return true;
}

static bool field_onlabel(void *closure, const void *hd, int32_t val) {
  UPB_UNUSED(hd);
  upb_descreader *r = closure;
  upb_fielddef_setlabel(r->f, val);
  return true;
}

static bool field_onnumber(void *closure, const void *hd, int32_t val) {
  UPB_UNUSED(hd);
  upb_descreader *r = closure;
  bool ok = upb_fielddef_setnumber(r->f, val, NULL);
  UPB_ASSERT_VAR(ok, ok);
  return true;
}

static size_t field_onname(void *closure, const void *hd, const char *buf,
                           size_t n, const upb_bufhandle *handle) {
  UPB_UNUSED(hd);
  UPB_UNUSED(handle);
  upb_descreader *r = closure;
  // XXX: see comment at the top of the file.
  char *name = upb_strndup(buf, n);
  upb_fielddef_setname(r->f, name, NULL);
  free(name);
  return n;
}

static size_t field_ontypename(void *closure, const void *hd, const char *buf,
                               size_t n, const upb_bufhandle *handle) {
  UPB_UNUSED(hd);
  UPB_UNUSED(handle);
  upb_descreader *r = closure;
  // XXX: see comment at the top of the file.
  char *name = upb_strndup(buf, n);
  upb_fielddef_setsubdefname(r->f, name, NULL);
  free(name);
  return n;
}

static size_t field_onextendee(void *closure, const void *hd, const char *buf,
                               size_t n, const upb_bufhandle *handle) {
  UPB_UNUSED(hd);
  UPB_UNUSED(handle);
  upb_descreader *r = closure;
  // XXX: see comment at the top of the file.
  char *name = upb_strndup(buf, n);
  upb_fielddef_setcontainingtypename(r->f, name, NULL);
  free(name);
  return n;
}

static size_t field_ondefaultval(void *closure, const void *hd, const char *buf,
                                 size_t n, const upb_bufhandle *handle) {
  UPB_UNUSED(hd);
  UPB_UNUSED(handle);
  upb_descreader *r = closure;
  // Have to convert from string to the correct type, but we might not know the
  // type yet, so we save it as a string until the end of the field.
  // XXX: see comment at the top of the file.
  free(r->default_string);
  r->default_string = upb_strndup(buf, n);
  return n;
}

// Handlers for google.protobuf.DescriptorProto (representing a message).
static bool msg_startmsg(void *closure, const void *hd) {
  UPB_UNUSED(hd);
  upb_descreader *r = closure;
  upb_deflist_push(&r->defs, UPB_UPCAST(upb_msgdef_new(&r->defs)));
  upb_descreader_startcontainer(r);
  return true;
}

static bool msg_endmsg(void *closure, const void *hd, upb_status *status) {
  UPB_UNUSED(hd);
  upb_descreader *r = closure;
  upb_msgdef *m = upb_descreader_top(r);
  if(!upb_def_fullname(UPB_UPCAST(m))) {
    upb_status_seterrmsg(status, "Encountered message with no name.");
    return false;
  }
  upb_descreader_endcontainer(r);
  return true;
}

static size_t msg_onname(void *closure, const void *hd, const char *buf,
                         size_t n, const upb_bufhandle *handle) {
  UPB_UNUSED(hd);
  UPB_UNUSED(handle);
  upb_descreader *r = closure;
  upb_msgdef *m = upb_descreader_top(r);
  // XXX: see comment at the top of the file.
  char *name = upb_strndup(buf, n);
  upb_def_setfullname(UPB_UPCAST(m), name, NULL);
  upb_descreader_setscopename(r, name);  // Passes ownership of name.
  return n;
}

static bool msg_onendfield(void *closure, const void *hd) {
  UPB_UNUSED(hd);
  upb_descreader *r = closure;
  upb_msgdef *m = upb_descreader_top(r);
  upb_msgdef_addfield(m, r->f, &r->defs, NULL);
  r->f = NULL;
  return true;
}

static bool pushextension(void *closure, const void *hd) {
  UPB_UNUSED(hd);
  upb_descreader *r = closure;
  assert(upb_fielddef_containingtypename(r->f));
  upb_fielddef_setisextension(r->f, true);
  upb_deflist_push(&r->defs, UPB_UPCAST(r->f));
  r->f = NULL;
  return true;
}

#define D(name) upbdefs_google_protobuf_ ## name(s)

static void reghandlers(const void *closure, upb_handlers *h) {
  const upb_symtab *s = closure;
  const upb_msgdef *m = upb_handlers_msgdef(h);

  if (m == D(DescriptorProto)) {
    upb_handlers_setstartmsg(h, &msg_startmsg, NULL);
    upb_handlers_setendmsg(h, &msg_endmsg, NULL);
    upb_handlers_setstring(h, D(DescriptorProto_name), &msg_onname, NULL);
    upb_handlers_setendsubmsg(h, D(DescriptorProto_field), &msg_onendfield,
                              NULL);
    upb_handlers_setendsubmsg(h, D(DescriptorProto_extension), &pushextension,
                              NULL);
  } else if (m == D(FileDescriptorProto)) {
    upb_handlers_setstartmsg(h, &file_startmsg, NULL);
    upb_handlers_setendmsg(h, &file_endmsg, NULL);
    upb_handlers_setstring(h, D(FileDescriptorProto_package), &file_onpackage,
                           NULL);
    upb_handlers_setendsubmsg(h, D(FileDescriptorProto_extension), &pushextension,
                              NULL);
  } else if (m == D(EnumValueDescriptorProto)) {
    upb_handlers_setstartmsg(h, &enumval_startmsg, NULL);
    upb_handlers_setendmsg(h, &enumval_endmsg, NULL);
    upb_handlers_setstring(h, D(EnumValueDescriptorProto_name), &enumval_onname, NULL);
    upb_handlers_setint32(h, D(EnumValueDescriptorProto_number), &enumval_onnumber,
                          NULL);
  } else if (m == D(EnumDescriptorProto)) {
    upb_handlers_setstartmsg(h, &enum_startmsg, NULL);
    upb_handlers_setendmsg(h, &enum_endmsg, NULL);
    upb_handlers_setstring(h, D(EnumDescriptorProto_name), &enum_onname, NULL);
  } else if (m == D(FieldDescriptorProto)) {
    upb_handlers_setstartmsg(h, &field_startmsg, NULL);
    upb_handlers_setendmsg(h, &field_endmsg, NULL);
    upb_handlers_setint32(h, D(FieldDescriptorProto_type), &field_ontype,
                          NULL);
    upb_handlers_setint32(h, D(FieldDescriptorProto_label), &field_onlabel,
                          NULL);
    upb_handlers_setint32(h, D(FieldDescriptorProto_number), &field_onnumber,
                          NULL);
    upb_handlers_setstring(h, D(FieldDescriptorProto_name), &field_onname,
                           NULL);
    upb_handlers_setstring(h, D(FieldDescriptorProto_type_name),
                           &field_ontypename, NULL);
    upb_handlers_setstring(h, D(FieldDescriptorProto_extendee),
                           &field_onextendee, NULL);
    upb_handlers_setstring(h, D(FieldDescriptorProto_default_value),
                           &field_ondefaultval, NULL);
  } else if (m == D(FieldOptions)) {
    upb_handlers_setbool(h, D(FieldOptions_lazy), &field_onlazy, NULL);
    upb_handlers_setbool(h, D(FieldOptions_packed), &field_onpacked, NULL);
  }
}

#undef D

6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405
void descreader_cleanup(void *_r) {
  upb_descreader *r = _r;
  free(r->name);
  upb_deflist_uninit(&r->defs);
  free(r->default_string);
  while (r->stack_len > 0) {
    upb_descreader_frame *f = &r->stack[--r->stack_len];
    free(f->name);
  }
}


/* Public API  ****************************************************************/

upb_descreader *upb_descreader_create(upb_env *e, const upb_handlers *h) {
  upb_descreader *r = upb_env_malloc(e, sizeof(upb_descreader));
  if (!r || !upb_env_addcleanup(e, descreader_cleanup, r)) {
    return NULL;
  }

  upb_deflist_init(&r->defs);
  upb_sink_reset(upb_descreader_input(r), h, r);
  r->stack_len = 0;
  r->name = NULL;
  r->default_string = NULL;

  return r;
}

upb_def **upb_descreader_getdefs(upb_descreader *r, void *owner, int *n) {
  *n = r->defs.len;
  upb_deflist_donaterefs(&r->defs, owner);
  return r->defs.defs;
}

upb_sink *upb_descreader_input(upb_descreader *r) {
  return &r->sink;
}

6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713
const upb_handlers *upb_descreader_newhandlers(const void *owner) {
  const upb_symtab *s = upbdefs_google_protobuf_descriptor(&s);
  const upb_handlers *h = upb_handlers_newfrozen(
      upbdefs_google_protobuf_FileDescriptorSet(s), owner, reghandlers, s);
  upb_symtab_unref(s, &s);
  return h;
}
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2013 Google Inc.  See LICENSE for details.
 * Author: Josh Haberman <jhaberman@gmail.com>
 *
 * Code to compile a upb::Handlers into bytecode for decoding a protobuf
 * according to that specific schema and destination handlers.
 *
 * Compiling to bytecode is always the first step.  If we are using the
 * interpreted decoder we leave it as bytecode and interpret that.  If we are
 * using a JIT decoder we use a code generator to turn the bytecode into native
 * code, LLVM IR, etc.
 *
 * Bytecode definition is in decoder.int.h.
 */

#include <stdarg.h>

#ifdef UPB_DUMP_BYTECODE
#include <stdio.h>
#endif

#define MAXLABEL 5
#define EMPTYLABEL -1

/* mgroup *********************************************************************/

static void freegroup(upb_refcounted *r) {
  mgroup *g = (mgroup*)r;
  upb_inttable_uninit(&g->methods);
#ifdef UPB_USE_JIT_X64
  upb_pbdecoder_freejit(g);
#endif
  free(g->bytecode);
  free(g);
}

static void visitgroup(const upb_refcounted *r, upb_refcounted_visit *visit,
                       void *closure) {
  const mgroup *g = (const mgroup*)r;
  upb_inttable_iter i;
  upb_inttable_begin(&i, &g->methods);
  for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
    upb_pbdecodermethod *method = upb_value_getptr(upb_inttable_iter_value(&i));
    visit(r, UPB_UPCAST(method), closure);
  }
}

mgroup *newgroup(const void *owner) {
  mgroup *g = malloc(sizeof(*g));
  static const struct upb_refcounted_vtbl vtbl = {visitgroup, freegroup};
  upb_refcounted_init(UPB_UPCAST(g), &vtbl, owner);
  upb_inttable_init(&g->methods, UPB_CTYPE_PTR);
  g->bytecode = NULL;
  g->bytecode_end = NULL;
  return g;
}


/* upb_pbdecodermethod ********************************************************/

static void freemethod(upb_refcounted *r) {
  upb_pbdecodermethod *method = (upb_pbdecodermethod*)r;

  if (method->dest_handlers_) {
    upb_handlers_unref(method->dest_handlers_, method);
  }

  upb_inttable_uninit(&method->dispatch);
  free(method);
}

static void visitmethod(const upb_refcounted *r, upb_refcounted_visit *visit,
                        void *closure) {
  const upb_pbdecodermethod *m = (const upb_pbdecodermethod*)r;
  visit(r, m->group, closure);
}

static upb_pbdecodermethod *newmethod(const upb_handlers *dest_handlers,
                                      mgroup *group) {
  static const struct upb_refcounted_vtbl vtbl = {visitmethod, freemethod};
  upb_pbdecodermethod *ret = malloc(sizeof(*ret));
  upb_refcounted_init(UPB_UPCAST(ret), &vtbl, &ret);
  upb_byteshandler_init(&ret->input_handler_);

  // The method references the group and vice-versa, in a circular reference.
  upb_ref2(ret, group);
  upb_ref2(group, ret);
  upb_inttable_insertptr(&group->methods, dest_handlers, upb_value_ptr(ret));
  upb_refcounted_unref(UPB_UPCAST(ret), &ret);

  ret->group = UPB_UPCAST(group);
  ret->dest_handlers_ = dest_handlers;
  ret->is_native_ = false;  // If we JIT, it will update this later.
  upb_inttable_init(&ret->dispatch, UPB_CTYPE_UINT64);

  if (ret->dest_handlers_) {
    upb_handlers_ref(ret->dest_handlers_, ret);
  }
  return ret;
}

void upb_pbdecodermethod_ref(const upb_pbdecodermethod *m, const void *owner) {
  upb_refcounted_ref(UPB_UPCAST(m), owner);
}

void upb_pbdecodermethod_unref(const upb_pbdecodermethod *m,
                               const void *owner) {
  upb_refcounted_unref(UPB_UPCAST(m), owner);
}

void upb_pbdecodermethod_donateref(const upb_pbdecodermethod *m,
                                   const void *from, const void *to) {
  upb_refcounted_donateref(UPB_UPCAST(m), from, to);
}

void upb_pbdecodermethod_checkref(const upb_pbdecodermethod *m,
                                  const void *owner) {
  upb_refcounted_checkref(UPB_UPCAST(m), owner);
}

const upb_handlers *upb_pbdecodermethod_desthandlers(
    const upb_pbdecodermethod *m) {
  return m->dest_handlers_;
}

const upb_byteshandler *upb_pbdecodermethod_inputhandler(
    const upb_pbdecodermethod *m) {
  return &m->input_handler_;
}

bool upb_pbdecodermethod_isnative(const upb_pbdecodermethod *m) {
  return m->is_native_;
}

const upb_pbdecodermethod *upb_pbdecodermethod_new(
    const upb_pbdecodermethodopts *opts, const void *owner) {
  upb_pbcodecache cache;
  upb_pbcodecache_init(&cache);
  const upb_pbdecodermethod *ret =
      upb_pbcodecache_getdecodermethod(&cache, opts);
  upb_pbdecodermethod_ref(ret, owner);
  upb_pbcodecache_uninit(&cache);
  return ret;
}


/* bytecode compiler **********************************************************/

// Data used only at compilation time.
typedef struct {
  mgroup *group;

  uint32_t *pc;
  int fwd_labels[MAXLABEL];
  int back_labels[MAXLABEL];

  // For fields marked "lazy", parse them lazily or eagerly?
  bool lazy;
} compiler;

static compiler *newcompiler(mgroup *group, bool lazy) {
  compiler *ret = malloc(sizeof(*ret));
  ret->group = group;
  ret->lazy = lazy;
  for (int i = 0; i < MAXLABEL; i++) {
    ret->fwd_labels[i] = EMPTYLABEL;
    ret->back_labels[i] = EMPTYLABEL;
  }
  return ret;
}

static void freecompiler(compiler *c) {
  free(c);
}

const size_t ptr_words = sizeof(void*) / sizeof(uint32_t);

// How many words an instruction is.
static int instruction_len(uint32_t instr) {
  switch (getop(instr)) {
    case OP_SETDISPATCH: return 1 + ptr_words;
    case OP_TAGN: return 3;
    case OP_SETBIGGROUPNUM: return 2;
    default: return 1;
  }
}

bool op_has_longofs(int32_t instruction) {
  switch (getop(instruction)) {
    case OP_CALL:
    case OP_BRANCH:
    case OP_CHECKDELIM:
      return true;
    // The "tag" instructions only have 8 bytes available for the jump target,
    // but that is ok because these opcodes only require short jumps.
    case OP_TAG1:
    case OP_TAG2:
    case OP_TAGN:
      return false;
    default:
      assert(false);
      return false;
  }
}

static int32_t getofs(uint32_t instruction) {
  if (op_has_longofs(instruction)) {
    return (int32_t)instruction >> 8;
  } else {
    return (int8_t)(instruction >> 8);
  }
}

static void setofs(uint32_t *instruction, int32_t ofs) {
  if (op_has_longofs(*instruction)) {
    *instruction = getop(*instruction) | ofs << 8;
  } else {
    *instruction = (*instruction & ~0xff00) | ((ofs & 0xff) << 8);
  }
  assert(getofs(*instruction) == ofs);  // Would fail in cases of overflow.
}

static uint32_t pcofs(compiler *c) { return c->pc - c->group->bytecode; }

// Defines a local label at the current PC location.  All previous forward
// references are updated to point to this location.  The location is noted
// for any future backward references.
static void label(compiler *c, unsigned int label) {
  assert(label < MAXLABEL);
  int val = c->fwd_labels[label];
  uint32_t *codep = (val == EMPTYLABEL) ? NULL : c->group->bytecode + val;
  while (codep) {
    int ofs = getofs(*codep);
    setofs(codep, c->pc - codep - instruction_len(*codep));
    codep = ofs ? codep + ofs : NULL;
  }
  c->fwd_labels[label] = EMPTYLABEL;
  c->back_labels[label] = pcofs(c);
}

// Creates a reference to a numbered label; either a forward reference
// (positive arg) or backward reference (negative arg).  For forward references
// the value returned now is actually a "next" pointer into a linked list of all
// instructions that use this label and will be patched later when the label is
// defined with label().
//
// The returned value is the offset that should be written into the instruction.
static int32_t labelref(compiler *c, int label) {
  assert(label < MAXLABEL);
  if (label == LABEL_DISPATCH) {
    // No resolving required.
    return 0;
  } else if (label < 0) {
    // Backward local label.  Relative to the next instruction.
    uint32_t from = (c->pc + 1) - c->group->bytecode;
    return c->back_labels[-label] - from;
  } else {
    // Forward local label: prepend to (possibly-empty) linked list.
    int *lptr = &c->fwd_labels[label];
    int32_t ret = (*lptr == EMPTYLABEL) ? 0 : *lptr - pcofs(c);
    *lptr = pcofs(c);
    return ret;
  }
}

static void put32(compiler *c, uint32_t v) {
  mgroup *g = c->group;
  if (c->pc == g->bytecode_end) {
    int ofs = pcofs(c);
    size_t oldsize = g->bytecode_end - g->bytecode;
    size_t newsize = UPB_MAX(oldsize * 2, 64);
    // TODO(haberman): handle OOM.
    g->bytecode = realloc(g->bytecode, newsize * sizeof(uint32_t));
    g->bytecode_end = g->bytecode + newsize;
    c->pc = g->bytecode + ofs;
  }
  *c->pc++ = v;
}

static void putop(compiler *c, opcode op, ...) {
  va_list ap;
  va_start(ap, op);

  switch (op) {
    case OP_SETDISPATCH: {
      uintptr_t ptr = (uintptr_t)va_arg(ap, void*);
      put32(c, OP_SETDISPATCH);
      put32(c, ptr);
      if (sizeof(uintptr_t) > sizeof(uint32_t))
        put32(c, (uint64_t)ptr >> 32);
      break;
    }
    case OP_STARTMSG:
    case OP_ENDMSG:
    case OP_PUSHLENDELIM:
    case OP_POP:
    case OP_SETDELIM:
    case OP_HALT:
    case OP_RET:
Chris Fallin's avatar
Chris Fallin committed
6714
    case OP_DISPATCH:
6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794
      put32(c, op);
      break;
    case OP_PARSE_DOUBLE:
    case OP_PARSE_FLOAT:
    case OP_PARSE_INT64:
    case OP_PARSE_UINT64:
    case OP_PARSE_INT32:
    case OP_PARSE_FIXED64:
    case OP_PARSE_FIXED32:
    case OP_PARSE_BOOL:
    case OP_PARSE_UINT32:
    case OP_PARSE_SFIXED32:
    case OP_PARSE_SFIXED64:
    case OP_PARSE_SINT32:
    case OP_PARSE_SINT64:
    case OP_STARTSEQ:
    case OP_ENDSEQ:
    case OP_STARTSUBMSG:
    case OP_ENDSUBMSG:
    case OP_STARTSTR:
    case OP_STRING:
    case OP_ENDSTR:
    case OP_PUSHTAGDELIM:
      put32(c, op | va_arg(ap, upb_selector_t) << 8);
      break;
    case OP_SETBIGGROUPNUM:
      put32(c, op);
      put32(c, va_arg(ap, int));
      break;
    case OP_CALL: {
      const upb_pbdecodermethod *method = va_arg(ap, upb_pbdecodermethod *);
      put32(c, op | (method->code_base.ofs - (pcofs(c) + 1)) << 8);
      break;
    }
    case OP_CHECKDELIM:
    case OP_BRANCH: {
      uint32_t instruction = op;
      int label = va_arg(ap, int);
      setofs(&instruction, labelref(c, label));
      put32(c, instruction);
      break;
    }
    case OP_TAG1:
    case OP_TAG2: {
      int label = va_arg(ap, int);
      uint64_t tag = va_arg(ap, uint64_t);
      uint32_t instruction = op | (tag << 16);
      assert(tag <= 0xffff);
      setofs(&instruction, labelref(c, label));
      put32(c, instruction);
      break;
    }
    case OP_TAGN: {
      int label = va_arg(ap, int);
      uint64_t tag = va_arg(ap, uint64_t);
      uint32_t instruction = op | (upb_value_size(tag) << 16);
      setofs(&instruction, labelref(c, label));
      put32(c, instruction);
      put32(c, tag);
      put32(c, tag >> 32);
      break;
    }
  }

  va_end(ap);
}

#if defined(UPB_USE_JIT_X64) || defined(UPB_DUMP_BYTECODE)

const char *upb_pbdecoder_getopname(unsigned int op) {
#define OP(op) [OP_ ## op] = "OP_" #op
#define T(op) OP(PARSE_##op)
  static const char *names[] = {
    "<no opcode>",
    T(DOUBLE), T(FLOAT), T(INT64), T(UINT64), T(INT32), T(FIXED64), T(FIXED32),
    T(BOOL), T(UINT32), T(SFIXED32), T(SFIXED64), T(SINT32), T(SINT64),
    OP(STARTMSG), OP(ENDMSG), OP(STARTSEQ), OP(ENDSEQ), OP(STARTSUBMSG),
    OP(ENDSUBMSG), OP(STARTSTR), OP(STRING), OP(ENDSTR), OP(CALL), OP(RET),
    OP(PUSHLENDELIM), OP(PUSHTAGDELIM), OP(SETDELIM), OP(CHECKDELIM),
    OP(BRANCH), OP(TAG1), OP(TAG2), OP(TAGN), OP(SETDISPATCH), OP(POP),
Chris Fallin's avatar
Chris Fallin committed
6795
    OP(SETBIGGROUPNUM), OP(DISPATCH), OP(HALT),
6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826
  };
  return op > OP_HALT ? names[0] : names[op];
#undef OP
#undef T
}

#endif

#ifdef UPB_DUMP_BYTECODE

static void dumpbc(uint32_t *p, uint32_t *end, FILE *f) {

  uint32_t *begin = p;

  while (p < end) {
    fprintf(f, "%p  %8tx", p, p - begin);
    uint32_t instr = *p++;
    uint8_t op = getop(instr);
    fprintf(f, " %s", upb_pbdecoder_getopname(op));
    switch ((opcode)op) {
      case OP_SETDISPATCH: {
        const upb_inttable *dispatch;
        memcpy(&dispatch, p, sizeof(void*));
        p += ptr_words;
        const upb_pbdecodermethod *method =
            (void *)((char *)dispatch -
                     offsetof(upb_pbdecodermethod, dispatch));
        fprintf(f, " %s", upb_msgdef_fullname(
                              upb_handlers_msgdef(method->dest_handlers_)));
        break;
      }
Chris Fallin's avatar
Chris Fallin committed
6827
      case OP_DISPATCH:
6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172
      case OP_STARTMSG:
      case OP_ENDMSG:
      case OP_PUSHLENDELIM:
      case OP_POP:
      case OP_SETDELIM:
      case OP_HALT:
      case OP_RET:
        break;
      case OP_PARSE_DOUBLE:
      case OP_PARSE_FLOAT:
      case OP_PARSE_INT64:
      case OP_PARSE_UINT64:
      case OP_PARSE_INT32:
      case OP_PARSE_FIXED64:
      case OP_PARSE_FIXED32:
      case OP_PARSE_BOOL:
      case OP_PARSE_UINT32:
      case OP_PARSE_SFIXED32:
      case OP_PARSE_SFIXED64:
      case OP_PARSE_SINT32:
      case OP_PARSE_SINT64:
      case OP_STARTSEQ:
      case OP_ENDSEQ:
      case OP_STARTSUBMSG:
      case OP_ENDSUBMSG:
      case OP_STARTSTR:
      case OP_STRING:
      case OP_ENDSTR:
      case OP_PUSHTAGDELIM:
        fprintf(f, " %d", instr >> 8);
        break;
      case OP_SETBIGGROUPNUM:
        fprintf(f, " %d", *p++);
        break;
      case OP_CHECKDELIM:
      case OP_CALL:
      case OP_BRANCH:
        fprintf(f, " =>0x%tx", p + getofs(instr) - begin);
        break;
      case OP_TAG1:
      case OP_TAG2: {
        fprintf(f, " tag:0x%x", instr >> 16);
        if (getofs(instr)) {
          fprintf(f, " =>0x%tx", p + getofs(instr) - begin);
        }
        break;
      }
      case OP_TAGN: {
        uint64_t tag = *p++;
        tag |= (uint64_t)*p++ << 32;
        fprintf(f, " tag:0x%llx", (long long)tag);
        fprintf(f, " n:%d", instr >> 16);
        if (getofs(instr)) {
          fprintf(f, " =>0x%tx", p + getofs(instr) - begin);
        }
        break;
      }
    }
    fputs("\n", f);
  }
}

#endif

static uint64_t get_encoded_tag(const upb_fielddef *f, int wire_type) {
  uint32_t tag = (upb_fielddef_number(f) << 3) | wire_type;
  uint64_t encoded_tag = upb_vencode32(tag);
  // No tag should be greater than 5 bytes.
  assert(encoded_tag <= 0xffffffffff);
  return encoded_tag;
}

static void putchecktag(compiler *c, const upb_fielddef *f,
                        int wire_type, int dest) {
  uint64_t tag = get_encoded_tag(f, wire_type);
  switch (upb_value_size(tag)) {
    case 1:
      putop(c, OP_TAG1, dest, tag);
      break;
    case 2:
      putop(c, OP_TAG2, dest, tag);
      break;
    default:
      putop(c, OP_TAGN, dest, tag);
      break;
  }
}

static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) {
  upb_selector_t selector;
  bool ok = upb_handlers_getselector(f, type, &selector);
  UPB_ASSERT_VAR(ok, ok);
  return selector;
}

// Takes an existing, primary dispatch table entry and repacks it with a
// different alternate wire type.  Called when we are inserting a secondary
// dispatch table entry for an alternate wire type.
static uint64_t repack(uint64_t dispatch, int new_wt2) {
  uint64_t ofs;
  uint8_t wt1;
  uint8_t old_wt2;
  upb_pbdecoder_unpackdispatch(dispatch, &ofs, &wt1, &old_wt2);
  assert(old_wt2 == NO_WIRE_TYPE);  // wt2 should not be set yet.
  return upb_pbdecoder_packdispatch(ofs, wt1, new_wt2);
}

// Marks the current bytecode position as the dispatch target for this message,
// field, and wire type.
static void dispatchtarget(compiler *c, upb_pbdecodermethod *method,
                           const upb_fielddef *f, int wire_type) {
  // Offset is relative to msg base.
  uint64_t ofs = pcofs(c) - method->code_base.ofs;
  uint32_t fn = upb_fielddef_number(f);
  upb_inttable *d = &method->dispatch;
  upb_value v;
  if (upb_inttable_remove(d, fn, &v)) {
    // TODO: prioritize based on packed setting in .proto file.
    uint64_t repacked = repack(upb_value_getuint64(v), wire_type);
    upb_inttable_insert(d, fn, upb_value_uint64(repacked));
    upb_inttable_insert(d, fn + UPB_MAX_FIELDNUMBER, upb_value_uint64(ofs));
  } else {
    uint64_t val = upb_pbdecoder_packdispatch(ofs, wire_type, NO_WIRE_TYPE);
    upb_inttable_insert(d, fn, upb_value_uint64(val));
  }
}

static void putpush(compiler *c, const upb_fielddef *f) {
  if (upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_MESSAGE) {
    putop(c, OP_PUSHLENDELIM);
  } else {
    uint32_t fn = upb_fielddef_number(f);
    if (fn >= 1 << 24) {
      putop(c, OP_PUSHTAGDELIM, 0);
      putop(c, OP_SETBIGGROUPNUM, fn);
    } else {
      putop(c, OP_PUSHTAGDELIM, fn);
    }
  }
}

static upb_pbdecodermethod *find_submethod(const compiler *c,
                                           const upb_pbdecodermethod *method,
                                           const upb_fielddef *f) {
  const upb_handlers *sub =
      upb_handlers_getsubhandlers(method->dest_handlers_, f);
  upb_value v;
  return upb_inttable_lookupptr(&c->group->methods, sub, &v)
             ? upb_value_getptr(v)
             : NULL;
}

static void putsel(compiler *c, opcode op, upb_selector_t sel,
                   const upb_handlers *h) {
  if (upb_handlers_gethandler(h, sel)) {
    putop(c, op, sel);
  }
}

// Puts an opcode to call a callback, but only if a callback actually exists for
// this field and handler type.
static void maybeput(compiler *c, opcode op, const upb_handlers *h,
                     const upb_fielddef *f, upb_handlertype_t type) {
  putsel(c, op, getsel(f, type), h);
}

static bool haslazyhandlers(const upb_handlers *h, const upb_fielddef *f) {
  if (!upb_fielddef_lazy(f))
    return false;

  return upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_STARTSTR)) ||
         upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_STRING)) ||
         upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_ENDSTR));
}


/* bytecode compiler code generation ******************************************/

// Symbolic names for our local labels.
#define LABEL_LOOPSTART 1  // Top of a repeated field loop.
#define LABEL_LOOPBREAK 2  // To jump out of a repeated loop
#define LABEL_FIELD     3  // Jump backward to find the most recent field.
#define LABEL_ENDMSG    4  // To reach the OP_ENDMSG instr for this msg.

// Generates bytecode to parse a single non-lazy message field.
static void generate_msgfield(compiler *c, const upb_fielddef *f,
                              upb_pbdecodermethod *method) {
  const upb_handlers *h = upb_pbdecodermethod_desthandlers(method);
  const upb_pbdecodermethod *sub_m = find_submethod(c, method, f);

  if (!sub_m) {
    // Don't emit any code for this field at all; it will be parsed as an
    // unknown field.
    return;
  }

  label(c, LABEL_FIELD);

  int wire_type =
      (upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_MESSAGE)
          ? UPB_WIRE_TYPE_DELIMITED
          : UPB_WIRE_TYPE_START_GROUP;

  if (upb_fielddef_isseq(f)) {
    putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
    putchecktag(c, f, wire_type, LABEL_DISPATCH);
   dispatchtarget(c, method, f, wire_type);
    putop(c, OP_PUSHTAGDELIM, 0);
    putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ));
   label(c, LABEL_LOOPSTART);
    putpush(c, f);
    putop(c, OP_STARTSUBMSG, getsel(f, UPB_HANDLER_STARTSUBMSG));
    putop(c, OP_CALL, sub_m);
    putop(c, OP_POP);
    maybeput(c, OP_ENDSUBMSG, h, f, UPB_HANDLER_ENDSUBMSG);
    if (wire_type == UPB_WIRE_TYPE_DELIMITED) {
      putop(c, OP_SETDELIM);
    }
    putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK);
    putchecktag(c, f, wire_type, LABEL_LOOPBREAK);
    putop(c, OP_BRANCH, -LABEL_LOOPSTART);
   label(c, LABEL_LOOPBREAK);
    putop(c, OP_POP);
    maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ);
  } else {
    putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
    putchecktag(c, f, wire_type, LABEL_DISPATCH);
   dispatchtarget(c, method, f, wire_type);
    putpush(c, f);
    putop(c, OP_STARTSUBMSG, getsel(f, UPB_HANDLER_STARTSUBMSG));
    putop(c, OP_CALL, sub_m);
    putop(c, OP_POP);
    maybeput(c, OP_ENDSUBMSG, h, f, UPB_HANDLER_ENDSUBMSG);
    if (wire_type == UPB_WIRE_TYPE_DELIMITED) {
      putop(c, OP_SETDELIM);
    }
  }
}

// Generates bytecode to parse a single string or lazy submessage field.
static void generate_delimfield(compiler *c, const upb_fielddef *f,
                                upb_pbdecodermethod *method) {
  const upb_handlers *h = upb_pbdecodermethod_desthandlers(method);

  label(c, LABEL_FIELD);
  if (upb_fielddef_isseq(f)) {
    putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
    putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH);
   dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED);
    putop(c, OP_PUSHTAGDELIM, 0);
    putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ));
   label(c, LABEL_LOOPSTART);
    putop(c, OP_PUSHLENDELIM);
    putop(c, OP_STARTSTR, getsel(f, UPB_HANDLER_STARTSTR));
    // Need to emit even if no handler to skip past the string.
    putop(c, OP_STRING, getsel(f, UPB_HANDLER_STRING));
    putop(c, OP_POP);
    maybeput(c, OP_ENDSTR, h, f, UPB_HANDLER_ENDSTR);
    putop(c, OP_SETDELIM);
    putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK);
    putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_LOOPBREAK);
    putop(c, OP_BRANCH, -LABEL_LOOPSTART);
   label(c, LABEL_LOOPBREAK);
    putop(c, OP_POP);
    maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ);
  } else {
    putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
    putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH);
   dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED);
    putop(c, OP_PUSHLENDELIM);
    putop(c, OP_STARTSTR, getsel(f, UPB_HANDLER_STARTSTR));
    putop(c, OP_STRING, getsel(f, UPB_HANDLER_STRING));
    putop(c, OP_POP);
    maybeput(c, OP_ENDSTR, h, f, UPB_HANDLER_ENDSTR);
    putop(c, OP_SETDELIM);
  }
}

// Generates bytecode to parse a single primitive field.
static void generate_primitivefield(compiler *c, const upb_fielddef *f,
                                    upb_pbdecodermethod *method) {
  label(c, LABEL_FIELD);

  const upb_handlers *h = upb_pbdecodermethod_desthandlers(method);
  upb_descriptortype_t descriptor_type = upb_fielddef_descriptortype(f);

  // From a decoding perspective, ENUM is the same as INT32.
  if (descriptor_type == UPB_DESCRIPTOR_TYPE_ENUM)
    descriptor_type = UPB_DESCRIPTOR_TYPE_INT32;

  opcode parse_type = (opcode)descriptor_type;

  // TODO(haberman): generate packed or non-packed first depending on "packed"
  // setting in the fielddef.  This will favor (in speed) whichever was
  // specified.

  assert((int)parse_type >= 0 && parse_type <= OP_MAX);
  upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
  int wire_type = upb_pb_native_wire_types[upb_fielddef_descriptortype(f)];
  if (upb_fielddef_isseq(f)) {
    putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
    putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH);
   dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED);
    putop(c, OP_PUSHLENDELIM);
    putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ));  // Packed
   label(c, LABEL_LOOPSTART);
    putop(c, parse_type, sel);
    putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK);
    putop(c, OP_BRANCH, -LABEL_LOOPSTART);
   dispatchtarget(c, method, f, wire_type);
    putop(c, OP_PUSHTAGDELIM, 0);
    putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ));  // Non-packed
   label(c, LABEL_LOOPSTART);
    putop(c, parse_type, sel);
    putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK);
    putchecktag(c, f, wire_type, LABEL_LOOPBREAK);
    putop(c, OP_BRANCH, -LABEL_LOOPSTART);
   label(c, LABEL_LOOPBREAK);
    putop(c, OP_POP);  // Packed and non-packed join.
    maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ);
    putop(c, OP_SETDELIM);  // Could remove for non-packed by dup ENDSEQ.
  } else {
    putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
    putchecktag(c, f, wire_type, LABEL_DISPATCH);
   dispatchtarget(c, method, f, wire_type);
    putop(c, parse_type, sel);
  }
}

// Adds bytecode for parsing the given message to the given decoderplan,
// while adding all dispatch targets to this message's dispatch table.
static void compile_method(compiler *c, upb_pbdecodermethod *method) {
  assert(method);

  // Clear all entries in the dispatch table.
  upb_inttable_uninit(&method->dispatch);
  upb_inttable_init(&method->dispatch, UPB_CTYPE_UINT64);

  const upb_handlers *h = upb_pbdecodermethod_desthandlers(method);
  const upb_msgdef *md = upb_handlers_msgdef(h);

 method->code_base.ofs = pcofs(c);
  putop(c, OP_SETDISPATCH, &method->dispatch);
  putsel(c, OP_STARTMSG, UPB_STARTMSG_SELECTOR, h);
 label(c, LABEL_FIELD);
Chris Fallin's avatar
Chris Fallin committed
7173
  uint32_t* start_pc = c->pc;
7174 7175 7176 7177
  upb_msg_field_iter i;
  for(upb_msg_field_begin(&i, md);
      !upb_msg_field_done(&i);
      upb_msg_field_next(&i)) {
7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190
    const upb_fielddef *f = upb_msg_iter_field(&i);
    upb_fieldtype_t type = upb_fielddef_type(f);

    if (type == UPB_TYPE_MESSAGE && !(haslazyhandlers(h, f) && c->lazy)) {
      generate_msgfield(c, f, method);
    } else if (type == UPB_TYPE_STRING || type == UPB_TYPE_BYTES ||
               type == UPB_TYPE_MESSAGE) {
      generate_delimfield(c, f, method);
    } else {
      generate_primitivefield(c, f, method);
    }
  }

Chris Fallin's avatar
Chris Fallin committed
7191 7192 7193 7194 7195 7196 7197 7198 7199 7200
  // If there were no fields, or if no handlers were defined, we need to
  // generate a non-empty loop body so that we can at least dispatch for unknown
  // fields and check for the end of the message.
  if (c->pc == start_pc) {
    // Check for end-of-message.
    putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
    // Unconditionally dispatch.
    putop(c, OP_DISPATCH, 0);
  }

7201
  // For now we just loop back to the last field of the message (or if none,
Chris Fallin's avatar
Chris Fallin committed
7202
  // the DISPATCH opcode for the message).
7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226
  putop(c, OP_BRANCH, -LABEL_FIELD);

  // Insert both a label and a dispatch table entry for this end-of-msg.
 label(c, LABEL_ENDMSG);
  upb_value val = upb_value_uint64(pcofs(c) - method->code_base.ofs);
  upb_inttable_insert(&method->dispatch, DISPATCH_ENDMSG, val);

  putsel(c, OP_ENDMSG, UPB_ENDMSG_SELECTOR, h);
  putop(c, OP_RET);

  upb_inttable_compact(&method->dispatch);
}

// Populate "methods" with new upb_pbdecodermethod objects reachable from "h".
// Returns the method for these handlers.
//
// Generates a new method for every destination handlers reachable from "h".
static void find_methods(compiler *c, const upb_handlers *h) {
  upb_value v;
  if (upb_inttable_lookupptr(&c->group->methods, h, &v))
    return;
  newmethod(h, c->group);

  // Find submethods.
7227
  upb_msg_field_iter i;
7228
  const upb_msgdef *md = upb_handlers_msgdef(h);
7229 7230 7231
  for(upb_msg_field_begin(&i, md);
      !upb_msg_field_done(&i);
      upb_msg_field_next(&i)) {
7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272
    const upb_fielddef *f = upb_msg_iter_field(&i);
    const upb_handlers *sub_h;
    if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE &&
        (sub_h = upb_handlers_getsubhandlers(h, f)) != NULL) {
      // We only generate a decoder method for submessages with handlers.
      // Others will be parsed as unknown fields.
      find_methods(c, sub_h);
    }
  }
}

// (Re-)compile bytecode for all messages in "msgs."
// Overwrites any existing bytecode in "c".
static void compile_methods(compiler *c) {
  // Start over at the beginning of the bytecode.
  c->pc = c->group->bytecode;

  upb_inttable_iter i;
  upb_inttable_begin(&i, &c->group->methods);
  for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
    upb_pbdecodermethod *method = upb_value_getptr(upb_inttable_iter_value(&i));
    compile_method(c, method);
  }
}

static void set_bytecode_handlers(mgroup *g) {
  upb_inttable_iter i;
  upb_inttable_begin(&i, &g->methods);
  for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
    upb_pbdecodermethod *m = upb_value_getptr(upb_inttable_iter_value(&i));

    m->code_base.ptr = g->bytecode + m->code_base.ofs;

    upb_byteshandler *h = &m->input_handler_;
    upb_byteshandler_setstartstr(h, upb_pbdecoder_startbc, m->code_base.ptr);
    upb_byteshandler_setstring(h, upb_pbdecoder_decode, g);
    upb_byteshandler_setendstr(h, upb_pbdecoder_end, m);
  }
}


7273
/* JIT setup. *****************************************************************/
7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453

#ifdef UPB_USE_JIT_X64

static void sethandlers(mgroup *g, bool allowjit) {
  g->jit_code = NULL;
  if (allowjit) {
    // Compile byte-code into machine code, create handlers.
    upb_pbdecoder_jit(g);
  } else {
    set_bytecode_handlers(g);
  }
}

#else  // UPB_USE_JIT_X64

static void sethandlers(mgroup *g, bool allowjit) {
  // No JIT compiled in; use bytecode handlers unconditionally.
  UPB_UNUSED(allowjit);
  set_bytecode_handlers(g);
}

#endif  // UPB_USE_JIT_X64


// TODO(haberman): allow this to be constructed for an arbitrary set of dest
// handlers and other mgroups (but verify we have a transitive closure).
const mgroup *mgroup_new(const upb_handlers *dest, bool allowjit, bool lazy,
                         const void *owner) {
  UPB_UNUSED(allowjit);
  assert(upb_handlers_isfrozen(dest));

  mgroup *g = newgroup(owner);
  compiler *c = newcompiler(g, lazy);
  find_methods(c, dest);

  // We compile in two passes:
  // 1. all messages are assigned relative offsets from the beginning of the
  //    bytecode (saved in method->code_base).
  // 2. forwards OP_CALL instructions can be correctly linked since message
  //    offsets have been previously assigned.
  //
  // Could avoid the second pass by linking OP_CALL instructions somehow.
  compile_methods(c);
  compile_methods(c);
  g->bytecode_end = c->pc;
  freecompiler(c);

#ifdef UPB_DUMP_BYTECODE
  FILE *f = fopen("/tmp/upb-bytecode", "wb");
  assert(f);
  dumpbc(g->bytecode, g->bytecode_end, stderr);
  dumpbc(g->bytecode, g->bytecode_end, f);
  fclose(f);
#endif

  sethandlers(g, allowjit);
  return g;
}


/* upb_pbcodecache ************************************************************/

void upb_pbcodecache_init(upb_pbcodecache *c) {
  upb_inttable_init(&c->groups, UPB_CTYPE_CONSTPTR);
  c->allow_jit_ = true;
}

void upb_pbcodecache_uninit(upb_pbcodecache *c) {
  upb_inttable_iter i;
  upb_inttable_begin(&i, &c->groups);
  for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
    const mgroup *group = upb_value_getconstptr(upb_inttable_iter_value(&i));
    upb_refcounted_unref(UPB_UPCAST(group), c);
  }
  upb_inttable_uninit(&c->groups);
}

bool upb_pbcodecache_allowjit(const upb_pbcodecache *c) {
  return c->allow_jit_;
}

bool upb_pbcodecache_setallowjit(upb_pbcodecache *c, bool allow) {
  if (upb_inttable_count(&c->groups) > 0)
    return false;
  c->allow_jit_ = allow;
  return true;
}

const upb_pbdecodermethod *upb_pbcodecache_getdecodermethod(
    upb_pbcodecache *c, const upb_pbdecodermethodopts *opts) {
  // Right now we build a new DecoderMethod every time.
  // TODO(haberman): properly cache methods by their true key.
  const mgroup *g = mgroup_new(opts->handlers, c->allow_jit_, opts->lazy, c);
  upb_inttable_push(&c->groups, upb_value_constptr(g));

  upb_value v;
  bool ok = upb_inttable_lookupptr(&g->methods, opts->handlers, &v);
  UPB_ASSERT_VAR(ok, ok);
  return upb_value_getptr(v);
}


/* upb_pbdecodermethodopts ****************************************************/

void upb_pbdecodermethodopts_init(upb_pbdecodermethodopts *opts,
                                  const upb_handlers *h) {
  opts->handlers = h;
  opts->lazy = false;
}

void upb_pbdecodermethodopts_setlazy(upb_pbdecodermethodopts *opts, bool lazy) {
  opts->lazy = lazy;
}
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2008-2013 Google Inc.  See LICENSE for details.
 * Author: Josh Haberman <jhaberman@gmail.com>
 *
 * This file implements a VM for the interpreted (bytecode) decoder.
 *
 * Bytecode must previously have been generated using the bytecode compiler in
 * compile_decoder.c.  This decoder then walks through the bytecode op-by-op to
 * parse the input.
 *
 * Decoding is fully resumable; we just keep a pointer to the current bytecode
 * instruction and resume from there.  A fair amount of the logic here is to
 * handle the fact that values can span buffer seams and we have to be able to
 * be capable of suspending/resuming from any byte in the stream.  This
 * sometimes requires keeping a few trailing bytes from the last buffer around
 * in the "residual" buffer.
 */

#include <inttypes.h>
#include <stddef.h>

#ifdef UPB_DUMP_BYTECODE
#include <stdio.h>
#endif

#define CHECK_SUSPEND(x) if (!(x)) return upb_pbdecoder_suspend(d);

// Error messages that are shared between the bytecode and JIT decoders.
const char *kPbDecoderStackOverflow = "Nesting too deep.";

// Error messages shared within this file.
static const char *kUnterminatedVarint = "Unterminated varint.";

/* upb_pbdecoder **************************************************************/

static opcode halt = OP_HALT;

// Whether an op consumes any of the input buffer.
static bool consumes_input(opcode op) {
  switch (op) {
    case OP_SETDISPATCH:
    case OP_STARTMSG:
    case OP_ENDMSG:
    case OP_STARTSEQ:
    case OP_ENDSEQ:
    case OP_STARTSUBMSG:
    case OP_ENDSUBMSG:
    case OP_STARTSTR:
    case OP_ENDSTR:
    case OP_PUSHTAGDELIM:
    case OP_POP:
    case OP_SETDELIM:
    case OP_SETBIGGROUPNUM:
    case OP_CHECKDELIM:
    case OP_CALL:
    case OP_RET:
    case OP_BRANCH:
      return false;
    default:
      return true;
  }
}

static bool in_residual_buf(const upb_pbdecoder *d, const char *p);

7454 7455 7456 7457 7458 7459
// It's unfortunate that we have to micro-manage the compiler with
// UPB_FORCEINLINE and UPB_NOINLINE, especially since this tuning is necessarily
// specific to one hardware configuration.  But empirically on a Core i7,
// performance increases 30-50% with these annotations.  Every instance where
// these appear, gcc 4.2.1 made the wrong decision and degraded performance in
// benchmarks.
7460 7461

static void seterr(upb_pbdecoder *d, const char *msg) {
7462 7463 7464
  upb_status status = UPB_STATUS_INIT;
  upb_status_seterrmsg(&status, msg);
  upb_env_reporterror(d->env, &status);
7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506
}

void upb_pbdecoder_seterr(upb_pbdecoder *d, const char *msg) {
  seterr(d, msg);
}


/* Buffering ******************************************************************/

// We operate on one buffer at a time, which is either the user's buffer passed
// to our "decode" callback or some residual bytes from the previous buffer.

// How many bytes can be safely read from d->ptr without reading past end-of-buf
// or past the current delimited end.
static size_t curbufleft(const upb_pbdecoder *d) {
  assert(d->data_end >= d->ptr);
  return d->data_end - d->ptr;
}

// Overall stream offset of d->ptr.
uint64_t offset(const upb_pbdecoder *d) {
  return d->bufstart_ofs + (d->ptr - d->buf);
}

// Advances d->ptr.
static void advance(upb_pbdecoder *d, size_t len) {
  assert(curbufleft(d) >= len);
  d->ptr += len;
}

static bool in_buf(const char *p, const char *buf, const char *end) {
  return p >= buf && p <= end;
}

static bool in_residual_buf(const upb_pbdecoder *d, const char *p) {
  return in_buf(p, d->residual, d->residual_end);
}

// Calculates the delim_end value, which is affected by both the current buffer
// and the parsing stack, so must be called whenever either is updated.
static void set_delim_end(upb_pbdecoder *d) {
  size_t delim_ofs = d->top->end_ofs - d->bufstart_ofs;
7507
  if (delim_ofs <= (size_t)(d->end - d->buf)) {
7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631
    d->delim_end = d->buf + delim_ofs;
    d->data_end = d->delim_end;
  } else {
    d->data_end = d->end;
    d->delim_end = NULL;
  }
}

static void switchtobuf(upb_pbdecoder *d, const char *buf, const char *end) {
  d->ptr = buf;
  d->buf = buf;
  d->end = end;
  set_delim_end(d);
}

static void advancetobuf(upb_pbdecoder *d, const char *buf, size_t len) {
  assert(curbufleft(d) == 0);
  d->bufstart_ofs += (d->end - d->buf);
  switchtobuf(d, buf, buf + len);
}

static void checkpoint(upb_pbdecoder *d) {
  // The assertion here is in the interests of efficiency, not correctness.
  // We are trying to ensure that we don't checkpoint() more often than
  // necessary.
  assert(d->checkpoint != d->ptr);
  d->checkpoint = d->ptr;
}

// Resumes the decoder from an initial state or from a previous suspend.
int32_t upb_pbdecoder_resume(upb_pbdecoder *d, void *p, const char *buf,
                             size_t size, const upb_bufhandle *handle) {
  UPB_UNUSED(p);  // Useless; just for the benefit of the JIT.
  d->buf_param = buf;
  d->size_param = size;
  d->handle = handle;
  if (d->residual_end > d->residual) {
    // We have residual bytes from the last buffer.
    assert(d->ptr == d->residual);
  } else {
    switchtobuf(d, buf, buf + size);
  }
  d->checkpoint = d->ptr;
  if (d->top->groupnum < 0) {
    CHECK_RETURN(upb_pbdecoder_skipunknown(d, -1, 0));
    d->checkpoint = d->ptr;
  }
  return DECODE_OK;
}

// Suspends the decoder at the last checkpoint, without saving any residual
// bytes.  If there are any unconsumed bytes, returns a short byte count.
size_t upb_pbdecoder_suspend(upb_pbdecoder *d) {
  d->pc = d->last;
  if (d->checkpoint == d->residual) {
    // Checkpoint was in residual buf; no user bytes were consumed.
    d->ptr = d->residual;
    return 0;
  } else {
    assert(!in_residual_buf(d, d->checkpoint));
    assert(d->buf == d->buf_param);
    size_t consumed = d->checkpoint - d->buf;
    d->bufstart_ofs += consumed;
    d->residual_end = d->residual;
    switchtobuf(d, d->residual, d->residual_end);
    return consumed;
  }
}

// Suspends the decoder at the last checkpoint, and saves any unconsumed
// bytes in our residual buffer.  This is necessary if we need more user
// bytes to form a complete value, which might not be contiguous in the
// user's buffers.  Always consumes all user bytes.
static size_t suspend_save(upb_pbdecoder *d) {
  // We hit end-of-buffer before we could parse a full value.
  // Save any unconsumed bytes (if any) to the residual buffer.
  d->pc = d->last;

  if (d->checkpoint == d->residual) {
    // Checkpoint was in residual buf; append user byte(s) to residual buf.
    assert((d->residual_end - d->residual) + d->size_param <=
           sizeof(d->residual));
    if (!in_residual_buf(d, d->ptr)) {
      d->bufstart_ofs -= (d->residual_end - d->residual);
    }
    memcpy(d->residual_end, d->buf_param, d->size_param);
    d->residual_end += d->size_param;
  } else {
    // Checkpoint was in user buf; old residual bytes not needed.
    assert(!in_residual_buf(d, d->checkpoint));
    d->ptr = d->checkpoint;
    size_t save = curbufleft(d);
    assert(save <= sizeof(d->residual));
    memcpy(d->residual, d->ptr, save);
    d->residual_end = d->residual + save;
    d->bufstart_ofs = offset(d);
  }

  switchtobuf(d, d->residual, d->residual_end);
  return d->size_param;
}

// Skips "bytes" bytes in the stream, which may be more than available.  If we
// skip more bytes than are available, we return a long read count to the caller
// indicating how many bytes the caller should skip before passing a new buffer.
static int32_t skip(upb_pbdecoder *d, size_t bytes) {
  assert(!in_residual_buf(d, d->ptr) || d->size_param == 0);
  if (curbufleft(d) >= bytes) {
    // Skipped data is all in current buffer.
    advance(d, bytes);
    return DECODE_OK;
  } else {
    // Skipped data extends beyond currently available buffers.
    d->pc = d->last;
    size_t skip = bytes - curbufleft(d);
    d->bufstart_ofs += (d->end - d->buf) + skip;
    d->residual_end = d->residual;
    switchtobuf(d, d->residual, d->residual_end);
    return d->size_param + skip;
  }
}

// Copies the next "bytes" bytes into "buf" and advances the stream.
// Requires that this many bytes are available in the current buffer.
7632 7633
UPB_FORCEINLINE static void consumebytes(upb_pbdecoder *d, void *buf,
                                         size_t bytes) {
7634 7635 7636 7637 7638 7639 7640 7641
  assert(bytes <= curbufleft(d));
  memcpy(buf, d->ptr, bytes);
  advance(d, bytes);
}

// Slow path for getting the next "bytes" bytes, regardless of whether they are
// available in the current buffer or not.  Returns a status code as described
// in decoder.int.h.
7642 7643
UPB_NOINLINE static int32_t getbytes_slow(upb_pbdecoder *d, void *buf,
                                          size_t bytes) {
7644 7645 7646 7647 7648 7649 7650 7651
  const size_t avail = curbufleft(d);
  consumebytes(d, buf, avail);
  bytes -= avail;
  assert(bytes > 0);
  if (in_residual_buf(d, d->ptr)) {
    advancetobuf(d, d->buf_param, d->size_param);
  }
  if (curbufleft(d) >= bytes) {
7652
    consumebytes(d, (char *)buf + avail, bytes);
7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663
    return DECODE_OK;
  } else if (d->data_end == d->delim_end) {
    seterr(d, "Submessage ended in the middle of a value or group");
    return upb_pbdecoder_suspend(d);
  } else {
    return suspend_save(d);
  }
}

// Gets the next "bytes" bytes, regardless of whether they are available in the
// current buffer or not.  Returns a status code as described in decoder.int.h.
7664 7665
UPB_FORCEINLINE static int32_t getbytes(upb_pbdecoder *d, void *buf,
                                        size_t bytes) {
7666 7667 7668 7669 7670 7671 7672 7673 7674
  if (curbufleft(d) >= bytes) {
    // Buffer has enough data to satisfy.
    consumebytes(d, buf, bytes);
    return DECODE_OK;
  } else {
    return getbytes_slow(d, buf, bytes);
  }
}

7675 7676
UPB_NOINLINE static size_t peekbytes_slow(upb_pbdecoder *d, void *buf,
                                          size_t bytes) {
7677 7678 7679 7680
  size_t ret = curbufleft(d);
  memcpy(buf, d->ptr, ret);
  if (in_residual_buf(d, d->ptr)) {
    size_t copy = UPB_MIN(bytes - ret, d->size_param);
7681
    memcpy((char *)buf + ret, d->buf_param, copy);
7682 7683 7684 7685 7686
    ret += copy;
  }
  return ret;
}

7687 7688
UPB_FORCEINLINE static size_t peekbytes(upb_pbdecoder *d, void *buf,
                                        size_t bytes) {
7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701
  if (curbufleft(d) >= bytes) {
    memcpy(buf, d->ptr, bytes);
    return bytes;
  } else {
    return peekbytes_slow(d, buf, bytes);
  }
}


/* Decoding of wire types *****************************************************/

// Slow path for decoding a varint from the current buffer position.
// Returns a status code as described in decoder.int.h.
7702 7703
UPB_NOINLINE int32_t upb_pbdecoder_decode_varint_slow(upb_pbdecoder *d,
                                                      uint64_t *u64) {
7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720
  *u64 = 0;
  uint8_t byte = 0x80;
  int bitpos;
  for(bitpos = 0; bitpos < 70 && (byte & 0x80); bitpos += 7) {
    int32_t ret = getbytes(d, &byte, 1);
    if (ret >= 0) return ret;
    *u64 |= (uint64_t)(byte & 0x7F) << bitpos;
  }
  if(bitpos == 70 && (byte & 0x80)) {
    seterr(d, kUnterminatedVarint);
    return upb_pbdecoder_suspend(d);
  }
  return DECODE_OK;
}

// Decodes a varint from the current buffer position.
// Returns a status code as described in decoder.int.h.
7721
UPB_FORCEINLINE static int32_t decode_varint(upb_pbdecoder *d, uint64_t *u64) {
7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743
  if (curbufleft(d) > 0 && !(*d->ptr & 0x80)) {
    *u64 = *d->ptr;
    advance(d, 1);
    return DECODE_OK;
  } else if (curbufleft(d) >= 10) {
    // Fast case.
    upb_decoderet r = upb_vdecode_fast(d->ptr);
    if (r.p == NULL) {
      seterr(d, kUnterminatedVarint);
      return upb_pbdecoder_suspend(d);
    }
    advance(d, r.p - d->ptr);
    *u64 = r.val;
    return DECODE_OK;
  } else {
    // Slow case -- varint spans buffer seam.
    return upb_pbdecoder_decode_varint_slow(d, u64);
  }
}

// Decodes a 32-bit varint from the current buffer position.
// Returns a status code as described in decoder.int.h.
7744
UPB_FORCEINLINE static int32_t decode_v32(upb_pbdecoder *d, uint32_t *u32) {
7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762
  uint64_t u64;
  int32_t ret = decode_varint(d, &u64);
  if (ret >= 0) return ret;
  if (u64 > UINT32_MAX) {
    seterr(d, "Unterminated 32-bit varint");
    // TODO(haberman) guarantee that this function return is >= 0 somehow,
    // so we know this path will always be treated as error by our caller.
    // Right now the size_t -> int32_t can overflow and produce negative values.
    *u32 = 0;
    return upb_pbdecoder_suspend(d);
  }
  *u32 = u64;
  return DECODE_OK;
}

// Decodes a fixed32 from the current buffer position.
// Returns a status code as described in decoder.int.h.
// TODO: proper byte swapping for big-endian machines.
7763
UPB_FORCEINLINE static int32_t decode_fixed32(upb_pbdecoder *d, uint32_t *u32) {
7764 7765 7766 7767 7768 7769
  return getbytes(d, u32, 4);
}

// Decodes a fixed64 from the current buffer position.
// Returns a status code as described in decoder.int.h.
// TODO: proper byte swapping for big-endian machines.
7770
UPB_FORCEINLINE static int32_t decode_fixed64(upb_pbdecoder *d, uint64_t *u64) {
7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793
  return getbytes(d, u64, 8);
}

// Non-static versions of the above functions.
// These are called by the JIT for fallback paths.
int32_t upb_pbdecoder_decode_f32(upb_pbdecoder *d, uint32_t *u32) {
  return decode_fixed32(d, u32);
}

int32_t upb_pbdecoder_decode_f64(upb_pbdecoder *d, uint64_t *u64) {
  return decode_fixed64(d, u64);
}

static double as_double(uint64_t n) { double d; memcpy(&d, &n, 8); return d; }
static float  as_float(uint32_t n)  { float  f; memcpy(&f, &n, 4); return f; }

// Pushes a frame onto the decoder stack.
static bool decoder_push(upb_pbdecoder *d, uint64_t end) {
  upb_pbdecoder_frame *fr = d->top;

  if (end > fr->end_ofs) {
    seterr(d, "Submessage end extends past enclosing submessage.");
    return false;
7794
  } else if (fr == d->limit) {
7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820
    seterr(d, kPbDecoderStackOverflow);
    return false;
  }

  fr++;
  fr->end_ofs = end;
  fr->dispatch = NULL;
  fr->groupnum = 0;
  d->top = fr;
  return true;
}

static bool pushtagdelim(upb_pbdecoder *d, uint32_t arg) {
  // While we expect to see an "end" tag (either ENDGROUP or a non-sequence
  // field number) prior to hitting any enclosing submessage end, pushing our
  // existing delim end prevents us from continuing to parse values from a
  // corrupt proto that doesn't give us an END tag in time.
  if (!decoder_push(d, d->top->end_ofs))
    return false;
  d->top->groupnum = arg;
  return true;
}

// Pops a frame from the decoder stack.
static void decoder_pop(upb_pbdecoder *d) { d->top--; }

7821 7822
UPB_NOINLINE int32_t upb_pbdecoder_checktag_slow(upb_pbdecoder *d,
                                                 uint64_t expected) {
7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973
  uint64_t data = 0;
  size_t bytes = upb_value_size(expected);
  size_t read = peekbytes(d, &data, bytes);
  if (read == bytes && data == expected) {
    // Advance past matched bytes.
    int32_t ok = getbytes(d, &data, read);
    UPB_ASSERT_VAR(ok, ok < 0);
    return DECODE_OK;
  } else if (read < bytes && memcmp(&data, &expected, read) == 0) {
    return suspend_save(d);
  } else {
    return DECODE_MISMATCH;
  }
}

int32_t upb_pbdecoder_skipunknown(upb_pbdecoder *d, int32_t fieldnum,
                                  uint8_t wire_type) {
  if (fieldnum >= 0)
    goto have_tag;

  while (true) {
    uint32_t tag;
    CHECK_RETURN(decode_v32(d, &tag));
    wire_type = tag & 0x7;
    fieldnum = tag >> 3;

have_tag:
    if (fieldnum == 0) {
      seterr(d, "Saw invalid field number (0)");
      return upb_pbdecoder_suspend(d);
    }

    // TODO: deliver to unknown field callback.
    switch (wire_type) {
      case UPB_WIRE_TYPE_32BIT:
        CHECK_RETURN(skip(d, 4));
        break;
      case UPB_WIRE_TYPE_64BIT:
        CHECK_RETURN(skip(d, 8));
        break;
      case UPB_WIRE_TYPE_VARINT: {
        uint64_t u64;
        CHECK_RETURN(decode_varint(d, &u64));
        break;
      }
      case UPB_WIRE_TYPE_DELIMITED: {
        uint32_t len;
        CHECK_RETURN(decode_v32(d, &len));
        CHECK_RETURN(skip(d, len));
        break;
      }
      case UPB_WIRE_TYPE_START_GROUP:
        CHECK_SUSPEND(pushtagdelim(d, -fieldnum));
        break;
      case UPB_WIRE_TYPE_END_GROUP:
        if (fieldnum == -d->top->groupnum) {
          decoder_pop(d);
        } else if (fieldnum == d->top->groupnum) {
          return DECODE_ENDGROUP;
        } else {
          seterr(d, "Unmatched ENDGROUP tag.");
          return upb_pbdecoder_suspend(d);
        }
        break;
      default:
        seterr(d, "Invalid wire type");
        return upb_pbdecoder_suspend(d);
    }

    if (d->top->groupnum >= 0) {
      return DECODE_OK;
    }

    if (d->ptr == d->delim_end) {
      seterr(d, "Enclosing submessage ended in the middle of value or group");
      // Unlike most errors we notice during parsing, right now we have consumed
      // all of the user's input.
      //
      // There are three different options for how to handle this case:
      //
      //   1. decode() = short count, error = set
      //   2. decode() = full count, error = set
      //   3. decode() = full count, error NOT set, short count and error will
      //      be reported on next call to decode() (or end())
      //
      // (1) and (3) have the advantage that they preserve the invariant that an
      // error occurs iff decode() returns a short count.
      //
      // (2) and (3) have the advantage of reflecting the fact that all of the
      // bytes were in fact parsed (and possibly delivered to the unknown field
      // handler, in the future when that is supported).
      //
      // (3) requires extra state in the decode (a place to store the "permanent
      // error" that we should return for all subsequent attempts to decode).
      // But we likely want this anyway.
      //
      // Right now we do (1), thanks to the fact that we checkpoint *after* this
      // check.  (3) may be a better choice long term; unclear at the moment.
      return upb_pbdecoder_suspend(d);
    }

    checkpoint(d);
  }
}

static void goto_endmsg(upb_pbdecoder *d) {
  upb_value v;
  bool found = upb_inttable_lookup32(d->top->dispatch, DISPATCH_ENDMSG, &v);
  UPB_ASSERT_VAR(found, found);
  d->pc = d->top->base + upb_value_getuint64(v);
}

// Parses a tag and jumps to the corresponding bytecode instruction for this
// field.
//
// If the tag is unknown (or the wire type doesn't match), parses the field as
// unknown.  If the tag is a valid ENDGROUP tag, jumps to the bytecode
// instruction for the end of message.
static int32_t dispatch(upb_pbdecoder *d) {
  upb_inttable *dispatch = d->top->dispatch;

  // Decode tag.
  uint32_t tag;
  CHECK_RETURN(decode_v32(d, &tag));
  uint8_t wire_type = tag & 0x7;
  uint32_t fieldnum = tag >> 3;

  // Lookup tag.  Because of packed/non-packed compatibility, we have to
  // check the wire type against two possibilities.
  upb_value val;
  if (fieldnum != DISPATCH_ENDMSG &&
      upb_inttable_lookup32(dispatch, fieldnum, &val)) {
    uint64_t v = upb_value_getuint64(val);
    if (wire_type == (v & 0xff)) {
      d->pc = d->top->base + (v >> 16);
      return DECODE_OK;
    } else if (wire_type == ((v >> 8) & 0xff)) {
      bool found =
          upb_inttable_lookup(dispatch, fieldnum + UPB_MAX_FIELDNUMBER, &val);
      UPB_ASSERT_VAR(found, found);
      d->pc = d->top->base + upb_value_getuint64(val);
      return DECODE_OK;
    }
  }

  // Unknown field or ENDGROUP.
  int32_t ret = upb_pbdecoder_skipunknown(d, fieldnum, wire_type);

  if (ret == DECODE_ENDGROUP) {
    goto_endmsg(d);
    return DECODE_OK;
7974 7975 7976 7977 7978 7979 7980 7981
  } else if (ret == DECODE_OK) {
    // We just consumed some input, so we might now have consumed all the data
    // in the delmited region.  Since every opcode that can trigger dispatch is
    // directly preceded by OP_CHECKDELIM, rewind to it now to re-check the
    // delimited end.
    d->pc = d->last - 1;
    assert(getop(*d->pc) == OP_CHECKDELIM);
    return DECODE_OK;
7982
  }
7983 7984

  return ret;
7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193
}

// Callers know that the stack is more than one deep because the opcodes that
// call this only occur after PUSH operations.
upb_pbdecoder_frame *outer_frame(upb_pbdecoder *d) {
  assert(d->top != d->stack);
  return d->top - 1;
}


/* The main decoding loop *****************************************************/

// The main decoder VM function.  Uses traditional bytecode dispatch loop with a
// switch() statement.
size_t upb_pbdecoder_decode(void *closure, const void *hd, const char *buf,
                            size_t size, const upb_bufhandle *handle) {
  upb_pbdecoder *d = closure;
  const mgroup *group = hd;
  assert(buf);
  int32_t result = upb_pbdecoder_resume(d, NULL, buf, size, handle);
  if (result == DECODE_ENDGROUP) {
    goto_endmsg(d);
  }
  CHECK_RETURN(result);
  UPB_UNUSED(group);

#define VMCASE(op, code) \
  case op: { code; if (consumes_input(op)) checkpoint(d); break; }
#define PRIMITIVE_OP(type, wt, name, convfunc, ctype) \
  VMCASE(OP_PARSE_ ## type, { \
    ctype val; \
    CHECK_RETURN(decode_ ## wt(d, &val)); \
    upb_sink_put ## name(&d->top->sink, arg, (convfunc)(val)); \
  })

  while(1) {
    d->last = d->pc;
    int32_t instruction = *d->pc++;
    opcode op = getop(instruction);
    uint32_t arg = instruction >> 8;
    int32_t longofs = arg;
    assert(d->ptr != d->residual_end);
#ifdef UPB_DUMP_BYTECODE
    fprintf(stderr, "s_ofs=%d buf_ofs=%d data_rem=%d buf_rem=%d delim_rem=%d "
                    "%x %s (%d)\n",
            (int)offset(d),
            (int)(d->ptr - d->buf),
            (int)(d->data_end - d->ptr),
            (int)(d->end - d->ptr),
            (int)((d->top->end_ofs - d->bufstart_ofs) - (d->ptr - d->buf)),
            (int)(d->pc - 1 - group->bytecode),
            upb_pbdecoder_getopname(op),
            arg);
#endif
    switch (op) {
      // Technically, we are losing data if we see a 32-bit varint that is not
      // properly sign-extended.  We could detect this and error about the data
      // loss, but proto2 does not do this, so we pass.
      PRIMITIVE_OP(INT32,    varint,  int32,  int32_t,      uint64_t)
      PRIMITIVE_OP(INT64,    varint,  int64,  int64_t,      uint64_t)
      PRIMITIVE_OP(UINT32,   varint,  uint32, uint32_t,     uint64_t)
      PRIMITIVE_OP(UINT64,   varint,  uint64, uint64_t,     uint64_t)
      PRIMITIVE_OP(FIXED32,  fixed32, uint32, uint32_t,     uint32_t)
      PRIMITIVE_OP(FIXED64,  fixed64, uint64, uint64_t,     uint64_t)
      PRIMITIVE_OP(SFIXED32, fixed32, int32,  int32_t,      uint32_t)
      PRIMITIVE_OP(SFIXED64, fixed64, int64,  int64_t,      uint64_t)
      PRIMITIVE_OP(BOOL,     varint,  bool,   bool,         uint64_t)
      PRIMITIVE_OP(DOUBLE,   fixed64, double, as_double,    uint64_t)
      PRIMITIVE_OP(FLOAT,    fixed32, float,  as_float,     uint32_t)
      PRIMITIVE_OP(SINT32,   varint,  int32,  upb_zzdec_32, uint64_t)
      PRIMITIVE_OP(SINT64,   varint,  int64,  upb_zzdec_64, uint64_t)

      VMCASE(OP_SETDISPATCH,
        d->top->base = d->pc - 1;
        memcpy(&d->top->dispatch, d->pc, sizeof(void*));
        d->pc += sizeof(void*) / sizeof(uint32_t);
      )
      VMCASE(OP_STARTMSG,
        CHECK_SUSPEND(upb_sink_startmsg(&d->top->sink));
      )
      VMCASE(OP_ENDMSG,
        CHECK_SUSPEND(upb_sink_endmsg(&d->top->sink, d->status));
      )
      VMCASE(OP_STARTSEQ,
        upb_pbdecoder_frame *outer = outer_frame(d);
        CHECK_SUSPEND(upb_sink_startseq(&outer->sink, arg, &d->top->sink));
      )
      VMCASE(OP_ENDSEQ,
        CHECK_SUSPEND(upb_sink_endseq(&d->top->sink, arg));
      )
      VMCASE(OP_STARTSUBMSG,
        upb_pbdecoder_frame *outer = outer_frame(d);
        CHECK_SUSPEND(upb_sink_startsubmsg(&outer->sink, arg, &d->top->sink));
      )
      VMCASE(OP_ENDSUBMSG,
        CHECK_SUSPEND(upb_sink_endsubmsg(&d->top->sink, arg));
      )
      VMCASE(OP_STARTSTR,
        uint32_t len = d->top->end_ofs - offset(d);
        upb_pbdecoder_frame *outer = outer_frame(d);
        CHECK_SUSPEND(upb_sink_startstr(&outer->sink, arg, len, &d->top->sink));
        if (len == 0) {
          d->pc++;  // Skip OP_STRING.
        }
      )
      VMCASE(OP_STRING,
        uint32_t len = curbufleft(d);
        size_t n = upb_sink_putstring(&d->top->sink, arg, d->ptr, len, handle);
        if (n > len) {
          if (n > d->top->end_ofs - offset(d)) {
            seterr(d, "Tried to skip past end of string.");
            return upb_pbdecoder_suspend(d);
          } else {
            int32_t ret = skip(d, n);
            // This shouldn't return DECODE_OK, because n > len.
            assert(ret >= 0);
            return ret;
          }
        }
        advance(d, n);
        if (n < len || d->delim_end == NULL) {
          // We aren't finished with this string yet.
          d->pc--;  // Repeat OP_STRING.
          if (n > 0) checkpoint(d);
          return upb_pbdecoder_suspend(d);
        }
      )
      VMCASE(OP_ENDSTR,
        CHECK_SUSPEND(upb_sink_endstr(&d->top->sink, arg));
      )
      VMCASE(OP_PUSHTAGDELIM,
        CHECK_SUSPEND(pushtagdelim(d, arg));
      )
      VMCASE(OP_SETBIGGROUPNUM,
        d->top->groupnum = *d->pc++;
      )
      VMCASE(OP_POP,
        assert(d->top > d->stack);
        decoder_pop(d);
      )
      VMCASE(OP_PUSHLENDELIM,
        uint32_t len;
        CHECK_RETURN(decode_v32(d, &len));
        CHECK_SUSPEND(decoder_push(d, offset(d) + len));
        set_delim_end(d);
      )
      VMCASE(OP_SETDELIM,
        set_delim_end(d);
      )
      VMCASE(OP_CHECKDELIM,
        // We are guaranteed of this assert because we never allow ourselves to
        // consume bytes beyond data_end, which covers delim_end when non-NULL.
        assert(!(d->delim_end && d->ptr > d->delim_end));
        if (d->ptr == d->delim_end)
          d->pc += longofs;
      )
      VMCASE(OP_CALL,
        d->callstack[d->call_len++] = d->pc;
        d->pc += longofs;
      )
      VMCASE(OP_RET,
        assert(d->call_len > 0);
        d->pc = d->callstack[--d->call_len];
      )
      VMCASE(OP_BRANCH,
        d->pc += longofs;
      )
      VMCASE(OP_TAG1,
        CHECK_SUSPEND(curbufleft(d) > 0);
        uint8_t expected = (arg >> 8) & 0xff;
        if (*d->ptr == expected) {
          advance(d, 1);
        } else {
          int8_t shortofs;
         badtag:
          shortofs = arg;
          if (shortofs == LABEL_DISPATCH) {
            CHECK_RETURN(dispatch(d));
          } else {
            d->pc += shortofs;
            break; // Avoid checkpoint().
          }
        }
      )
      VMCASE(OP_TAG2,
        CHECK_SUSPEND(curbufleft(d) > 0);
        uint16_t expected = (arg >> 8) & 0xffff;
        if (curbufleft(d) >= 2) {
          uint16_t actual;
          memcpy(&actual, d->ptr, 2);
          if (expected == actual) {
            advance(d, 2);
          } else {
            goto badtag;
          }
        } else {
          int32_t result = upb_pbdecoder_checktag_slow(d, expected);
          if (result == DECODE_MISMATCH) goto badtag;
          if (result >= 0) return result;
        }
      )
      VMCASE(OP_TAGN, {
        uint64_t expected;
        memcpy(&expected, d->pc, 8);
        d->pc += 2;
        int32_t result = upb_pbdecoder_checktag_slow(d, expected);
        if (result == DECODE_MISMATCH) goto badtag;
        if (result >= 0) return result;
      })
Chris Fallin's avatar
Chris Fallin committed
8194 8195 8196
      VMCASE(OP_DISPATCH, {
        CHECK_RETURN(dispatch(d));
      })
8197 8198 8199 8200 8201 8202 8203 8204 8205 8206
      VMCASE(OP_HALT, {
        return size;
      })
    }
  }
}

void *upb_pbdecoder_startbc(void *closure, const void *pc, size_t size_hint) {
  upb_pbdecoder *d = closure;
  UPB_UNUSED(size_hint);
8207 8208
  d->top->end_ofs = UINT64_MAX;
  d->bufstart_ofs = 0;
8209
  d->call_len = 1;
8210
  d->callstack[0] = &halt;
8211 8212 8213 8214 8215 8216 8217 8218
  d->pc = pc;
  return d;
}

void *upb_pbdecoder_startjit(void *closure, const void *hd, size_t size_hint) {
  UPB_UNUSED(hd);
  UPB_UNUSED(size_hint);
  upb_pbdecoder *d = closure;
8219 8220
  d->top->end_ofs = UINT64_MAX;
  d->bufstart_ofs = 0;
8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259
  d->call_len = 0;
  return d;
}

bool upb_pbdecoder_end(void *closure, const void *handler_data) {
  upb_pbdecoder *d = closure;
  const upb_pbdecodermethod *method = handler_data;

  if (d->residual_end > d->residual) {
    seterr(d, "Unexpected EOF");
    return false;
  }

  if (d->top->end_ofs != UINT64_MAX) {
    seterr(d, "Unexpected EOF inside delimited string");
    return false;
  }

  // Message ends here.
  uint64_t end = offset(d);
  d->top->end_ofs = end;

  char dummy;
#ifdef UPB_USE_JIT_X64
  const mgroup *group = (const mgroup*)method->group;
  if (group->jit_code) {
    if (d->top != d->stack)
      d->stack->end_ofs = 0;
    group->jit_code(closure, method->code_base.ptr, &dummy, 0, NULL);
  } else {
#endif
    d->stack->end_ofs = end;
    const uint32_t *p = d->pc;
    // Check the previous bytecode, but guard against beginning.
    if (p != method->code_base.ptr) p--;
    if (getop(*p) == OP_CHECKDELIM) {
      // Rewind from OP_TAG* to OP_CHECKDELIM.
      assert(getop(*d->pc) == OP_TAG1 ||
             getop(*d->pc) == OP_TAG2 ||
Chris Fallin's avatar
Chris Fallin committed
8260 8261
             getop(*d->pc) == OP_TAGN ||
             getop(*d->pc == OP_DISPATCH));
8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285
      d->pc = p;
    }
    upb_pbdecoder_decode(closure, handler_data, &dummy, 0, NULL);
#ifdef UPB_USE_JIT_X64
  }
#endif

  if (d->call_len != 0) {
    seterr(d, "Unexpected EOF");
    return false;
  }

  return true;
}

void upb_pbdecoder_reset(upb_pbdecoder *d) {
  d->top = d->stack;
  d->top->groupnum = 0;
  d->ptr = d->residual;
  d->buf = d->residual;
  d->end = d->residual;
  d->residual_end = d->residual;
}

8286 8287 8288
static size_t stacksize(upb_pbdecoder *d, size_t entries) {
  UPB_UNUSED(d);
  return entries * sizeof(upb_pbdecoder_frame);
8289 8290
}

8291
static size_t callstacksize(upb_pbdecoder *d, size_t entries) {
8292 8293
  UPB_UNUSED(d);

8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304
#ifdef UPB_USE_JIT_X64
  if (d->method_->is_native_) {
    // Each native stack frame needs two pointers, plus we need a few frames for
    // the enter/exit trampolines.
    size_t ret = entries * sizeof(void*) * 2;
    ret += sizeof(void*) * 10;
    return ret;
  }
#endif

  return entries * sizeof(uint32_t*);
8305 8306
}

8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330
upb_pbdecoder *upb_pbdecoder_create(upb_env *e, const upb_pbdecodermethod *m,
                                    upb_sink *sink) {
  const size_t default_max_nesting = 64;
#ifndef NDEBUG
  size_t size_before = upb_env_bytesallocated(e);
#endif

  upb_pbdecoder *d = upb_env_malloc(e, sizeof(upb_pbdecoder));
  if (!d) return NULL;

  d->method_ = m;
  d->callstack = upb_env_malloc(e, callstacksize(d, default_max_nesting));
  d->stack = upb_env_malloc(e, stacksize(d, default_max_nesting));
  if (!d->stack || !d->callstack) {
    return NULL;
  }

  d->env = e;
  d->limit = d->stack + default_max_nesting - 1;
  d->stack_size = default_max_nesting;

  upb_pbdecoder_reset(d);
  upb_bytessink_reset(&d->input_, &m->input_handler_, d);

8331 8332 8333
  assert(sink);
  if (d->method_->dest_handlers_) {
    if (sink->handlers != d->method_->dest_handlers_)
8334
      return NULL;
8335 8336
  }
  upb_sink_reset(&d->top->sink, sink->handlers, sink->closure);
8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348

  // If this fails, increase the value in decoder.h.
  assert(upb_env_bytesallocated(e) - size_before <= UPB_PB_DECODER_SIZE);
  return d;
}

uint64_t upb_pbdecoder_bytesparsed(const upb_pbdecoder *d) {
  return offset(d);
}

const upb_pbdecodermethod *upb_pbdecoder_method(const upb_pbdecoder *d) {
  return d->method_;
8349 8350 8351 8352 8353
}

upb_bytessink *upb_pbdecoder_input(upb_pbdecoder *d) {
  return &d->input_;
}
8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390

size_t upb_pbdecoder_maxnesting(const upb_pbdecoder *d) {
  return d->stack_size;
}

bool upb_pbdecoder_setmaxnesting(upb_pbdecoder *d, size_t max) {
  assert(d->top >= d->stack);

  if (max < (size_t)(d->top - d->stack)) {
    // Can't set a limit smaller than what we are currently at.
    return false;
  }

  if (max > d->stack_size) {
    // Need to reallocate stack and callstack to accommodate.
    size_t old_size = stacksize(d, d->stack_size);
    size_t new_size = stacksize(d, max);
    void *p = upb_env_realloc(d->env, d->stack, old_size, new_size);
    if (!p) {
      return false;
    }
    d->stack = p;

    old_size = callstacksize(d, d->stack_size);
    new_size = callstacksize(d, max);
    p = upb_env_realloc(d->env, d->callstack, old_size, new_size);
    if (!p) {
      return false;
    }
    d->callstack = p;

    d->stack_size = max;
  }

  d->limit = d->stack + max - 1;
  return true;
}
8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2014 Google Inc.  See LICENSE for details.
 * Author: Josh Haberman <jhaberman@gmail.com>
 *
 * Since we are implementing pure handlers (ie. without any out-of-band access
 * to pre-computed lengths), we have to buffer all submessages before we can
 * emit even their first byte.
 *
 * Not knowing the size of submessages also means we can't write a perfect
 * zero-copy implementation, even with buffering.  Lengths are stored as
 * varints, which means that we don't know how many bytes to reserve for the
 * length until we know what the length is.
 *
 * This leaves us with three main choices:
 *
 * 1. buffer all submessage data in a temporary buffer, then copy it exactly
 *    once into the output buffer.
 *
 * 2. attempt to buffer data directly into the output buffer, estimating how
 *    many bytes each length will take.  When our guesses are wrong, use
 *    memmove() to grow or shrink the allotted space.
 *
 * 3. buffer directly into the output buffer, allocating a max length
 *    ahead-of-time for each submessage length.  If we overallocated, we waste
 *    space, but no memcpy() or memmove() is required.  This approach requires
 *    defining a maximum size for submessages and rejecting submessages that
 *    exceed that size.
 *
 * (2) and (3) have the potential to have better performance, but they are more
 * complicated and subtle to implement:
 *
 *   (3) requires making an arbitrary choice of the maximum message size; it
 *       wastes space when submessages are shorter than this and fails
 *       completely when they are longer.  This makes it more finicky and
 *       requires configuration based on the input.  It also makes it impossible
 *       to perfectly match the output of reference encoders that always use the
 *       optimal amount of space for each length.
 *
 *   (2) requires guessing the the size upfront, and if multiple lengths are
 *       guessed wrong the minimum required number of memmove() operations may
 *       be complicated to compute correctly.  Implemented properly, it may have
 *       a useful amortized or average cost, but more investigation is required
 *       to determine this and what the optimal algorithm is to achieve it.
 *
 *   (1) makes you always pay for exactly one copy, but its implementation is
 *       the simplest and its performance is predictable.
 *
 * So for now, we implement (1) only.  If we wish to optimize later, we should
 * be able to do it without affecting users.
 *
 * The strategy is to buffer the segments of data that do *not* depend on
 * unknown lengths in one buffer, and keep a separate buffer of segment pointers
 * and lengths.  When the top-level submessage ends, we can go beginning to end,
 * alternating the writing of lengths with memcpy() of the rest of the data.
 * At the top level though, no buffering is required.
 */


#include <stdlib.h>

8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514
// The output buffer is divided into segments; a segment is a string of data
// that is "ready to go" -- it does not need any varint lengths inserted into
// the middle.  The seams between segments are where varints will be inserted
// once they are known.
//
// We also use the concept of a "run", which is a range of encoded bytes that
// occur at a single submessage level.  Every segment contains one or more runs.
//
// A segment can span messages.  Consider:
//
//                  .--Submessage lengths---------.
//                  |       |                     |
//                  |       V                     V
//                  V      | |---------------    | |-----------------
// Submessages:    | |-----------------------------------------------
// Top-level msg: ------------------------------------------------------------
//
// Segments:          -----   -------------------   -----------------
// Runs:              *----   *--------------*---   *----------------
// (* marks the start)
//
// Note that the top-level menssage is not in any segment because it does not
// have any length preceding it.
//
// A segment is only interrupted when another length needs to be inserted.  So
// observe how the second segment spans both the inner submessage and part of
// the next enclosing message.
typedef struct {
  uint32_t msglen;  // The length to varint-encode before this segment.
  uint32_t seglen;  // Length of the segment.
} upb_pb_encoder_segment;

struct upb_pb_encoder {
  upb_env *env;

  // Our input and output.
  upb_sink input_;
  upb_bytessink *output_;

  // The "subclosure" -- used as the inner closure as part of the bytessink
  // protocol.
  void *subc;

  // The output buffer and limit, and our current write position.  "buf"
  // initially points to "initbuf", but is dynamically allocated if we need to
  // grow beyond the initial size.
  char *buf, *ptr, *limit;

  // The beginning of the current run, or undefined if we are at the top level.
  char *runbegin;

  // The list of segments we are accumulating.
  upb_pb_encoder_segment *segbuf, *segptr, *seglimit;

  // The stack of enclosing submessages.  Each entry in the stack points to the
  // segment where this submessage's length is being accumulated.
  int *stack, *top, *stacklimit;

  // Depth of startmsg/endmsg calls.
  int depth;
};

8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531
/* low-level buffering ********************************************************/

// Low-level functions for interacting with the output buffer.

// TODO(haberman): handle pushback
static void putbuf(upb_pb_encoder *e, const char *buf, size_t len) {
  size_t n = upb_bytessink_putbuf(e->output_, e->subc, buf, len, NULL);
  UPB_ASSERT_VAR(n, n == len);
}

static upb_pb_encoder_segment *top(upb_pb_encoder *e) {
  return &e->segbuf[*e->top];
}

// Call to ensure that at least "bytes" bytes are available for writing at
// e->ptr.  Returns false if the bytes could not be allocated.
static bool reserve(upb_pb_encoder *e, size_t bytes) {
8532 8533
  if ((size_t)(e->limit - e->ptr) < bytes) {
    // Grow buffer.
8534 8535
    size_t needed = bytes + (e->ptr - e->buf);
    size_t old_size = e->limit - e->buf;
8536

8537
    size_t new_size = old_size;
8538

8539 8540 8541 8542
    while (new_size < needed) {
      new_size *= 2;
    }

8543
    char *new_buf = upb_env_realloc(e->env, e->buf, old_size, new_size);
8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560

    if (new_buf == NULL) {
      return false;
    }

    e->ptr = new_buf + (e->ptr - e->buf);
    e->runbegin = new_buf + (e->runbegin - e->buf);
    e->limit = new_buf + new_size;
    e->buf = new_buf;
  }

  return true;
}

// Call when "bytes" bytes have been writte at e->ptr.  The caller *must* have
// previously called reserve() with at least this many bytes.
static void encoder_advance(upb_pb_encoder *e, size_t bytes) {
8561
  assert((size_t)(e->limit - e->ptr) >= bytes);
8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616
  e->ptr += bytes;
}

// Call when all of the bytes for a handler have been written.  Flushes the
// bytes if possible and necessary, returning false if this failed.
static bool commit(upb_pb_encoder *e) {
  if (!e->top) {
    // We aren't inside a delimited region.  Flush our accumulated bytes to
    // the output.
    //
    // TODO(haberman): in the future we may want to delay flushing for
    // efficiency reasons.
    putbuf(e, e->buf, e->ptr - e->buf);
    e->ptr = e->buf;
  }

  return true;
}

// Writes the given bytes to the buffer, handling reserve/advance.
static bool encode_bytes(upb_pb_encoder *e, const void *data, size_t len) {
  if (!reserve(e, len)) {
    return false;
  }

  memcpy(e->ptr, data, len);
  encoder_advance(e, len);
  return true;
}

// Finish the current run by adding the run totals to the segment and message
// length.
static void accumulate(upb_pb_encoder *e) {
  assert(e->ptr >= e->runbegin);
  size_t run_len = e->ptr - e->runbegin;
  e->segptr->seglen += run_len;
  top(e)->msglen += run_len;
  e->runbegin = e->ptr;
}

// Call to indicate the start of delimited region for which the full length is
// not yet known.  All data will be buffered until the length is known.
// Delimited regions may be nested; their lengths will all be tracked properly.
static bool start_delim(upb_pb_encoder *e) {
  if (e->top) {
    // We are already buffering, advance to the next segment and push it on the
    // stack.
    accumulate(e);

    if (++e->top == e->stacklimit) {
      // TODO(haberman): grow stack?
      return false;
    }

    if (++e->segptr == e->seglimit) {
8617
      // Grow segment buffer.
8618 8619 8620
      size_t old_size =
          (e->seglimit - e->segbuf) * sizeof(upb_pb_encoder_segment);
      size_t new_size = old_size * 2;
8621 8622
      upb_pb_encoder_segment *new_buf =
          upb_env_realloc(e->env, e->segbuf, old_size, new_size);
8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824

      if (new_buf == NULL) {
        return false;
      }

      e->segptr = new_buf + (e->segptr - e->segbuf);
      e->seglimit = new_buf + (new_size / sizeof(upb_pb_encoder_segment));
      e->segbuf = new_buf;
    }
  } else {
    // We were previously at the top level, start buffering.
    e->segptr = e->segbuf;
    e->top = e->stack;
    e->runbegin = e->ptr;
  }

  *e->top = e->segptr - e->segbuf;
  e->segptr->seglen = 0;
  e->segptr->msglen = 0;

  return true;
}

// Call to indicate the end of a delimited region.  We now know the length of
// the delimited region.  If we are not nested inside any other delimited
// regions, we can now emit all of the buffered data we accumulated.
static bool end_delim(upb_pb_encoder *e) {
  accumulate(e);
  size_t msglen = top(e)->msglen;

  if (e->top == e->stack) {
    // All lengths are now available, emit all buffered data.
    char buf[UPB_PB_VARINT_MAX_LEN];
    upb_pb_encoder_segment *s;
    const char *ptr = e->buf;
    for (s = e->segbuf; s <= e->segptr; s++) {
      size_t lenbytes = upb_vencode64(s->msglen, buf);
      putbuf(e, buf, lenbytes);
      putbuf(e, ptr, s->seglen);
      ptr += s->seglen;
    }

    e->ptr = e->buf;
    e->top = NULL;
  } else {
    // Need to keep buffering; propagate length info into enclosing submessages.
    --e->top;
    top(e)->msglen += msglen + upb_varint_size(msglen);
  }

  return true;
}


/* tag_t **********************************************************************/

// A precomputed (pre-encoded) tag and length.

typedef struct {
  uint8_t bytes;
  char tag[7];
} tag_t;

// Allocates a new tag for this field, and sets it in these handlerattr.
static void new_tag(upb_handlers *h, const upb_fielddef *f, upb_wiretype_t wt,
                    upb_handlerattr *attr) {
  uint32_t n = upb_fielddef_number(f);

  tag_t *tag = malloc(sizeof(tag_t));
  tag->bytes = upb_vencode64((n << 3) | wt, tag->tag);

  upb_handlerattr_init(attr);
  upb_handlerattr_sethandlerdata(attr, tag);
  upb_handlers_addcleanup(h, tag, free);
}

static bool encode_tag(upb_pb_encoder *e, const tag_t *tag) {
  return encode_bytes(e, tag->tag, tag->bytes);
}


/* encoding of wire types *****************************************************/

static bool encode_fixed64(upb_pb_encoder *e, uint64_t val) {
  // TODO(haberman): byte-swap for big endian.
  return encode_bytes(e, &val, sizeof(uint64_t));
}

static bool encode_fixed32(upb_pb_encoder *e, uint32_t val) {
  // TODO(haberman): byte-swap for big endian.
  return encode_bytes(e, &val, sizeof(uint32_t));
}

static bool encode_varint(upb_pb_encoder *e, uint64_t val) {
  if (!reserve(e, UPB_PB_VARINT_MAX_LEN)) {
    return false;
  }

  encoder_advance(e, upb_vencode64(val, e->ptr));
  return true;
}

static uint64_t dbl2uint64(double d) {
  uint64_t ret;
  memcpy(&ret, &d, sizeof(uint64_t));
  return ret;
}

static uint32_t flt2uint32(float d) {
  uint32_t ret;
  memcpy(&ret, &d, sizeof(uint32_t));
  return ret;
}


/* encoding of proto types ****************************************************/

static bool startmsg(void *c, const void *hd) {
  upb_pb_encoder *e = c;
  UPB_UNUSED(hd);
  if (e->depth++ == 0) {
    upb_bytessink_start(e->output_, 0, &e->subc);
  }
  return true;
}

static bool endmsg(void *c, const void *hd, upb_status *status) {
  upb_pb_encoder *e = c;
  UPB_UNUSED(hd);
  UPB_UNUSED(status);
  if (--e->depth == 0) {
    upb_bytessink_end(e->output_);
  }
  return true;
}

static void *encode_startdelimfield(void *c, const void *hd) {
  bool ok = encode_tag(c, hd) && commit(c) && start_delim(c);
  return ok ? c : UPB_BREAK;
}

static bool encode_enddelimfield(void *c, const void *hd) {
  UPB_UNUSED(hd);
  return end_delim(c);
}

static void *encode_startgroup(void *c, const void *hd) {
  return (encode_tag(c, hd) && commit(c)) ? c : UPB_BREAK;
}

static bool encode_endgroup(void *c, const void *hd) {
  return encode_tag(c, hd) && commit(c);
}

static void *encode_startstr(void *c, const void *hd, size_t size_hint) {
  UPB_UNUSED(size_hint);
  return encode_startdelimfield(c, hd);
}

static size_t encode_strbuf(void *c, const void *hd, const char *buf,
                            size_t len, const upb_bufhandle *h) {
  UPB_UNUSED(hd);
  UPB_UNUSED(h);
  return encode_bytes(c, buf, len) ? len : 0;
}

#define T(type, ctype, convert, encode)                                  \
  static bool encode_scalar_##type(void *e, const void *hd, ctype val) { \
    return encode_tag(e, hd) && encode(e, (convert)(val)) && commit(e);  \
  }                                                                      \
  static bool encode_packed_##type(void *e, const void *hd, ctype val) { \
    UPB_UNUSED(hd);                                                      \
    return encode(e, (convert)(val));                                    \
  }

T(double,   double,   dbl2uint64,   encode_fixed64)
T(float,    float,    flt2uint32,   encode_fixed32);
T(int64,    int64_t,  uint64_t,     encode_varint);
T(int32,    int32_t,  uint32_t,     encode_varint);
T(fixed64,  uint64_t, uint64_t,     encode_fixed64);
T(fixed32,  uint32_t, uint32_t,     encode_fixed32);
T(bool,     bool,     bool,         encode_varint);
T(uint32,   uint32_t, uint32_t,     encode_varint);
T(uint64,   uint64_t, uint64_t,     encode_varint);
T(enum,     int32_t,  uint32_t,     encode_varint);
T(sfixed32, int32_t,  uint32_t,     encode_fixed32);
T(sfixed64, int64_t,  uint64_t,     encode_fixed64);
T(sint32,   int32_t,  upb_zzenc_32, encode_varint);
T(sint64,   int64_t,  upb_zzenc_64, encode_varint);

#undef T


/* code to build the handlers *************************************************/

static void newhandlers_callback(const void *closure, upb_handlers *h) {
  UPB_UNUSED(closure);

  upb_handlers_setstartmsg(h, startmsg, NULL);
  upb_handlers_setendmsg(h, endmsg, NULL);

  const upb_msgdef *m = upb_handlers_msgdef(h);
8825 8826 8827 8828
  upb_msg_field_iter i;
  for(upb_msg_field_begin(&i, m);
      !upb_msg_field_done(&i);
      upb_msg_field_next(&i)) {
8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897
    const upb_fielddef *f = upb_msg_iter_field(&i);
    bool packed = upb_fielddef_isseq(f) && upb_fielddef_isprimitive(f) &&
                  upb_fielddef_packed(f);
    upb_handlerattr attr;
    upb_wiretype_t wt =
        packed ? UPB_WIRE_TYPE_DELIMITED
               : upb_pb_native_wire_types[upb_fielddef_descriptortype(f)];

    // Pre-encode the tag for this field.
    new_tag(h, f, wt, &attr);

    if (packed) {
      upb_handlers_setstartseq(h, f, encode_startdelimfield, &attr);
      upb_handlers_setendseq(h, f, encode_enddelimfield, &attr);
    }

#define T(upper, lower, upbtype)                                     \
  case UPB_DESCRIPTOR_TYPE_##upper:                                  \
    if (packed) {                                                    \
      upb_handlers_set##upbtype(h, f, encode_packed_##lower, &attr); \
    } else {                                                         \
      upb_handlers_set##upbtype(h, f, encode_scalar_##lower, &attr); \
    }                                                                \
    break;

    switch (upb_fielddef_descriptortype(f)) {
      T(DOUBLE,   double,   double);
      T(FLOAT,    float,    float);
      T(INT64,    int64,    int64);
      T(INT32,    int32,    int32);
      T(FIXED64,  fixed64,  uint64);
      T(FIXED32,  fixed32,  uint32);
      T(BOOL,     bool,     bool);
      T(UINT32,   uint32,   uint32);
      T(UINT64,   uint64,   uint64);
      T(ENUM,     enum,     int32);
      T(SFIXED32, sfixed32, int32);
      T(SFIXED64, sfixed64, int64);
      T(SINT32,   sint32,   int32);
      T(SINT64,   sint64,   int64);
      case UPB_DESCRIPTOR_TYPE_STRING:
      case UPB_DESCRIPTOR_TYPE_BYTES:
        upb_handlers_setstartstr(h, f, encode_startstr, &attr);
        upb_handlers_setendstr(h, f, encode_enddelimfield, &attr);
        upb_handlers_setstring(h, f, encode_strbuf, &attr);
        break;
      case UPB_DESCRIPTOR_TYPE_MESSAGE:
        upb_handlers_setstartsubmsg(h, f, encode_startdelimfield, &attr);
        upb_handlers_setendsubmsg(h, f, encode_enddelimfield, &attr);
        break;
      case UPB_DESCRIPTOR_TYPE_GROUP: {
        // Endgroup takes a different tag (wire_type = END_GROUP).
        upb_handlerattr attr2;
        new_tag(h, f, UPB_WIRE_TYPE_END_GROUP, &attr2);

        upb_handlers_setstartsubmsg(h, f, encode_startgroup, &attr);
        upb_handlers_setendsubmsg(h, f, encode_endgroup, &attr2);

        upb_handlerattr_uninit(&attr2);
        break;
      }
    }

#undef T

    upb_handlerattr_uninit(&attr);
  }
}

8898 8899 8900 8901 8902 8903
void upb_pb_encoder_reset(upb_pb_encoder *e) {
  e->segptr = NULL;
  e->top = NULL;
  e->depth = 0;
}

8904 8905 8906 8907 8908 8909 8910 8911

/* public API *****************************************************************/

const upb_handlers *upb_pb_encoder_newhandlers(const upb_msgdef *m,
                                               const void *owner) {
  return upb_handlers_newfrozen(m, owner, newhandlers_callback, NULL);
}

8912 8913 8914 8915 8916 8917 8918 8919 8920
upb_pb_encoder *upb_pb_encoder_create(upb_env *env, const upb_handlers *h,
                                      upb_bytessink *output) {
  const size_t initial_bufsize = 256;
  const size_t initial_segbufsize = 16;
  // TODO(haberman): make this configurable.
  const size_t stack_size = 64;
#ifndef NDEBUG
  const size_t size_before = upb_env_bytesallocated(env);
#endif
8921

8922 8923
  upb_pb_encoder *e = upb_env_malloc(env, sizeof(upb_pb_encoder));
  if (!e) return NULL;
8924

8925 8926 8927
  e->buf = upb_env_malloc(env, initial_bufsize);
  e->segbuf = upb_env_malloc(env, initial_segbufsize * sizeof(*e->segbuf));
  e->stack = upb_env_malloc(env, stack_size * sizeof(*e->stack));
8928

8929 8930
  if (!e->buf || !e->segbuf || !e->stack) {
    return NULL;
8931 8932
  }

8933 8934 8935 8936
  e->limit = e->buf + initial_bufsize;
  e->seglimit = e->segbuf + initial_segbufsize;
  e->stacklimit = e->stack + stack_size;

8937
  upb_pb_encoder_reset(e);
8938 8939 8940
  upb_sink_reset(&e->input_, h, e);

  e->env = env;
8941 8942
  e->output_ = output;
  e->subc = output->closure;
8943
  e->ptr = e->buf;
8944

8945 8946 8947
  // If this fails, increase the value in encoder.h.
  assert(upb_env_bytesallocated(env) - size_before <= UPB_PB_ENCODER_SIZE);
  return e;
8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971
}

upb_sink *upb_pb_encoder_input(upb_pb_encoder *e) { return &e->input_; }
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2010-2012 Google Inc.  See LICENSE for details.
 * Author: Josh Haberman <jhaberman@gmail.com>
 */


#include <stdio.h>
#include <stdlib.h>
#include <string.h>

upb_def **upb_load_defs_from_descriptor(const char *str, size_t len, int *n,
                                        void *owner, upb_status *status) {
  // Create handlers.
  const upb_handlers *reader_h = upb_descreader_newhandlers(&reader_h);
  upb_pbdecodermethodopts opts;
  upb_pbdecodermethodopts_init(&opts, reader_h);
  const upb_pbdecodermethod *decoder_m =
      upb_pbdecodermethod_new(&opts, &decoder_m);

8972 8973 8974
  upb_env env;
  upb_env_init(&env);
  upb_env_reporterrorsto(&env, status);
8975

8976 8977 8978
  upb_descreader *reader = upb_descreader_create(&env, reader_h);
  upb_pbdecoder *decoder =
      upb_pbdecoder_create(&env, decoder_m, upb_descreader_input(reader));
8979 8980

  // Push input data.
8981
  bool ok = upb_bufsrc_putbuf(str, len, upb_pbdecoder_input(decoder));
8982 8983 8984 8985

  upb_def **ret = NULL;

  if (!ok) goto cleanup;
8986
  upb_def **defs = upb_descreader_getdefs(reader, owner, n);
8987 8988 8989 8990
  ret = malloc(sizeof(upb_def*) * (*n));
  memcpy(ret, defs, sizeof(upb_def*) * (*n));

cleanup:
8991
  upb_env_uninit(&env);
8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055
  upb_handlers_unref(reader_h, &reader_h);
  upb_pbdecodermethod_unref(decoder_m, &decoder_m);
  return ret;
}

bool upb_load_descriptor_into_symtab(upb_symtab *s, const char *str, size_t len,
                                     upb_status *status) {
  int n;
  upb_def **defs = upb_load_defs_from_descriptor(str, len, &n, &defs, status);
  if (!defs) return false;
  bool success = upb_symtab_add(s, defs, n, &defs, status);
  free(defs);
  return success;
}

char *upb_readfile(const char *filename, size_t *len) {
  FILE *f = fopen(filename, "rb");
  if(!f) return NULL;
  if(fseek(f, 0, SEEK_END) != 0) goto error;
  long size = ftell(f);
  if(size < 0) goto error;
  if(fseek(f, 0, SEEK_SET) != 0) goto error;
  char *buf = malloc(size + 1);
  if(size && fread(buf, size, 1, f) != 1) goto error;
  fclose(f);
  if (len) *len = size;
  return buf;

error:
  fclose(f);
  return NULL;
}

bool upb_load_descriptor_file_into_symtab(upb_symtab *symtab, const char *fname,
                                          upb_status *status) {
  size_t len;
  char *data = upb_readfile(fname, &len);
  if (!data) {
    if (status) upb_status_seterrf(status, "Couldn't read file: %s", fname);
    return false;
  }
  bool success = upb_load_descriptor_into_symtab(symtab, data, len, status);
  free(data);
  return success;
}
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2009 Google Inc.  See LICENSE for details.
 * Author: Josh Haberman <jhaberman@gmail.com>
 *
 * OPT: This is not optimized at all.  It uses printf() which parses the format
 * string every time, and it allocates memory for every put.
 */


#include <ctype.h>
#include <float.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>


9056 9057 9058 9059 9060 9061 9062 9063
struct upb_textprinter {
  upb_sink input_;
  upb_bytessink *output_;
  int indent_depth_;
  bool single_line_;
  void *subc;
};

9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287
#define CHECK(x) if ((x) < 0) goto err;

static const char *shortname(const char *longname) {
  const char *last = strrchr(longname, '.');
  return last ? last + 1 : longname;
}

static int indent(upb_textprinter *p) {
  int i;
  if (!p->single_line_)
    for (i = 0; i < p->indent_depth_; i++)
      upb_bytessink_putbuf(p->output_, p->subc, "  ", 2, NULL);
  return 0;
}

static int endfield(upb_textprinter *p) {
  const char ch = (p->single_line_ ? ' ' : '\n');
  upb_bytessink_putbuf(p->output_, p->subc, &ch, 1, NULL);
  return 0;
}

static int putescaped(upb_textprinter *p, const char *buf, size_t len,
                      bool preserve_utf8) {
  // Based on CEscapeInternal() from Google's protobuf release.
  char dstbuf[4096], *dst = dstbuf, *dstend = dstbuf + sizeof(dstbuf);
  const char *end = buf + len;

  // I think hex is prettier and more useful, but proto2 uses octal; should
  // investigate whether it can parse hex also.
  const bool use_hex = false;
  bool last_hex_escape = false; // true if last output char was \xNN

  for (; buf < end; buf++) {
    if (dstend - dst < 4) {
      upb_bytessink_putbuf(p->output_, p->subc, dstbuf, dst - dstbuf, NULL);
      dst = dstbuf;
    }

    bool is_hex_escape = false;
    switch (*buf) {
      case '\n': *(dst++) = '\\'; *(dst++) = 'n';  break;
      case '\r': *(dst++) = '\\'; *(dst++) = 'r';  break;
      case '\t': *(dst++) = '\\'; *(dst++) = 't';  break;
      case '\"': *(dst++) = '\\'; *(dst++) = '\"'; break;
      case '\'': *(dst++) = '\\'; *(dst++) = '\''; break;
      case '\\': *(dst++) = '\\'; *(dst++) = '\\'; break;
      default:
        // Note that if we emit \xNN and the buf character after that is a hex
        // digit then that digit must be escaped too to prevent it being
        // interpreted as part of the character code by C.
        if ((!preserve_utf8 || (uint8_t)*buf < 0x80) &&
            (!isprint(*buf) || (last_hex_escape && isxdigit(*buf)))) {
          sprintf(dst, (use_hex ? "\\x%02x" : "\\%03o"), (uint8_t)*buf);
          is_hex_escape = use_hex;
          dst += 4;
        } else {
          *(dst++) = *buf; break;
        }
    }
    last_hex_escape = is_hex_escape;
  }
  // Flush remaining data.
  upb_bytessink_putbuf(p->output_, p->subc, dstbuf, dst - dstbuf, NULL);
  return 0;
}

bool putf(upb_textprinter *p, const char *fmt, ...) {
  va_list args;
  va_start(args, fmt);

  // Run once to get the length of the string.
  va_list args_copy;
  va_copy(args_copy, args);
  int len = vsnprintf(NULL, 0, fmt, args_copy);
  va_end(args_copy);

  // + 1 for NULL terminator (vsnprintf() requires it even if we don't).
  char *str = malloc(len + 1);
  if (!str) return false;
  int written = vsnprintf(str, len + 1, fmt, args);
  va_end(args);
  UPB_ASSERT_VAR(written, written == len);

  bool ok = upb_bytessink_putbuf(p->output_, p->subc, str, len, NULL);
  free(str);
  return ok;
}


/* handlers *******************************************************************/

static bool textprinter_startmsg(void *c, const void *hd) {
  UPB_UNUSED(hd);
  upb_textprinter *p = c;
  if (p->indent_depth_ == 0) {
    upb_bytessink_start(p->output_, 0, &p->subc);
  }
  return true;
}

static bool textprinter_endmsg(void *c, const void *hd, upb_status *s) {
  UPB_UNUSED(hd);
  UPB_UNUSED(s);
  upb_textprinter *p = c;
  if (p->indent_depth_ == 0) {
    upb_bytessink_end(p->output_);
  }
  return true;
}

#define TYPE(name, ctype, fmt) \
  static bool textprinter_put ## name(void *closure, const void *handler_data, \
                                      ctype val) {                             \
    upb_textprinter *p = closure;                                              \
    const upb_fielddef *f = handler_data;                                      \
    CHECK(indent(p));                                                          \
    putf(p, "%s: " fmt, upb_fielddef_name(f), val);                            \
    CHECK(endfield(p));                                                        \
    return true;                                                               \
  err:                                                                         \
    return false;                                                              \
}

static bool textprinter_putbool(void *closure, const void *handler_data,
                                bool val) {
  upb_textprinter *p = closure;
  const upb_fielddef *f = handler_data;
  CHECK(indent(p));
  putf(p, "%s: %s", upb_fielddef_name(f), val ? "true" : "false");
  CHECK(endfield(p));
  return true;
err:
  return false;
}

#define STRINGIFY_HELPER(x) #x
#define STRINGIFY_MACROVAL(x) STRINGIFY_HELPER(x)

TYPE(int32,  int32_t,  "%" PRId32)
TYPE(int64,  int64_t,  "%" PRId64)
TYPE(uint32, uint32_t, "%" PRIu32);
TYPE(uint64, uint64_t, "%" PRIu64)
TYPE(float,  float,    "%." STRINGIFY_MACROVAL(FLT_DIG) "g")
TYPE(double, double,   "%." STRINGIFY_MACROVAL(DBL_DIG) "g")

#undef TYPE

// Output a symbolic value from the enum if found, else just print as int32.
static bool textprinter_putenum(void *closure, const void *handler_data,
                                int32_t val) {
  upb_textprinter *p = closure;
  const upb_fielddef *f = handler_data;
  const upb_enumdef *enum_def = upb_downcast_enumdef(upb_fielddef_subdef(f));
  const char *label = upb_enumdef_iton(enum_def, val);
  if (label) {
    indent(p);
    putf(p, "%s: %s", upb_fielddef_name(f), label);
    endfield(p);
  } else {
    if (!textprinter_putint32(closure, handler_data, val))
      return false;
  }
  return true;
}

static void *textprinter_startstr(void *closure, const void *handler_data,
                      size_t size_hint) {
  const upb_fielddef *f = handler_data;
  UPB_UNUSED(size_hint);
  upb_textprinter *p = closure;
  indent(p);
  putf(p, "%s: \"", upb_fielddef_name(f));
  return p;
}

static bool textprinter_endstr(void *closure, const void *handler_data) {
  UPB_UNUSED(handler_data);
  upb_textprinter *p = closure;
  putf(p, "\"");
  endfield(p);
  return true;
}

static size_t textprinter_putstr(void *closure, const void *hd, const char *buf,
                                 size_t len, const upb_bufhandle *handle) {
  UPB_UNUSED(handle);
  upb_textprinter *p = closure;
  const upb_fielddef *f = hd;
  CHECK(putescaped(p, buf, len, upb_fielddef_type(f) == UPB_TYPE_STRING));
  return len;
err:
  return 0;
}

static void *textprinter_startsubmsg(void *closure, const void *handler_data) {
  upb_textprinter *p = closure;
  const char *name = handler_data;
  CHECK(indent(p));
  putf(p, "%s {%c", name, p->single_line_ ? ' ' : '\n');
  p->indent_depth_++;
  return p;
err:
  return UPB_BREAK;
}

static bool textprinter_endsubmsg(void *closure, const void *handler_data) {
  UPB_UNUSED(handler_data);
  upb_textprinter *p = closure;
  p->indent_depth_--;
  CHECK(indent(p));
  upb_bytessink_putbuf(p->output_, p->subc, "}", 1, NULL);
  CHECK(endfield(p));
  return true;
err:
  return false;
}

static void onmreg(const void *c, upb_handlers *h) {
  UPB_UNUSED(c);
  const upb_msgdef *m = upb_handlers_msgdef(h);

  upb_handlers_setstartmsg(h, textprinter_startmsg, NULL);
  upb_handlers_setendmsg(h, textprinter_endmsg, NULL);

9288 9289 9290 9291
  upb_msg_field_iter i;
  for(upb_msg_field_begin(&i, m);
      !upb_msg_field_done(&i);
      upb_msg_field_next(&i)) {
9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339
    upb_fielddef *f = upb_msg_iter_field(&i);
    upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
    upb_handlerattr_sethandlerdata(&attr, f);
    switch (upb_fielddef_type(f)) {
      case UPB_TYPE_INT32:
        upb_handlers_setint32(h, f, textprinter_putint32, &attr);
        break;
      case UPB_TYPE_INT64:
        upb_handlers_setint64(h, f, textprinter_putint64, &attr);
        break;
      case UPB_TYPE_UINT32:
        upb_handlers_setuint32(h, f, textprinter_putuint32, &attr);
        break;
      case UPB_TYPE_UINT64:
        upb_handlers_setuint64(h, f, textprinter_putuint64, &attr);
        break;
      case UPB_TYPE_FLOAT:
        upb_handlers_setfloat(h, f, textprinter_putfloat, &attr);
        break;
      case UPB_TYPE_DOUBLE:
        upb_handlers_setdouble(h, f, textprinter_putdouble, &attr);
        break;
      case UPB_TYPE_BOOL:
        upb_handlers_setbool(h, f, textprinter_putbool, &attr);
        break;
      case UPB_TYPE_STRING:
      case UPB_TYPE_BYTES:
        upb_handlers_setstartstr(h, f, textprinter_startstr, &attr);
        upb_handlers_setstring(h, f, textprinter_putstr, &attr);
        upb_handlers_setendstr(h, f, textprinter_endstr, &attr);
        break;
      case UPB_TYPE_MESSAGE: {
        const char *name =
            upb_fielddef_istagdelim(f)
                ? shortname(upb_msgdef_fullname(upb_fielddef_msgsubdef(f)))
                : upb_fielddef_name(f);
        upb_handlerattr_sethandlerdata(&attr, name);
        upb_handlers_setstartsubmsg(h, f, textprinter_startsubmsg, &attr);
        upb_handlers_setendsubmsg(h, f, textprinter_endsubmsg, &attr);
        break;
      }
      case UPB_TYPE_ENUM:
        upb_handlers_setint32(h, f, textprinter_putenum, &attr);
        break;
    }
  }
}

9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359
static void textprinter_reset(upb_textprinter *p, bool single_line) {
  p->single_line_ = single_line;
  p->indent_depth_ = 0;
}


/* Public API *****************************************************************/

upb_textprinter *upb_textprinter_create(upb_env *env, const upb_handlers *h,
                                        upb_bytessink *output) {
  upb_textprinter *p = upb_env_malloc(env, sizeof(upb_textprinter));
  if (!p) return NULL;

  p->output_ = output;
  upb_sink_reset(&p->input_, h, p);
  textprinter_reset(p, false);

  return p;
}

9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528
const upb_handlers *upb_textprinter_newhandlers(const upb_msgdef *m,
                                                const void *owner) {
  return upb_handlers_newfrozen(m, owner, &onmreg, NULL);
}

upb_sink *upb_textprinter_input(upb_textprinter *p) { return &p->input_; }

void upb_textprinter_setsingleline(upb_textprinter *p, bool single_line) {
  p->single_line_ = single_line;
}
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2011 Google Inc.  See LICENSE for details.
 * Author: Josh Haberman <jhaberman@gmail.com>
 */


// Index is descriptor type.
const uint8_t upb_pb_native_wire_types[] = {
  UPB_WIRE_TYPE_END_GROUP,     // ENDGROUP
  UPB_WIRE_TYPE_64BIT,         // DOUBLE
  UPB_WIRE_TYPE_32BIT,         // FLOAT
  UPB_WIRE_TYPE_VARINT,        // INT64
  UPB_WIRE_TYPE_VARINT,        // UINT64
  UPB_WIRE_TYPE_VARINT,        // INT32
  UPB_WIRE_TYPE_64BIT,         // FIXED64
  UPB_WIRE_TYPE_32BIT,         // FIXED32
  UPB_WIRE_TYPE_VARINT,        // BOOL
  UPB_WIRE_TYPE_DELIMITED,     // STRING
  UPB_WIRE_TYPE_START_GROUP,   // GROUP
  UPB_WIRE_TYPE_DELIMITED,     // MESSAGE
  UPB_WIRE_TYPE_DELIMITED,     // BYTES
  UPB_WIRE_TYPE_VARINT,        // UINT32
  UPB_WIRE_TYPE_VARINT,        // ENUM
  UPB_WIRE_TYPE_32BIT,         // SFIXED32
  UPB_WIRE_TYPE_64BIT,         // SFIXED64
  UPB_WIRE_TYPE_VARINT,        // SINT32
  UPB_WIRE_TYPE_VARINT,        // SINT64
};

// A basic branch-based decoder, uses 32-bit values to get good performance
// on 32-bit architectures (but performs well on 64-bits also).
// This scheme comes from the original Google Protobuf implementation (proto2).
upb_decoderet upb_vdecode_max8_branch32(upb_decoderet r) {
  upb_decoderet err = {NULL, 0};
  const char *p = r.p;
  uint32_t low = (uint32_t)r.val;
  uint32_t high = 0;
  uint32_t b;
  b = *(p++); low  |= (b & 0x7fU) << 14; if (!(b & 0x80)) goto done;
  b = *(p++); low  |= (b & 0x7fU) << 21; if (!(b & 0x80)) goto done;
  b = *(p++); low  |= (b & 0x7fU) << 28;
              high  = (b & 0x7fU) >>  4; if (!(b & 0x80)) goto done;
  b = *(p++); high |= (b & 0x7fU) <<  3; if (!(b & 0x80)) goto done;
  b = *(p++); high |= (b & 0x7fU) << 10; if (!(b & 0x80)) goto done;
  b = *(p++); high |= (b & 0x7fU) << 17; if (!(b & 0x80)) goto done;
  b = *(p++); high |= (b & 0x7fU) << 24; if (!(b & 0x80)) goto done;
  b = *(p++); high |= (b & 0x7fU) << 31; if (!(b & 0x80)) goto done;
  return err;

done:
  r.val = ((uint64_t)high << 32) | low;
  r.p = p;
  return r;
}

// Like the previous, but uses 64-bit values.
upb_decoderet upb_vdecode_max8_branch64(upb_decoderet r) {
  const char *p = r.p;
  uint64_t val = r.val;
  uint64_t b;
  upb_decoderet err = {NULL, 0};
  b = *(p++); val |= (b & 0x7fU) << 14; if (!(b & 0x80)) goto done;
  b = *(p++); val |= (b & 0x7fU) << 21; if (!(b & 0x80)) goto done;
  b = *(p++); val |= (b & 0x7fU) << 28; if (!(b & 0x80)) goto done;
  b = *(p++); val |= (b & 0x7fU) << 35; if (!(b & 0x80)) goto done;
  b = *(p++); val |= (b & 0x7fU) << 42; if (!(b & 0x80)) goto done;
  b = *(p++); val |= (b & 0x7fU) << 49; if (!(b & 0x80)) goto done;
  b = *(p++); val |= (b & 0x7fU) << 56; if (!(b & 0x80)) goto done;
  b = *(p++); val |= (b & 0x7fU) << 63; if (!(b & 0x80)) goto done;
  return err;

done:
  r.val = val;
  r.p = p;
  return r;
}

// Given an encoded varint v, returns an integer with a single bit set that
// indicates the end of the varint.  Subtracting one from this value will
// yield a mask that leaves only bits that are part of the varint.  Returns
// 0 if the varint is unterminated.
static uint64_t upb_get_vstopbit(uint64_t v) {
  uint64_t cbits = v | 0x7f7f7f7f7f7f7f7fULL;
  return ~cbits & (cbits+1);
}

// A branchless decoder.  Credit to Pascal Massimino for the bit-twiddling.
upb_decoderet upb_vdecode_max8_massimino(upb_decoderet r) {
  uint64_t b;
  memcpy(&b, r.p, sizeof(b));
  uint64_t stop_bit = upb_get_vstopbit(b);
  b =  (b & 0x7f7f7f7f7f7f7f7fULL) & (stop_bit - 1);
  b +=       b & 0x007f007f007f007fULL;
  b +=  3 * (b & 0x0000ffff0000ffffULL);
  b += 15 * (b & 0x00000000ffffffffULL);
  if (stop_bit == 0) {
    // Error: unterminated varint.
    upb_decoderet err_r = {(void*)0, 0};
    return err_r;
  }
  upb_decoderet my_r = {r.p + ((__builtin_ctzll(stop_bit) + 1) / 8),
                        r.val | (b << 7)};
  return my_r;
}

// A branchless decoder.  Credit to Daniel Wright for the bit-twiddling.
upb_decoderet upb_vdecode_max8_wright(upb_decoderet r) {
  uint64_t b;
  memcpy(&b, r.p, sizeof(b));
  uint64_t stop_bit = upb_get_vstopbit(b);
  b &= (stop_bit - 1);
  b = ((b & 0x7f007f007f007f00ULL) >> 1) | (b & 0x007f007f007f007fULL);
  b = ((b & 0xffff0000ffff0000ULL) >> 2) | (b & 0x0000ffff0000ffffULL);
  b = ((b & 0xffffffff00000000ULL) >> 4) | (b & 0x00000000ffffffffULL);
  if (stop_bit == 0) {
    // Error: unterminated varint.
    upb_decoderet err_r = {(void*)0, 0};
    return err_r;
  }
  upb_decoderet my_r = {r.p + ((__builtin_ctzll(stop_bit) + 1) / 8),
                        r.val | (b << 14)};
  return my_r;
}

#line 1 "upb/json/parser.rl"
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2014 Google Inc.  See LICENSE for details.
 * Author: Josh Haberman <jhaberman@gmail.com>
 *
 * A parser that uses the Ragel State Machine Compiler to generate
 * the finite automata.
 *
 * Ragel only natively handles regular languages, but we can manually
 * program it a bit to handle context-free languages like JSON, by using
 * the "fcall" and "fret" constructs.
 *
 * This parser can handle the basics, but needs several things to be fleshed
 * out:
 *
 * - handling of unicode escape sequences (including high surrogate pairs).
 * - properly check and report errors for unknown fields, stack overflow,
 *   improper array nesting (or lack of nesting).
 * - handling of base64 sequences with padding characters.
 * - handling of push-back (non-success returns from sink functions).
 * - handling of keys/escape-sequences/etc that span input buffers.
 */

#include <stdio.h>
#include <stdint.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>


9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593
#define UPB_JSON_MAX_DEPTH 64

typedef struct {
  upb_sink sink;

  // The current message in which we're parsing, and the field whose value we're
  // expecting next.
  const upb_msgdef *m;
  const upb_fielddef *f;

  // We are in a repeated-field context, ready to emit mapentries as
  // submessages. This flag alters the start-of-object (open-brace) behavior to
  // begin a sequence of mapentry messages rather than a single submessage.
  bool is_map;

  // We are in a map-entry message context. This flag is set when parsing the
  // value field of a single map entry and indicates to all value-field parsers
  // (subobjects, strings, numbers, and bools) that the map-entry submessage
  // should end as soon as the value is parsed.
  bool is_mapentry;

  // If |is_map| or |is_mapentry| is true, |mapfield| refers to the parent
  // message's map field that we're currently parsing. This differs from |f|
  // because |f| is the field in the *current* message (i.e., the map-entry
  // message itself), not the parent's field that leads to this map.
  const upb_fielddef *mapfield;
} upb_jsonparser_frame;

struct upb_json_parser {
  upb_env *env;
  upb_byteshandler input_handler_;
  upb_bytessink input_;

  // Stack to track the JSON scopes we are in.
  upb_jsonparser_frame stack[UPB_JSON_MAX_DEPTH];
  upb_jsonparser_frame *top;
  upb_jsonparser_frame *limit;

  upb_status *status;

  // Ragel's internal parsing stack for the parsing state machine.
  int current_state;
  int parser_stack[UPB_JSON_MAX_DEPTH];
  int parser_top;

  // The handle for the current buffer.
  const upb_bufhandle *handle;

  // Accumulate buffer.  See details in parser.rl.
  const char *accumulated;
  size_t accumulated_len;
  char *accumulate_buf;
  size_t accumulate_buf_size;

  // Multi-part text data.  See details in parser.rl.
  int multipart_state;
  upb_selector_t string_selector;

  // Input capture.  See details in parser.rl.
  const char *capture;

  // Intermediate result of parsing a unicode escape sequence.
  uint32_t digit;
};

9594 9595
#define PARSER_CHECK_RETURN(x) if (!(x)) return false

Chris Fallin's avatar
Chris Fallin committed
9596 9597 9598
// Used to signal that a capture has been suspended.
static char suspend_capture;

9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620
static upb_selector_t getsel_for_handlertype(upb_json_parser *p,
                                             upb_handlertype_t type) {
  upb_selector_t sel;
  bool ok = upb_handlers_getselector(p->top->f, type, &sel);
  UPB_ASSERT_VAR(ok, ok);
  return sel;
}

static upb_selector_t parser_getsel(upb_json_parser *p) {
  return getsel_for_handlertype(
      p, upb_handlers_getprimitivehandlertype(p->top->f));
}

static bool check_stack(upb_json_parser *p) {
  if ((p->top + 1) == p->limit) {
    upb_status_seterrmsg(p->status, "Nesting too deep");
    return false;
  }

  return true;
}

Chris Fallin's avatar
Chris Fallin committed
9621 9622
// There are GCC/Clang built-ins for overflow checking which we could start
// using if there was any performance benefit to it.
9623

Chris Fallin's avatar
Chris Fallin committed
9624 9625 9626
static bool checked_add(size_t a, size_t b, size_t *c) {
  if (SIZE_MAX - a < b) return false;
  *c = a + b;
9627 9628 9629
  return true;
}

Chris Fallin's avatar
Chris Fallin committed
9630 9631 9632 9633 9634
static size_t saturating_multiply(size_t a, size_t b) {
  // size_t is unsigned, so this is defined behavior even on overflow.
  size_t ret = a * b;
  if (b != 0 && ret / b != a) {
    ret = SIZE_MAX;
9635
  }
Chris Fallin's avatar
Chris Fallin committed
9636
  return ret;
9637 9638 9639
}


Chris Fallin's avatar
Chris Fallin committed
9640
/* Base64 decoding ************************************************************/
9641

Chris Fallin's avatar
Chris Fallin committed
9642
// TODO(haberman): make this streaming.
9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762

static const signed char b64table[] = {
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      62/*+*/, -1,      -1,      -1,      63/*/ */,
  52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/,
  60/*8*/, 61/*9*/, -1,      -1,      -1,      -1,      -1,      -1,
  -1,       0/*A*/,  1/*B*/,  2/*C*/,  3/*D*/,  4/*E*/,  5/*F*/,  6/*G*/,
  07/*H*/,  8/*I*/,  9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/,
  15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/,
  23/*X*/, 24/*Y*/, 25/*Z*/, -1,      -1,      -1,      -1,      -1,
  -1,      26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/,
  33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/,
  41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/,
  49/*x*/, 50/*y*/, 51/*z*/, -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1
};

// Returns the table value sign-extended to 32 bits.  Knowing that the upper
// bits will be 1 for unrecognized characters makes it easier to check for
// this error condition later (see below).
int32_t b64lookup(unsigned char ch) { return b64table[ch]; }

// Returns true if the given character is not a valid base64 character or
// padding.
bool nonbase64(unsigned char ch) { return b64lookup(ch) == -1 && ch != '='; }

static bool base64_push(upb_json_parser *p, upb_selector_t sel, const char *ptr,
                        size_t len) {
  const char *limit = ptr + len;
  for (; ptr < limit; ptr += 4) {
    if (limit - ptr < 4) {
      upb_status_seterrf(p->status,
                         "Base64 input for bytes field not a multiple of 4: %s",
                         upb_fielddef_name(p->top->f));
      return false;
    }

    uint32_t val = b64lookup(ptr[0]) << 18 |
                   b64lookup(ptr[1]) << 12 |
                   b64lookup(ptr[2]) << 6  |
                   b64lookup(ptr[3]);

    // Test the upper bit; returns true if any of the characters returned -1.
    if (val & 0x80000000) {
      goto otherchar;
    }

    char output[3];
    output[0] = val >> 16;
    output[1] = (val >> 8) & 0xff;
    output[2] = val & 0xff;
    upb_sink_putstring(&p->top->sink, sel, output, 3, NULL);
  }
  return true;

otherchar:
  if (nonbase64(ptr[0]) || nonbase64(ptr[1]) || nonbase64(ptr[2]) ||
      nonbase64(ptr[3]) ) {
    upb_status_seterrf(p->status,
                       "Non-base64 characters in bytes field: %s",
                       upb_fielddef_name(p->top->f));
    return false;
  } if (ptr[2] == '=') {
    // Last group contains only two input bytes, one output byte.
    if (ptr[0] == '=' || ptr[1] == '=' || ptr[3] != '=') {
      goto badpadding;
    }

    uint32_t val = b64lookup(ptr[0]) << 18 |
                   b64lookup(ptr[1]) << 12;

    assert(!(val & 0x80000000));
    char output = val >> 16;
    upb_sink_putstring(&p->top->sink, sel, &output, 1, NULL);
    return true;
  } else {
    // Last group contains only three input bytes, two output bytes.
    if (ptr[0] == '=' || ptr[1] == '=' || ptr[2] == '=') {
      goto badpadding;
    }

    uint32_t val = b64lookup(ptr[0]) << 18 |
                   b64lookup(ptr[1]) << 12 |
                   b64lookup(ptr[2]) << 6;

    char output[2];
    output[0] = val >> 16;
    output[1] = (val >> 8) & 0xff;
    upb_sink_putstring(&p->top->sink, sel, output, 2, NULL);
    return true;
  }

badpadding:
  upb_status_seterrf(p->status,
                     "Incorrect base64 padding for field: %s (%.*s)",
                     upb_fielddef_name(p->top->f),
                     4, ptr);
  return false;
}


Chris Fallin's avatar
Chris Fallin committed
9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783
/* Accumulate buffer **********************************************************/

// Functionality for accumulating a buffer.
//
// Some parts of the parser need an entire value as a contiguous string.  For
// example, to look up a member name in a hash table, or to turn a string into
// a number, the relevant library routines need the input string to be in
// contiguous memory, even if the value spanned two or more buffers in the
// input.  These routines handle that.
//
// In the common case we can just point to the input buffer to get this
// contiguous string and avoid any actual copy.  So we optimistically begin
// this way.  But there are a few cases where we must instead copy into a
// separate buffer:
//
//   1. The string was not contiguous in the input (it spanned buffers).
//
//   2. The string included escape sequences that need to be interpreted to get
//      the true value in a contiguous buffer.

static void assert_accumulate_empty(upb_json_parser *p) {
9784
  UPB_UNUSED(p);
Chris Fallin's avatar
Chris Fallin committed
9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795
  assert(p->accumulated == NULL);
  assert(p->accumulated_len == 0);
}

static void accumulate_clear(upb_json_parser *p) {
  p->accumulated = NULL;
  p->accumulated_len = 0;
}

// Used internally by accumulate_append().
static bool accumulate_realloc(upb_json_parser *p, size_t need) {
9796 9797
  size_t old_size = p->accumulate_buf_size;
  size_t new_size = UPB_MAX(old_size, 128);
Chris Fallin's avatar
Chris Fallin committed
9798 9799 9800 9801
  while (new_size < need) {
    new_size = saturating_multiply(new_size, 2);
  }

9802
  void *mem = upb_env_realloc(p->env, p->accumulate_buf, old_size, new_size);
Chris Fallin's avatar
Chris Fallin committed
9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904
  if (!mem) {
    upb_status_seterrmsg(p->status, "Out of memory allocating buffer.");
    return false;
  }

  p->accumulate_buf = mem;
  p->accumulate_buf_size = new_size;
  return true;
}

// Logically appends the given data to the append buffer.
// If "can_alias" is true, we will try to avoid actually copying, but the buffer
// must be valid until the next accumulate_append() call (if any).
static bool accumulate_append(upb_json_parser *p, const char *buf, size_t len,
                              bool can_alias) {
  if (!p->accumulated && can_alias) {
    p->accumulated = buf;
    p->accumulated_len = len;
    return true;
  }

  size_t need;
  if (!checked_add(p->accumulated_len, len, &need)) {
    upb_status_seterrmsg(p->status, "Integer overflow.");
    return false;
  }

  if (need > p->accumulate_buf_size && !accumulate_realloc(p, need)) {
    return false;
  }

  if (p->accumulated != p->accumulate_buf) {
    memcpy(p->accumulate_buf, p->accumulated, p->accumulated_len);
    p->accumulated = p->accumulate_buf;
  }

  memcpy(p->accumulate_buf + p->accumulated_len, buf, len);
  p->accumulated_len += len;
  return true;
}

// Returns a pointer to the data accumulated since the last accumulate_clear()
// call, and writes the length to *len.  This with point either to the input
// buffer or a temporary accumulate buffer.
static const char *accumulate_getptr(upb_json_parser *p, size_t *len) {
  assert(p->accumulated);
  *len = p->accumulated_len;
  return p->accumulated;
}


/* Mult-part text data ********************************************************/

// When we have text data in the input, it can often come in multiple segments.
// For example, there may be some raw string data followed by an escape
// sequence.  The two segments are processed with different logic.  Also buffer
// seams in the input can cause multiple segments.
//
// As we see segments, there are two main cases for how we want to process them:
//
//  1. we want to push the captured input directly to string handlers.
//
//  2. we need to accumulate all the parts into a contiguous buffer for further
//     processing (field name lookup, string->number conversion, etc).

// This is the set of states for p->multipart_state.
enum {
  // We are not currently processing multipart data.
  MULTIPART_INACTIVE = 0,

  // We are processing multipart data by accumulating it into a contiguous
  // buffer.
  MULTIPART_ACCUMULATE = 1,

  // We are processing multipart data by pushing each part directly to the
  // current string handlers.
  MULTIPART_PUSHEAGERLY = 2
};

// Start a multi-part text value where we accumulate the data for processing at
// the end.
static void multipart_startaccum(upb_json_parser *p) {
  assert_accumulate_empty(p);
  assert(p->multipart_state == MULTIPART_INACTIVE);
  p->multipart_state = MULTIPART_ACCUMULATE;
}

// Start a multi-part text value where we immediately push text data to a string
// value with the given selector.
static void multipart_start(upb_json_parser *p, upb_selector_t sel) {
  assert_accumulate_empty(p);
  assert(p->multipart_state == MULTIPART_INACTIVE);
  p->multipart_state = MULTIPART_PUSHEAGERLY;
  p->string_selector = sel;
}

static bool multipart_text(upb_json_parser *p, const char *buf, size_t len,
                           bool can_alias) {
  switch (p->multipart_state) {
    case MULTIPART_INACTIVE:
      upb_status_seterrmsg(
          p->status, "Internal error: unexpected state MULTIPART_INACTIVE");
9905
      return false;
Chris Fallin's avatar
Chris Fallin committed
9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916

    case MULTIPART_ACCUMULATE:
      if (!accumulate_append(p, buf, len, can_alias)) {
        return false;
      }
      break;

    case MULTIPART_PUSHEAGERLY: {
      const upb_bufhandle *handle = can_alias ? p->handle : NULL;
      upb_sink_putstring(&p->top->sink, p->string_selector, buf, len, handle);
      break;
9917 9918 9919 9920 9921 9922
    }
  }

  return true;
}

Chris Fallin's avatar
Chris Fallin committed
9923 9924 9925 9926 9927 9928 9929
// Note: this invalidates the accumulate buffer!  Call only after reading its
// contents.
static void multipart_end(upb_json_parser *p) {
  assert(p->multipart_state != MULTIPART_INACTIVE);
  p->multipart_state = MULTIPART_INACTIVE;
  accumulate_clear(p);
}
9930 9931


Chris Fallin's avatar
Chris Fallin committed
9932
/* Input capture **************************************************************/
9933

Chris Fallin's avatar
Chris Fallin committed
9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947
// Functionality for capturing a region of the input as text.  Gracefully
// handles the case where a buffer seam occurs in the middle of the captured
// region.

static void capture_begin(upb_json_parser *p, const char *ptr) {
  assert(p->multipart_state != MULTIPART_INACTIVE);
  assert(p->capture == NULL);
  p->capture = ptr;
}

static bool capture_end(upb_json_parser *p, const char *ptr) {
  assert(p->capture);
  if (multipart_text(p, p->capture, ptr - p->capture, true)) {
    p->capture = NULL;
9948 9949 9950 9951
    return true;
  } else {
    return false;
  }
Chris Fallin's avatar
Chris Fallin committed
9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974
}

// This is called at the end of each input buffer (ie. when we have hit a
// buffer seam).  If we are in the middle of capturing the input, this
// processes the unprocessed capture region.
static void capture_suspend(upb_json_parser *p, const char **ptr) {
  if (!p->capture) return;

  if (multipart_text(p, p->capture, *ptr - p->capture, false)) {
    // We use this as a signal that we were in the middle of capturing, and
    // that capturing should resume at the beginning of the next buffer.
    //
    // We can't use *ptr here, because we have no guarantee that this pointer
    // will be valid when we resume (if the underlying memory is freed, then
    // using the pointer at all, even to compare to NULL, is likely undefined
    // behavior).
    p->capture = &suspend_capture;
  } else {
    // Need to back up the pointer to the beginning of the capture, since
    // we were not able to actually preserve it.
    *ptr = p->capture;
  }
}
9975

Chris Fallin's avatar
Chris Fallin committed
9976 9977 9978 9979 9980
static void capture_resume(upb_json_parser *p, const char *ptr) {
  if (p->capture) {
    assert(p->capture == &suspend_capture);
    p->capture = ptr;
  }
9981 9982
}

Chris Fallin's avatar
Chris Fallin committed
9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001

/* Callbacks from the parser **************************************************/

// These are the functions called directly from the parser itself.
// We define these in the same order as their declarations in the parser.

static char escape_char(char in) {
  switch (in) {
    case 'r': return '\r';
    case 't': return '\t';
    case 'n': return '\n';
    case 'f': return '\f';
    case 'b': return '\b';
    case '/': return '/';
    case '"': return '"';
    case '\\': return '\\';
    default:
      assert(0);
      return 'x';
10002 10003 10004
  }
}

Chris Fallin's avatar
Chris Fallin committed
10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064
static bool escape(upb_json_parser *p, const char *ptr) {
  char ch = escape_char(*ptr);
  return multipart_text(p, &ch, 1, false);
}

static void start_hex(upb_json_parser *p) {
  p->digit = 0;
}

static void hexdigit(upb_json_parser *p, const char *ptr) {
  char ch = *ptr;

  p->digit <<= 4;

  if (ch >= '0' && ch <= '9') {
    p->digit += (ch - '0');
  } else if (ch >= 'a' && ch <= 'f') {
    p->digit += ((ch - 'a') + 10);
  } else {
    assert(ch >= 'A' && ch <= 'F');
    p->digit += ((ch - 'A') + 10);
  }
}

static bool end_hex(upb_json_parser *p) {
  uint32_t codepoint = p->digit;

  // emit the codepoint as UTF-8.
  char utf8[3]; // support \u0000 -- \uFFFF -- need only three bytes.
  int length = 0;
  if (codepoint <= 0x7F) {
    utf8[0] = codepoint;
    length = 1;
  } else if (codepoint <= 0x07FF) {
    utf8[1] = (codepoint & 0x3F) | 0x80;
    codepoint >>= 6;
    utf8[0] = (codepoint & 0x1F) | 0xC0;
    length = 2;
  } else /* codepoint <= 0xFFFF */ {
    utf8[2] = (codepoint & 0x3F) | 0x80;
    codepoint >>= 6;
    utf8[1] = (codepoint & 0x3F) | 0x80;
    codepoint >>= 6;
    utf8[0] = (codepoint & 0x0F) | 0xE0;
    length = 3;
  }
  // TODO(haberman): Handle high surrogates: if codepoint is a high surrogate
  // we have to wait for the next escape to get the full code point).

  return multipart_text(p, utf8, length, false);
}

static void start_text(upb_json_parser *p, const char *ptr) {
  capture_begin(p, ptr);
}

static bool end_text(upb_json_parser *p, const char *ptr) {
  return capture_end(p, ptr);
}

10065
static void start_number(upb_json_parser *p, const char *ptr) {
Chris Fallin's avatar
Chris Fallin committed
10066 10067
  multipart_startaccum(p);
  capture_begin(p, ptr);
10068 10069
}

10070 10071
static bool parse_number(upb_json_parser *p);

Chris Fallin's avatar
Chris Fallin committed
10072 10073 10074 10075 10076
static bool end_number(upb_json_parser *p, const char *ptr) {
  if (!capture_end(p, ptr)) {
    return false;
  }

10077 10078 10079 10080
  return parse_number(p);
}

static bool parse_number(upb_json_parser *p) {
Chris Fallin's avatar
Chris Fallin committed
10081 10082 10083 10084 10085 10086 10087 10088 10089
  // strtol() and friends unfortunately do not support specifying the length of
  // the input string, so we need to force a copy into a NULL-terminated buffer.
  if (!multipart_text(p, "\0", 1, false)) {
    return false;
  }

  size_t len;
  const char *buf = accumulate_getptr(p, &len);
  const char *myend = buf + len - 1;  // One for NULL.
10090

10091
  char *end;
10092 10093 10094 10095 10096
  switch (upb_fielddef_type(p->top->f)) {
    case UPB_TYPE_ENUM:
    case UPB_TYPE_INT32: {
      long val = strtol(p->accumulated, &end, 0);
      if (val > INT32_MAX || val < INT32_MIN || errno == ERANGE || end != myend)
Chris Fallin's avatar
Chris Fallin committed
10097
        goto err;
10098 10099 10100 10101 10102 10103 10104
      else
        upb_sink_putint32(&p->top->sink, parser_getsel(p), val);
      break;
    }
    case UPB_TYPE_INT64: {
      long long val = strtoll(p->accumulated, &end, 0);
      if (val > INT64_MAX || val < INT64_MIN || errno == ERANGE || end != myend)
Chris Fallin's avatar
Chris Fallin committed
10105
        goto err;
10106 10107 10108 10109 10110 10111 10112
      else
        upb_sink_putint64(&p->top->sink, parser_getsel(p), val);
      break;
    }
    case UPB_TYPE_UINT32: {
      unsigned long val = strtoul(p->accumulated, &end, 0);
      if (val > UINT32_MAX || errno == ERANGE || end != myend)
Chris Fallin's avatar
Chris Fallin committed
10113
        goto err;
10114 10115 10116 10117 10118 10119 10120
      else
        upb_sink_putuint32(&p->top->sink, parser_getsel(p), val);
      break;
    }
    case UPB_TYPE_UINT64: {
      unsigned long long val = strtoull(p->accumulated, &end, 0);
      if (val > UINT64_MAX || errno == ERANGE || end != myend)
Chris Fallin's avatar
Chris Fallin committed
10121
        goto err;
10122 10123 10124 10125 10126 10127 10128
      else
        upb_sink_putuint64(&p->top->sink, parser_getsel(p), val);
      break;
    }
    case UPB_TYPE_DOUBLE: {
      double val = strtod(p->accumulated, &end);
      if (errno == ERANGE || end != myend)
Chris Fallin's avatar
Chris Fallin committed
10129
        goto err;
10130 10131 10132 10133 10134 10135 10136
      else
        upb_sink_putdouble(&p->top->sink, parser_getsel(p), val);
      break;
    }
    case UPB_TYPE_FLOAT: {
      float val = strtof(p->accumulated, &end);
      if (errno == ERANGE || end != myend)
Chris Fallin's avatar
Chris Fallin committed
10137
        goto err;
10138 10139 10140 10141 10142 10143 10144 10145
      else
        upb_sink_putfloat(&p->top->sink, parser_getsel(p), val);
      break;
    }
    default:
      assert(false);
  }

Chris Fallin's avatar
Chris Fallin committed
10146
  multipart_end(p);
10147

Chris Fallin's avatar
Chris Fallin committed
10148 10149 10150 10151 10152 10153
  return true;

err:
  upb_status_seterrf(p->status, "error parsing number: %s", buf);
  multipart_end(p);
  return false;
10154 10155
}

Chris Fallin's avatar
Chris Fallin committed
10156 10157 10158 10159 10160 10161 10162 10163 10164 10165
static bool parser_putbool(upb_json_parser *p, bool val) {
  if (upb_fielddef_type(p->top->f) != UPB_TYPE_BOOL) {
    upb_status_seterrf(p->status,
                       "Boolean value specified for non-bool field: %s",
                       upb_fielddef_name(p->top->f));
    return false;
  }

  bool ok = upb_sink_putbool(&p->top->sink, parser_getsel(p), val);
  UPB_ASSERT_VAR(ok, ok);
10166

Chris Fallin's avatar
Chris Fallin committed
10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182
  return true;
}

static bool start_stringval(upb_json_parser *p) {
  assert(p->top->f);

  if (upb_fielddef_isstring(p->top->f)) {
    if (!check_stack(p)) return false;

    // Start a new parser frame: parser frames correspond one-to-one with
    // handler frames, and string events occur in a sub-frame.
    upb_jsonparser_frame *inner = p->top + 1;
    upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR);
    upb_sink_startstr(&p->top->sink, sel, 0, &inner->sink);
    inner->m = p->top->m;
    inner->f = p->top->f;
10183 10184
    inner->is_map = false;
    inner->is_mapentry = false;
Chris Fallin's avatar
Chris Fallin committed
10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253
    p->top = inner;

    if (upb_fielddef_type(p->top->f) == UPB_TYPE_STRING) {
      // For STRING fields we push data directly to the handlers as it is
      // parsed.  We don't do this yet for BYTES fields, because our base64
      // decoder is not streaming.
      //
      // TODO(haberman): make base64 decoding streaming also.
      multipart_start(p, getsel_for_handlertype(p, UPB_HANDLER_STRING));
      return true;
    } else {
      multipart_startaccum(p);
      return true;
    }
  } else if (upb_fielddef_type(p->top->f) == UPB_TYPE_ENUM) {
    // No need to push a frame -- symbolic enum names in quotes remain in the
    // current parser frame.
    //
    // Enum string values must accumulate so we can look up the value in a table
    // once it is complete.
    multipart_startaccum(p);
    return true;
  } else {
    upb_status_seterrf(p->status,
                       "String specified for non-string/non-enum field: %s",
                       upb_fielddef_name(p->top->f));
    return false;
  }
}

static bool end_stringval(upb_json_parser *p) {
  bool ok = true;

  switch (upb_fielddef_type(p->top->f)) {
    case UPB_TYPE_BYTES:
      if (!base64_push(p, getsel_for_handlertype(p, UPB_HANDLER_STRING),
                       p->accumulated, p->accumulated_len)) {
        return false;
      }
      // Fall through.

    case UPB_TYPE_STRING: {
      upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR);
      upb_sink_endstr(&p->top->sink, sel);
      p->top--;
      break;
    }

    case UPB_TYPE_ENUM: {
      // Resolve enum symbolic name to integer value.
      const upb_enumdef *enumdef =
          (const upb_enumdef*)upb_fielddef_subdef(p->top->f);

      size_t len;
      const char *buf = accumulate_getptr(p, &len);

      int32_t int_val = 0;
      ok = upb_enumdef_ntoi(enumdef, buf, len, &int_val);

      if (ok) {
        upb_selector_t sel = parser_getsel(p);
        upb_sink_putint32(&p->top->sink, sel, int_val);
      } else {
        upb_status_seterrf(p->status, "Enum value unknown: '%.*s'", len, buf);
      }

      break;
    }

10254
    default:
Chris Fallin's avatar
Chris Fallin committed
10255 10256 10257 10258
      assert(false);
      upb_status_seterrmsg(p->status, "Internal error in JSON decoder");
      ok = false;
      break;
10259
  }
Chris Fallin's avatar
Chris Fallin committed
10260 10261

  multipart_end(p);
10262

Chris Fallin's avatar
Chris Fallin committed
10263
  return ok;
10264 10265
}

Chris Fallin's avatar
Chris Fallin committed
10266 10267 10268
static void start_member(upb_json_parser *p) {
  assert(!p->top->f);
  multipart_startaccum(p);
10269 10270
}

10271 10272 10273 10274
// Helper: invoked during parse_mapentry() to emit the mapentry message's key
// field based on the current contents of the accumulate buffer.
static bool parse_mapentry_key(upb_json_parser *p) {

Chris Fallin's avatar
Chris Fallin committed
10275 10276 10277
  size_t len;
  const char *buf = accumulate_getptr(p, &len);

10278 10279 10280 10281 10282
  // Emit the key field. We do a bit of ad-hoc parsing here because the
  // parser state machine has already decided that this is a string field
  // name, and we are reinterpreting it as some arbitrary key type. In
  // particular, integer and bool keys are quoted, so we need to parse the
  // quoted string contents here.
Chris Fallin's avatar
Chris Fallin committed
10283

10284 10285 10286
  p->top->f = upb_msgdef_itof(p->top->m, UPB_MAPENTRY_KEY);
  if (p->top->f == NULL) {
    upb_status_seterrmsg(p->status, "mapentry message has no key");
Chris Fallin's avatar
Chris Fallin committed
10287 10288
    return false;
  }
10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330
  switch (upb_fielddef_type(p->top->f)) {
    case UPB_TYPE_INT32:
    case UPB_TYPE_INT64:
    case UPB_TYPE_UINT32:
    case UPB_TYPE_UINT64:
      // Invoke end_number. The accum buffer has the number's text already.
      if (!parse_number(p)) {
        return false;
      }
      break;
    case UPB_TYPE_BOOL:
      if (len == 4 && !strncmp(buf, "true", 4)) {
        if (!parser_putbool(p, true)) {
          return false;
        }
      } else if (len == 5 && !strncmp(buf, "false", 5)) {
        if (!parser_putbool(p, false)) {
          return false;
        }
      } else {
        upb_status_seterrmsg(p->status,
                             "Map bool key not 'true' or 'false'");
        return false;
      }
      multipart_end(p);
      break;
    case UPB_TYPE_STRING:
    case UPB_TYPE_BYTES: {
      upb_sink subsink;
      upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR);
      upb_sink_startstr(&p->top->sink, sel, len, &subsink);
      sel = getsel_for_handlertype(p, UPB_HANDLER_STRING);
      upb_sink_putstring(&subsink, sel, buf, len, NULL);
      sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR);
      upb_sink_endstr(&subsink, sel);
      multipart_end(p);
      break;
    }
    default:
      upb_status_seterrmsg(p->status, "Invalid field type for map key");
      return false;
  }
Chris Fallin's avatar
Chris Fallin committed
10331

10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380
  return true;
}

// Helper: emit one map entry (as a submessage in the map field sequence). This
// is invoked from end_membername(), at the end of the map entry's key string,
// with the map key in the accumulate buffer. It parses the key from that
// buffer, emits the handler calls to start the mapentry submessage (setting up
// its subframe in the process), and sets up state in the subframe so that the
// value parser (invoked next) will emit the mapentry's value field and then
// end the mapentry message.

static bool handle_mapentry(upb_json_parser *p) {
  // Map entry: p->top->sink is the seq frame, so we need to start a frame
  // for the mapentry itself, and then set |f| in that frame so that the map
  // value field is parsed, and also set a flag to end the frame after the
  // map-entry value is parsed.
  if (!check_stack(p)) return false;

  const upb_fielddef *mapfield = p->top->mapfield;
  const upb_msgdef *mapentrymsg = upb_fielddef_msgsubdef(mapfield);

  upb_jsonparser_frame *inner = p->top + 1;
  p->top->f = mapfield;
  upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSUBMSG);
  upb_sink_startsubmsg(&p->top->sink, sel, &inner->sink);
  inner->m = mapentrymsg;
  inner->mapfield = mapfield;
  inner->is_map = false;

  // Don't set this to true *yet* -- we reuse parsing handlers below to push
  // the key field value to the sink, and these handlers will pop the frame
  // if they see is_mapentry (when invoked by the parser state machine, they
  // would have just seen the map-entry value, not key).
  inner->is_mapentry = false;
  p->top = inner;

  // send STARTMSG in submsg frame.
  upb_sink_startmsg(&p->top->sink);

  parse_mapentry_key(p);

  // Set up the value field to receive the map-entry value.
  p->top->f = upb_msgdef_itof(p->top->m, UPB_MAPENTRY_VALUE);
  p->top->is_mapentry = true;  // set up to pop frame after value is parsed.
  p->top->mapfield = mapfield;
  if (p->top->f == NULL) {
    upb_status_seterrmsg(p->status, "mapentry message has no value");
    return false;
  }
Chris Fallin's avatar
Chris Fallin committed
10381 10382 10383 10384

  return true;
}

10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427
static bool end_membername(upb_json_parser *p) {
  assert(!p->top->f);

  if (p->top->is_map) {
    return handle_mapentry(p);
  } else {
    size_t len;
    const char *buf = accumulate_getptr(p, &len);
    const upb_fielddef *f = upb_msgdef_ntof(p->top->m, buf, len);

    if (!f) {
      // TODO(haberman): Ignore unknown fields if requested/configured to do so.
      upb_status_seterrf(p->status, "No such field: %.*s\n", (int)len, buf);
      return false;
    }

    p->top->f = f;
    multipart_end(p);

    return true;
  }
}

static void end_member(upb_json_parser *p) {
  // If we just parsed a map-entry value, end that frame too.
  if (p->top->is_mapentry) {
    assert(p->top > p->stack);
    // send ENDMSG on submsg.
    upb_status s = UPB_STATUS_INIT;
    upb_sink_endmsg(&p->top->sink, &s);
    const upb_fielddef* mapfield = p->top->mapfield;

    // send ENDSUBMSG in repeated-field-of-mapentries frame.
    p->top--;
    upb_selector_t sel;
    bool ok = upb_handlers_getselector(mapfield,
                                       UPB_HANDLER_ENDSUBMSG, &sel);
    UPB_ASSERT_VAR(ok, ok);
    upb_sink_endsubmsg(&p->top->sink, sel);
  }

  p->top->f = NULL;
}
Chris Fallin's avatar
Chris Fallin committed
10428 10429 10430 10431

static bool start_subobject(upb_json_parser *p) {
  assert(p->top->f);

10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464
  if (upb_fielddef_ismap(p->top->f)) {
    // Beginning of a map. Start a new parser frame in a repeated-field
    // context.
    if (!check_stack(p)) return false;

    upb_jsonparser_frame *inner = p->top + 1;
    upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSEQ);
    upb_sink_startseq(&p->top->sink, sel, &inner->sink);
    inner->m = upb_fielddef_msgsubdef(p->top->f);
    inner->mapfield = p->top->f;
    inner->f = NULL;
    inner->is_map = true;
    inner->is_mapentry = false;
    p->top = inner;

    return true;
  } else if (upb_fielddef_issubmsg(p->top->f)) {
    // Beginning of a subobject. Start a new parser frame in the submsg
    // context.
    if (!check_stack(p)) return false;

    upb_jsonparser_frame *inner = p->top + 1;

    upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSUBMSG);
    upb_sink_startsubmsg(&p->top->sink, sel, &inner->sink);
    inner->m = upb_fielddef_msgsubdef(p->top->f);
    inner->f = NULL;
    inner->is_map = false;
    inner->is_mapentry = false;
    p->top = inner;

    return true;
  } else {
Chris Fallin's avatar
Chris Fallin committed
10465 10466 10467 10468
    upb_status_seterrf(p->status,
                       "Object specified for non-message/group field: %s",
                       upb_fielddef_name(p->top->f));
    return false;
10469 10470 10471
  }
}

Chris Fallin's avatar
Chris Fallin committed
10472
static void end_subobject(upb_json_parser *p) {
10473 10474 10475 10476 10477 10478 10479 10480 10481
  if (p->top->is_map) {
    p->top--;
    upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSEQ);
    upb_sink_endseq(&p->top->sink, sel);
  } else {
    p->top--;
    upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSUBMSG);
    upb_sink_endsubmsg(&p->top->sink, sel);
  }
10482 10483
}

Chris Fallin's avatar
Chris Fallin committed
10484 10485 10486 10487 10488 10489 10490 10491
static bool start_array(upb_json_parser *p) {
  assert(p->top->f);

  if (!upb_fielddef_isseq(p->top->f)) {
    upb_status_seterrf(p->status,
                       "Array specified for non-repeated field: %s",
                       upb_fielddef_name(p->top->f));
    return false;
10492 10493
  }

Chris Fallin's avatar
Chris Fallin committed
10494 10495 10496 10497 10498 10499 10500
  if (!check_stack(p)) return false;

  upb_jsonparser_frame *inner = p->top + 1;
  upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSEQ);
  upb_sink_startseq(&p->top->sink, sel, &inner->sink);
  inner->m = p->top->m;
  inner->f = p->top->f;
10501 10502
  inner->is_map = false;
  inner->is_mapentry = false;
Chris Fallin's avatar
Chris Fallin committed
10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516
  p->top = inner;

  return true;
}

static void end_array(upb_json_parser *p) {
  assert(p->top > p->stack);

  p->top--;
  upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSEQ);
  upb_sink_endseq(&p->top->sink, sel);
}

static void start_object(upb_json_parser *p) {
10517 10518 10519
  if (!p->top->is_map) {
    upb_sink_startmsg(&p->top->sink);
  }
Chris Fallin's avatar
Chris Fallin committed
10520 10521 10522
}

static void end_object(upb_json_parser *p) {
10523 10524 10525 10526
  if (!p->top->is_map) {
    upb_status status;
    upb_sink_endmsg(&p->top->sink, &status);
  }
10527 10528
}

Chris Fallin's avatar
Chris Fallin committed
10529

10530 10531
#define CHECK_RETURN_TOP(x) if (!(x)) goto error

Chris Fallin's avatar
Chris Fallin committed
10532 10533 10534

/* The actual parser **********************************************************/

10535 10536
// What follows is the Ragel parser itself.  The language is specified in Ragel
// and the actions call our C functions above.
Chris Fallin's avatar
Chris Fallin committed
10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549
//
// Ragel has an extensive set of functionality, and we use only a small part of
// it.  There are many action types but we only use a few:
//
//   ">" -- transition into a machine
//   "%" -- transition out of a machine
//   "@" -- transition into a final state of a machine.
//
// "@" transitions are tricky because a machine can transition into a final
// state repeatedly.  But in some cases we know this can't happen, for example
// a string which is delimited by a final '"' can only transition into its
// final state once, when the closing '"' is seen.

10550

10551
#line 1151 "upb/json/parser.rl"
10552 10553 10554



10555
#line 1063 "upb/json/parser.c"
10556 10557
static const char _json_actions[] = {
	0, 1, 0, 1, 2, 1, 3, 1, 
Chris Fallin's avatar
Chris Fallin committed
10558 10559 10560 10561 10562 10563 10564 10565 10566 10567
	5, 1, 6, 1, 7, 1, 8, 1, 
	10, 1, 12, 1, 13, 1, 14, 1, 
	15, 1, 16, 1, 17, 1, 21, 1, 
	25, 1, 27, 2, 3, 8, 2, 4, 
	5, 2, 6, 2, 2, 6, 8, 2, 
	11, 9, 2, 13, 15, 2, 14, 15, 
	2, 18, 1, 2, 19, 27, 2, 20, 
	9, 2, 22, 27, 2, 23, 27, 2, 
	24, 27, 2, 26, 27, 3, 14, 11, 
	9
10568 10569 10570
};

static const unsigned char _json_key_offsets[] = {
Chris Fallin's avatar
Chris Fallin committed
10571 10572 10573 10574 10575 10576 10577 10578
	0, 0, 4, 9, 14, 15, 19, 24, 
	29, 34, 38, 42, 45, 48, 50, 54, 
	58, 60, 62, 67, 69, 71, 80, 86, 
	92, 98, 104, 106, 115, 116, 116, 116, 
	121, 126, 131, 132, 133, 134, 135, 135, 
	136, 137, 138, 138, 139, 140, 141, 141, 
	146, 151, 152, 156, 161, 166, 171, 175, 
	175, 178, 178, 178
10579 10580 10581 10582
};

static const char _json_trans_keys[] = {
	32, 123, 9, 13, 32, 34, 125, 9, 
Chris Fallin's avatar
Chris Fallin committed
10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604
	13, 32, 34, 125, 9, 13, 34, 32, 
	58, 9, 13, 32, 93, 125, 9, 13, 
	32, 44, 125, 9, 13, 32, 44, 125, 
	9, 13, 32, 34, 9, 13, 45, 48, 
	49, 57, 48, 49, 57, 46, 69, 101, 
	48, 57, 69, 101, 48, 57, 43, 45, 
	48, 57, 48, 57, 48, 57, 46, 69, 
	101, 48, 57, 34, 92, 34, 92, 34, 
	47, 92, 98, 102, 110, 114, 116, 117, 
	48, 57, 65, 70, 97, 102, 48, 57, 
	65, 70, 97, 102, 48, 57, 65, 70, 
	97, 102, 48, 57, 65, 70, 97, 102, 
	34, 92, 34, 45, 91, 102, 110, 116, 
	123, 48, 57, 34, 32, 93, 125, 9, 
	13, 32, 44, 93, 9, 13, 32, 93, 
	125, 9, 13, 97, 108, 115, 101, 117, 
	108, 108, 114, 117, 101, 32, 34, 125, 
	9, 13, 32, 34, 125, 9, 13, 34, 
	32, 58, 9, 13, 32, 93, 125, 9, 
	13, 32, 44, 125, 9, 13, 32, 44, 
	125, 9, 13, 32, 34, 9, 13, 32, 
	9, 13, 0
10605 10606 10607
};

static const char _json_single_lengths[] = {
Chris Fallin's avatar
Chris Fallin committed
10608
	0, 2, 3, 3, 1, 2, 3, 3, 
10609 10610
	3, 2, 2, 1, 3, 0, 2, 2, 
	0, 0, 3, 2, 2, 9, 0, 0, 
Chris Fallin's avatar
Chris Fallin committed
10611 10612
	0, 0, 2, 7, 1, 0, 0, 3, 
	3, 3, 1, 1, 1, 1, 0, 1, 
10613
	1, 1, 0, 1, 1, 1, 0, 3, 
Chris Fallin's avatar
Chris Fallin committed
10614
	3, 1, 2, 3, 3, 3, 2, 0, 
10615 10616 10617 10618
	1, 0, 0, 0
};

static const char _json_range_lengths[] = {
Chris Fallin's avatar
Chris Fallin committed
10619
	0, 1, 1, 1, 0, 1, 1, 1, 
10620 10621
	1, 1, 1, 1, 0, 1, 1, 1, 
	1, 1, 1, 0, 0, 0, 3, 3, 
Chris Fallin's avatar
Chris Fallin committed
10622 10623
	3, 3, 0, 1, 0, 0, 0, 1, 
	1, 1, 0, 0, 0, 0, 0, 0, 
10624
	0, 0, 0, 0, 0, 0, 0, 1, 
Chris Fallin's avatar
Chris Fallin committed
10625
	1, 0, 1, 1, 1, 1, 1, 0, 
10626 10627 10628 10629
	1, 0, 0, 0
};

static const short _json_index_offsets[] = {
Chris Fallin's avatar
Chris Fallin committed
10630 10631 10632 10633 10634 10635 10636 10637
	0, 0, 4, 9, 14, 16, 20, 25, 
	30, 35, 39, 43, 46, 50, 52, 56, 
	60, 62, 64, 69, 72, 75, 85, 89, 
	93, 97, 101, 104, 113, 115, 116, 117, 
	122, 127, 132, 134, 136, 138, 140, 141, 
	143, 145, 147, 148, 150, 152, 154, 155, 
	160, 165, 167, 171, 176, 181, 186, 190, 
	191, 194, 195, 196
10638 10639 10640 10641
};

static const char _json_indicies[] = {
	0, 2, 0, 1, 3, 4, 5, 3, 
Chris Fallin's avatar
Chris Fallin committed
10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655
	1, 6, 7, 8, 6, 1, 9, 1, 
	10, 11, 10, 1, 11, 1, 1, 11, 
	12, 13, 14, 15, 13, 1, 16, 17, 
	8, 16, 1, 17, 7, 17, 1, 18, 
	19, 20, 1, 19, 20, 1, 22, 23, 
	23, 21, 24, 1, 23, 23, 24, 21, 
	25, 25, 26, 1, 26, 1, 26, 21, 
	22, 23, 23, 20, 21, 28, 29, 27, 
	31, 32, 30, 33, 33, 33, 33, 33, 
	33, 33, 33, 34, 1, 35, 35, 35, 
	1, 36, 36, 36, 1, 37, 37, 37, 
	1, 38, 38, 38, 1, 40, 41, 39, 
	42, 43, 44, 45, 46, 47, 48, 43, 
	1, 49, 1, 50, 51, 53, 54, 1, 
10656
	53, 52, 55, 56, 54, 55, 1, 56, 
Chris Fallin's avatar
Chris Fallin committed
10657 10658 10659 10660 10661 10662 10663 10664 10665
	1, 1, 56, 52, 57, 1, 58, 1, 
	59, 1, 60, 1, 61, 62, 1, 63, 
	1, 64, 1, 65, 66, 1, 67, 1, 
	68, 1, 69, 70, 71, 72, 70, 1, 
	73, 74, 75, 73, 1, 76, 1, 77, 
	78, 77, 1, 78, 1, 1, 78, 79, 
	80, 81, 82, 80, 1, 83, 84, 75, 
	83, 1, 84, 74, 84, 1, 85, 86, 
	86, 1, 1, 1, 1, 0
10666 10667 10668 10669
};

static const char _json_trans_targs[] = {
	1, 0, 2, 3, 4, 56, 3, 4, 
Chris Fallin's avatar
Chris Fallin committed
10670 10671 10672 10673 10674 10675 10676 10677 10678 10679
	56, 5, 5, 6, 7, 8, 9, 56, 
	8, 9, 11, 12, 18, 57, 13, 15, 
	14, 16, 17, 20, 58, 21, 20, 58, 
	21, 19, 22, 23, 24, 25, 26, 20, 
	58, 21, 28, 30, 31, 34, 39, 43, 
	47, 29, 59, 59, 32, 31, 29, 32, 
	33, 35, 36, 37, 38, 59, 40, 41, 
	42, 59, 44, 45, 46, 59, 48, 49, 
	55, 48, 49, 55, 50, 50, 51, 52, 
	53, 54, 55, 53, 54, 59, 56
10680 10681 10682
};

static const char _json_trans_actions[] = {
Chris Fallin's avatar
Chris Fallin committed
10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693
	0, 0, 0, 21, 77, 53, 0, 47, 
	23, 17, 0, 0, 15, 19, 19, 50, 
	0, 0, 0, 0, 0, 1, 0, 0, 
	0, 0, 0, 3, 13, 0, 0, 35, 
	5, 11, 0, 38, 7, 7, 7, 41, 
	44, 9, 62, 56, 25, 0, 0, 0, 
	31, 29, 33, 59, 15, 0, 27, 0, 
	0, 0, 0, 0, 0, 68, 0, 0, 
	0, 71, 0, 0, 0, 65, 21, 77, 
	53, 0, 47, 23, 17, 0, 0, 15, 
	19, 19, 50, 0, 0, 74, 0
10694 10695 10696 10697 10698 10699 10700 10701 10702 10703
};

static const int json_start = 1;

static const int json_en_number_machine = 10;
static const int json_en_string_machine = 19;
static const int json_en_value_machine = 27;
static const int json_en_main = 1;


10704
#line 1154 "upb/json/parser.rl"
10705 10706 10707 10708 10709 10710

size_t parse(void *closure, const void *hd, const char *buf, size_t size,
             const upb_bufhandle *handle) {
  UPB_UNUSED(hd);
  UPB_UNUSED(handle);
  upb_json_parser *parser = closure;
Chris Fallin's avatar
Chris Fallin committed
10711
  parser->handle = handle;
10712 10713 10714 10715 10716 10717 10718 10719 10720

  // Variables used by Ragel's generated code.
  int cs = parser->current_state;
  int *stack = parser->parser_stack;
  int top = parser->parser_top;

  const char *p = buf;
  const char *pe = buf + size;

Chris Fallin's avatar
Chris Fallin committed
10721 10722
  capture_resume(parser, buf);

10723
  
10724
#line 1232 "upb/json/parser.c"
10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798
	{
	int _klen;
	unsigned int _trans;
	const char *_acts;
	unsigned int _nacts;
	const char *_keys;

	if ( p == pe )
		goto _test_eof;
	if ( cs == 0 )
		goto _out;
_resume:
	_keys = _json_trans_keys + _json_key_offsets[cs];
	_trans = _json_index_offsets[cs];

	_klen = _json_single_lengths[cs];
	if ( _klen > 0 ) {
		const char *_lower = _keys;
		const char *_mid;
		const char *_upper = _keys + _klen - 1;
		while (1) {
			if ( _upper < _lower )
				break;

			_mid = _lower + ((_upper-_lower) >> 1);
			if ( (*p) < *_mid )
				_upper = _mid - 1;
			else if ( (*p) > *_mid )
				_lower = _mid + 1;
			else {
				_trans += (unsigned int)(_mid - _keys);
				goto _match;
			}
		}
		_keys += _klen;
		_trans += _klen;
	}

	_klen = _json_range_lengths[cs];
	if ( _klen > 0 ) {
		const char *_lower = _keys;
		const char *_mid;
		const char *_upper = _keys + (_klen<<1) - 2;
		while (1) {
			if ( _upper < _lower )
				break;

			_mid = _lower + (((_upper-_lower) >> 1) & ~1);
			if ( (*p) < _mid[0] )
				_upper = _mid - 2;
			else if ( (*p) > _mid[1] )
				_lower = _mid + 2;
			else {
				_trans += (unsigned int)((_mid - _keys)>>1);
				goto _match;
			}
		}
		_trans += _klen;
	}

_match:
	_trans = _json_indicies[_trans];
	cs = _json_trans_targs[_trans];

	if ( _json_trans_actions[_trans] == 0 )
		goto _again;

	_acts = _json_actions + _json_trans_actions[_trans];
	_nacts = (unsigned int) *_acts++;
	while ( _nacts-- > 0 )
	{
		switch ( *_acts++ )
		{
	case 0:
10799
#line 1066 "upb/json/parser.rl"
10800 10801 10802
	{ p--; {cs = stack[--top]; goto _again;} }
	break;
	case 1:
10803
#line 1067 "upb/json/parser.rl"
10804 10805 10806
	{ p--; {stack[top++] = cs; cs = 10; goto _again;} }
	break;
	case 2:
10807
#line 1071 "upb/json/parser.rl"
10808 10809 10810
	{ start_text(parser, p); }
	break;
	case 3:
10811
#line 1072 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10812
	{ CHECK_RETURN_TOP(end_text(parser, p)); }
10813 10814
	break;
	case 4:
10815
#line 1078 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10816
	{ start_hex(parser); }
10817 10818
	break;
	case 5:
10819
#line 1079 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10820
	{ hexdigit(parser, p); }
10821 10822
	break;
	case 6:
10823
#line 1080 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10824
	{ CHECK_RETURN_TOP(end_hex(parser)); }
10825 10826
	break;
	case 7:
10827
#line 1086 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10828
	{ CHECK_RETURN_TOP(escape(parser, p)); }
10829 10830
	break;
	case 8:
10831
#line 1092 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10832
	{ p--; {cs = stack[--top]; goto _again;} }
10833 10834
	break;
	case 9:
10835
#line 1095 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10836
	{ {stack[top++] = cs; cs = 19; goto _again;} }
10837 10838
	break;
	case 10:
10839
#line 1097 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10840
	{ p--; {stack[top++] = cs; cs = 27; goto _again;} }
10841 10842
	break;
	case 11:
10843
#line 1102 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10844
	{ start_member(parser); }
10845 10846
	break;
	case 12:
10847
#line 1103 "upb/json/parser.rl"
10848
	{ CHECK_RETURN_TOP(end_membername(parser)); }
10849 10850
	break;
	case 13:
10851
#line 1106 "upb/json/parser.rl"
10852
	{ end_member(parser); }
10853 10854
	break;
	case 14:
10855
#line 1112 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10856
	{ start_object(parser); }
10857 10858
	break;
	case 15:
10859
#line 1115 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10860
	{ end_object(parser); }
10861 10862
	break;
	case 16:
10863
#line 1121 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10864
	{ CHECK_RETURN_TOP(start_array(parser)); }
10865 10866
	break;
	case 17:
10867
#line 1125 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10868
	{ end_array(parser); }
10869 10870
	break;
	case 18:
10871
#line 1130 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10872
	{ start_number(parser, p); }
10873 10874
	break;
	case 19:
10875
#line 1131 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10876
	{ CHECK_RETURN_TOP(end_number(parser, p)); }
10877 10878
	break;
	case 20:
10879
#line 1133 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10880
	{ CHECK_RETURN_TOP(start_stringval(parser)); }
10881 10882
	break;
	case 21:
10883
#line 1134 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10884
	{ CHECK_RETURN_TOP(end_stringval(parser)); }
10885 10886
	break;
	case 22:
10887
#line 1136 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10888
	{ CHECK_RETURN_TOP(parser_putbool(parser, true)); }
10889 10890
	break;
	case 23:
10891
#line 1138 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10892
	{ CHECK_RETURN_TOP(parser_putbool(parser, false)); }
10893 10894
	break;
	case 24:
10895
#line 1140 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10896
	{ /* null value */ }
10897 10898
	break;
	case 25:
10899
#line 1142 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10900
	{ CHECK_RETURN_TOP(start_subobject(parser)); }
10901 10902
	break;
	case 26:
10903
#line 1143 "upb/json/parser.rl"
Chris Fallin's avatar
Chris Fallin committed
10904 10905 10906
	{ end_subobject(parser); }
	break;
	case 27:
10907
#line 1148 "upb/json/parser.rl"
10908 10909
	{ p--; {cs = stack[--top]; goto _again;} }
	break;
10910
#line 1418 "upb/json/parser.c"
10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922
		}
	}

_again:
	if ( cs == 0 )
		goto _out;
	if ( ++p != pe )
		goto _resume;
	_test_eof: {}
	_out: {}
	}

10923
#line 1173 "upb/json/parser.rl"
10924 10925 10926

  if (p != pe) {
    upb_status_seterrf(parser->status, "Parse error at %s\n", p);
Chris Fallin's avatar
Chris Fallin committed
10927 10928
  } else {
    capture_suspend(parser, &p);
10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942
  }

error:
  // Save parsing state back to parser.
  parser->current_state = cs;
  parser->parser_top = top;

  return p - buf;
}

bool end(void *closure, const void *hd) {
  UPB_UNUSED(closure);
  UPB_UNUSED(hd);

10943 10944 10945 10946 10947 10948 10949
  // Prevent compile warning on unused static constants.
  UPB_UNUSED(json_start);
  UPB_UNUSED(json_en_number_machine);
  UPB_UNUSED(json_en_string_machine);
  UPB_UNUSED(json_en_value_machine);
  UPB_UNUSED(json_en_main);
  return true;
10950 10951
}

10952
static void json_parser_reset(upb_json_parser *p) {
10953 10954
  p->top = p->stack;
  p->top->f = NULL;
10955 10956
  p->top->is_map = false;
  p->top->is_mapentry = false;
10957 10958 10959 10960 10961

  int cs;
  int top;
  // Emit Ragel initialization of the parser.
  
10962
#line 1470 "upb/json/parser.c"
10963 10964 10965 10966 10967
	{
	cs = json_start;
	top = 0;
	}

10968
#line 1211 "upb/json/parser.rl"
10969 10970
  p->current_state = cs;
  p->parser_top = top;
Chris Fallin's avatar
Chris Fallin committed
10971 10972 10973
  accumulate_clear(p);
  p->multipart_state = MULTIPART_INACTIVE;
  p->capture = NULL;
10974
  p->accumulated = NULL;
10975 10976
}

10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003

/* Public API *****************************************************************/

upb_json_parser *upb_json_parser_create(upb_env *env, upb_sink *output) {
#ifndef NDEBUG
  const size_t size_before = upb_env_bytesallocated(env);
#endif
  upb_json_parser *p = upb_env_malloc(env, sizeof(upb_json_parser));
  if (!p) return false;

  p->env = env;
  p->limit = p->stack + UPB_JSON_MAX_DEPTH;
  p->accumulate_buf = NULL;
  p->accumulate_buf_size = 0;
  upb_byteshandler_init(&p->input_handler_);
  upb_byteshandler_setstring(&p->input_handler_, parse, NULL);
  upb_byteshandler_setendstr(&p->input_handler_, end, NULL);
  upb_bytessink_reset(&p->input_, &p->input_handler_, p);

  json_parser_reset(p);
  upb_sink_reset(&p->top->sink, output->handlers, output->closure);
  p->top->m = upb_handlers_msgdef(output->handlers);

  // If this fails, uncomment and increase the value in parser.h.
  // fprintf(stderr, "%zd\n", upb_env_bytesallocated(env) - size_before);
  assert(upb_env_bytesallocated(env) - size_before <= UPB_JSON_PARSER_SIZE);
  return p;
11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024
}

upb_bytessink *upb_json_parser_input(upb_json_parser *p) {
  return &p->input_;
}
/*
 * upb - a minimalist implementation of protocol buffers.
 *
 * Copyright (c) 2014 Google Inc.  See LICENSE for details.
 * Author: Josh Haberman <jhaberman@gmail.com>
 *
 * This currently uses snprintf() to format primitives, and could be optimized
 * further.
 */


#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>

11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045
struct upb_json_printer {
  upb_sink input_;
  // BytesSink closure.
  void *subc_;
  upb_bytessink *output_;

  // We track the depth so that we know when to emit startstr/endstr on the
  // output.
  int depth_;

  // Have we emitted the first element? This state is necessary to emit commas
  // without leaving a trailing comma in arrays/maps. We keep this state per
  // frame depth.
  //
  // Why max_depth * 2? UPB_MAX_HANDLER_DEPTH counts depth as nested messages.
  // We count frames (contexts in which we separate elements by commas) as both
  // repeated fields and messages (maps), and the worst case is a
  // message->repeated field->submessage->repeated field->... nesting.
  bool first_elem_[UPB_MAX_HANDLER_DEPTH * 2];
};

11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192
// StringPiece; a pointer plus a length.
typedef struct {
  const char *ptr;
  size_t len;
} strpc;

strpc *newstrpc(upb_handlers *h, const upb_fielddef *f) {
  strpc *ret = malloc(sizeof(*ret));
  ret->ptr = upb_fielddef_name(f);
  ret->len = strlen(ret->ptr);
  upb_handlers_addcleanup(h, ret, free);
  return ret;
}

// ------------ JSON string printing: values, maps, arrays --------------------

static void print_data(
    upb_json_printer *p, const char *buf, unsigned int len) {
  // TODO: Will need to change if we support pushback from the sink.
  size_t n = upb_bytessink_putbuf(p->output_, p->subc_, buf, len, NULL);
  UPB_ASSERT_VAR(n, n == len);
}

static void print_comma(upb_json_printer *p) {
  if (!p->first_elem_[p->depth_]) {
    print_data(p, ",", 1);
  }
  p->first_elem_[p->depth_] = false;
}

// Helpers that print properly formatted elements to the JSON output stream.

// Used for escaping control chars in strings.
static const char kControlCharLimit = 0x20;

static inline bool is_json_escaped(char c) {
  // See RFC 4627.
  unsigned char uc = (unsigned char)c;
  return uc < kControlCharLimit || uc == '"' || uc == '\\';
}

static inline char* json_nice_escape(char c) {
  switch (c) {
    case '"':  return "\\\"";
    case '\\': return "\\\\";
    case '\b': return "\\b";
    case '\f': return "\\f";
    case '\n': return "\\n";
    case '\r': return "\\r";
    case '\t': return "\\t";
    default:   return NULL;
  }
}

// Write a properly escaped string chunk. The surrounding quotes are *not*
// printed; this is so that the caller has the option of emitting the string
// content in chunks.
static void putstring(upb_json_printer *p, const char *buf, unsigned int len) {
  const char* unescaped_run = NULL;
  for (unsigned int i = 0; i < len; i++) {
    char c = buf[i];
    // Handle escaping.
    if (is_json_escaped(c)) {
      // Use a "nice" escape, like \n, if one exists for this character.
      const char* escape = json_nice_escape(c);
      // If we don't have a specific 'nice' escape code, use a \uXXXX-style
      // escape.
      char escape_buf[8];
      if (!escape) {
        unsigned char byte = (unsigned char)c;
        snprintf(escape_buf, sizeof(escape_buf), "\\u%04x", (int)byte);
        escape = escape_buf;
      }

      // N.B. that we assume that the input encoding is equal to the output
      // encoding (both UTF-8 for  now), so for chars >= 0x20 and != \, ", we
      // can simply pass the bytes through.

      // If there's a current run of unescaped chars, print that run first.
      if (unescaped_run) {
        print_data(p, unescaped_run, &buf[i] - unescaped_run);
        unescaped_run = NULL;
      }
      // Then print the escape code.
      print_data(p, escape, strlen(escape));
    } else {
      // Add to the current unescaped run of characters.
      if (unescaped_run == NULL) {
        unescaped_run = &buf[i];
      }
    }
  }

  // If the string ended in a run of unescaped characters, print that last run.
  if (unescaped_run) {
    print_data(p, unescaped_run, &buf[len] - unescaped_run);
  }
}

#define CHKLENGTH(x) if (!(x)) return -1;

// Helpers that format floating point values according to our custom formats.
// Right now we use %.8g and %.17g for float/double, respectively, to match
// proto2::util::JsonFormat's defaults.  May want to change this later.

static size_t fmt_double(double val, char* buf, size_t length) {
  size_t n = snprintf(buf, length, "%.17g", val);
  CHKLENGTH(n > 0 && n < length);
  return n;
}

static size_t fmt_float(float val, char* buf, size_t length) {
  size_t n = snprintf(buf, length, "%.8g", val);
  CHKLENGTH(n > 0 && n < length);
  return n;
}

static size_t fmt_bool(bool val, char* buf, size_t length) {
  size_t n = snprintf(buf, length, "%s", (val ? "true" : "false"));
  CHKLENGTH(n > 0 && n < length);
  return n;
}

static size_t fmt_int64(long val, char* buf, size_t length) {
  size_t n = snprintf(buf, length, "%ld", val);
  CHKLENGTH(n > 0 && n < length);
  return n;
}

static size_t fmt_uint64(unsigned long long val, char* buf, size_t length) {
  size_t n = snprintf(buf, length, "%llu", val);
  CHKLENGTH(n > 0 && n < length);
  return n;
}

// Print a map key given a field name. Called by scalar field handlers and by
// startseq for repeated fields.
static bool putkey(void *closure, const void *handler_data) {
  upb_json_printer *p = closure;
  const strpc *key = handler_data;
  print_comma(p);
  print_data(p, "\"", 1);
  putstring(p, key->ptr, key->len);
  print_data(p, "\":", 2);
  return true;
}

11193
#define CHKFMT(val) if ((val) == (size_t)-1) return false;
11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212
#define CHK(val)    if (!(val)) return false;

#define TYPE_HANDLERS(type, fmt_func)                                        \
  static bool put##type(void *closure, const void *handler_data, type val) { \
    upb_json_printer *p = closure;                                           \
    UPB_UNUSED(handler_data);                                                \
    char data[64];                                                           \
    size_t length = fmt_func(val, data, sizeof(data));                       \
    CHKFMT(length);                                                          \
    print_data(p, data, length);                                             \
    return true;                                                             \
  }                                                                          \
  static bool scalar_##type(void *closure, const void *handler_data,         \
                            type val) {                                      \
    CHK(putkey(closure, handler_data));                                      \
    CHK(put##type(closure, handler_data, val));                              \
    return true;                                                             \
  }                                                                          \
  static bool repeated_##type(void *closure, const void *handler_data,       \
11213
                              type val) {                                    \
11214 11215 11216 11217 11218 11219
    upb_json_printer *p = closure;                                           \
    print_comma(p);                                                          \
    CHK(put##type(closure, handler_data, val));                              \
    return true;                                                             \
  }

11220 11221 11222 11223 11224 11225 11226 11227 11228 11229
#define TYPE_HANDLERS_MAPKEY(type, fmt_func)                                 \
  static bool putmapkey_##type(void *closure, const void *handler_data,      \
                            type val) {                                      \
    upb_json_printer *p = closure;                                           \
    print_data(p, "\"", 1);                                                  \
    CHK(put##type(closure, handler_data, val));                              \
    print_data(p, "\":", 2);                                                 \
    return true;                                                             \
  }

11230 11231 11232 11233 11234 11235 11236 11237
TYPE_HANDLERS(double,   fmt_double);
TYPE_HANDLERS(float,    fmt_float);
TYPE_HANDLERS(bool,     fmt_bool);
TYPE_HANDLERS(int32_t,  fmt_int64);
TYPE_HANDLERS(uint32_t, fmt_int64);
TYPE_HANDLERS(int64_t,  fmt_int64);
TYPE_HANDLERS(uint64_t, fmt_uint64);

11238 11239 11240 11241 11242 11243 11244
// double and float are not allowed to be map keys.
TYPE_HANDLERS_MAPKEY(bool,     fmt_bool);
TYPE_HANDLERS_MAPKEY(int32_t,  fmt_int64);
TYPE_HANDLERS_MAPKEY(uint32_t, fmt_int64);
TYPE_HANDLERS_MAPKEY(int64_t,  fmt_int64);
TYPE_HANDLERS_MAPKEY(uint64_t, fmt_uint64);

11245
#undef TYPE_HANDLERS
11246
#undef TYPE_HANDLERS_MAPKEY
11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270

typedef struct {
  void *keyname;
  const upb_enumdef *enumdef;
} EnumHandlerData;

static bool scalar_enum(void *closure, const void *handler_data,
                        int32_t val) {
  const EnumHandlerData *hd = handler_data;
  upb_json_printer *p = closure;
  CHK(putkey(closure, hd->keyname));

  const char *symbolic_name = upb_enumdef_iton(hd->enumdef, val);
  if (symbolic_name) {
    print_data(p, "\"", 1);
    putstring(p, symbolic_name, strlen(symbolic_name));
    print_data(p, "\"", 1);
  } else {
    putint32_t(closure, NULL, val);
  }

  return true;
}

11271 11272 11273 11274
static void print_enum_symbolic_name(upb_json_printer *p,
                                     const upb_enumdef *def,
                                     int32_t val) {
  const char *symbolic_name = upb_enumdef_iton(def, val);
11275 11276 11277 11278 11279
  if (symbolic_name) {
    print_data(p, "\"", 1);
    putstring(p, symbolic_name, strlen(symbolic_name));
    print_data(p, "\"", 1);
  } else {
11280
    putint32_t(p, NULL, val);
11281
  }
11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300
}

static bool repeated_enum(void *closure, const void *handler_data,
                          int32_t val) {
  const EnumHandlerData *hd = handler_data;
  upb_json_printer *p = closure;
  print_comma(p);

  print_enum_symbolic_name(p, hd->enumdef, val);

  return true;
}

static bool mapvalue_enum(void *closure, const void *handler_data,
                          int32_t val) {
  const EnumHandlerData *hd = handler_data;
  upb_json_printer *p = closure;

  print_enum_symbolic_name(p, hd->enumdef, val);
11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315

  return true;
}

static void *scalar_startsubmsg(void *closure, const void *handler_data) {
  return putkey(closure, handler_data) ? closure : UPB_BREAK;
}

static void *repeated_startsubmsg(void *closure, const void *handler_data) {
  UPB_UNUSED(handler_data);
  upb_json_printer *p = closure;
  print_comma(p);
  return closure;
}

11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327
static void start_frame(upb_json_printer *p) {
  p->depth_++;
  p->first_elem_[p->depth_] = true;
  print_data(p, "{", 1);
}

static void end_frame(upb_json_printer *p) {
  print_data(p, "}", 1);
  p->depth_--;
}

static bool printer_startmsg(void *closure, const void *handler_data) {
11328 11329
  UPB_UNUSED(handler_data);
  upb_json_printer *p = closure;
11330
  if (p->depth_ == 0) {
11331 11332
    upb_bytessink_start(p->output_, 0, &p->subc_);
  }
11333
  start_frame(p);
11334 11335 11336
  return true;
}

11337
static bool printer_endmsg(void *closure, const void *handler_data, upb_status *s) {
11338 11339 11340
  UPB_UNUSED(handler_data);
  UPB_UNUSED(s);
  upb_json_printer *p = closure;
11341 11342
  end_frame(p);
  if (p->depth_ == 0) {
11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364
    upb_bytessink_end(p->output_);
  }
  return true;
}

static void *startseq(void *closure, const void *handler_data) {
  upb_json_printer *p = closure;
  CHK(putkey(closure, handler_data));
  p->depth_++;
  p->first_elem_[p->depth_] = true;
  print_data(p, "[", 1);
  return closure;
}

static bool endseq(void *closure, const void *handler_data) {
  UPB_UNUSED(handler_data);
  upb_json_printer *p = closure;
  print_data(p, "]", 1);
  p->depth_--;
  return true;
}

11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381
static void *startmap(void *closure, const void *handler_data) {
  upb_json_printer *p = closure;
  CHK(putkey(closure, handler_data));
  p->depth_++;
  p->first_elem_[p->depth_] = true;
  print_data(p, "{", 1);
  return closure;
}

static bool endmap(void *closure, const void *handler_data) {
  UPB_UNUSED(handler_data);
  upb_json_printer *p = closure;
  print_data(p, "}", 1);
  p->depth_--;
  return true;
}

11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495
static size_t putstr(void *closure, const void *handler_data, const char *str,
                     size_t len, const upb_bufhandle *handle) {
  UPB_UNUSED(handler_data);
  UPB_UNUSED(handle);
  upb_json_printer *p = closure;
  putstring(p, str, len);
  return len;
}

// This has to Base64 encode the bytes, because JSON has no "bytes" type.
static size_t putbytes(void *closure, const void *handler_data, const char *str,
                       size_t len, const upb_bufhandle *handle) {
  UPB_UNUSED(handler_data);
  UPB_UNUSED(handle);
  upb_json_printer *p = closure;

  // This is the regular base64, not the "web-safe" version.
  static const char base64[] =
      "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";

  // Base64-encode.
  char data[16000];
  const char *limit = data + sizeof(data);
  const unsigned char *from = (const unsigned char*)str;
  char *to = data;
  size_t remaining = len;
  while (remaining > 2) {
    // TODO(haberman): handle encoded lengths > sizeof(data)
    UPB_ASSERT_VAR(limit, (limit - to) >= 4);

    to[0] = base64[from[0] >> 2];
    to[1] = base64[((from[0] & 0x3) << 4) | (from[1] >> 4)];
    to[2] = base64[((from[1] & 0xf) << 2) | (from[2] >> 6)];
    to[3] = base64[from[2] & 0x3f];

    remaining -= 3;
    to += 4;
    from += 3;
  }

  switch (remaining) {
    case 2:
      to[0] = base64[from[0] >> 2];
      to[1] = base64[((from[0] & 0x3) << 4) | (from[1] >> 4)];
      to[2] = base64[(from[1] & 0xf) << 2];
      to[3] = '=';
      to += 4;
      from += 2;
      break;
    case 1:
      to[0] = base64[from[0] >> 2];
      to[1] = base64[((from[0] & 0x3) << 4)];
      to[2] = '=';
      to[3] = '=';
      to += 4;
      from += 1;
      break;
  }

  size_t bytes = to - data;
  print_data(p, "\"", 1);
  putstring(p, data, bytes);
  print_data(p, "\"", 1);
  return len;
}

static void *scalar_startstr(void *closure, const void *handler_data,
                             size_t size_hint) {
  UPB_UNUSED(handler_data);
  UPB_UNUSED(size_hint);
  upb_json_printer *p = closure;
  CHK(putkey(closure, handler_data));
  print_data(p, "\"", 1);
  return p;
}

static size_t scalar_str(void *closure, const void *handler_data,
                         const char *str, size_t len,
                         const upb_bufhandle *handle) {
  CHK(putstr(closure, handler_data, str, len, handle));
  return len;
}

static bool scalar_endstr(void *closure, const void *handler_data) {
  UPB_UNUSED(handler_data);
  upb_json_printer *p = closure;
  print_data(p, "\"", 1);
  return true;
}

static void *repeated_startstr(void *closure, const void *handler_data,
                               size_t size_hint) {
  UPB_UNUSED(handler_data);
  UPB_UNUSED(size_hint);
  upb_json_printer *p = closure;
  print_comma(p);
  print_data(p, "\"", 1);
  return p;
}

static size_t repeated_str(void *closure, const void *handler_data,
                           const char *str, size_t len,
                           const upb_bufhandle *handle) {
  CHK(putstr(closure, handler_data, str, len, handle));
  return len;
}

static bool repeated_endstr(void *closure, const void *handler_data) {
  UPB_UNUSED(handler_data);
  upb_json_printer *p = closure;
  print_data(p, "\"", 1);
  return true;
}

11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525
static void *mapkeyval_startstr(void *closure, const void *handler_data,
                                size_t size_hint) {
  UPB_UNUSED(handler_data);
  UPB_UNUSED(size_hint);
  upb_json_printer *p = closure;
  print_data(p, "\"", 1);
  return p;
}

static size_t mapkey_str(void *closure, const void *handler_data,
                         const char *str, size_t len,
                         const upb_bufhandle *handle) {
  CHK(putstr(closure, handler_data, str, len, handle));
  return len;
}

static bool mapkey_endstr(void *closure, const void *handler_data) {
  UPB_UNUSED(handler_data);
  upb_json_printer *p = closure;
  print_data(p, "\":", 2);
  return true;
}

static bool mapvalue_endstr(void *closure, const void *handler_data) {
  UPB_UNUSED(handler_data);
  upb_json_printer *p = closure;
  print_data(p, "\"", 1);
  return true;
}

11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542
static size_t scalar_bytes(void *closure, const void *handler_data,
                           const char *str, size_t len,
                           const upb_bufhandle *handle) {
  CHK(putkey(closure, handler_data));
  CHK(putbytes(closure, handler_data, str, len, handle));
  return len;
}

static size_t repeated_bytes(void *closure, const void *handler_data,
                             const char *str, size_t len,
                             const upb_bufhandle *handle) {
  upb_json_printer *p = closure;
  print_comma(p);
  CHK(putbytes(closure, handler_data, str, len, handle));
  return len;
}

11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574
static size_t mapkey_bytes(void *closure, const void *handler_data,
                           const char *str, size_t len,
                           const upb_bufhandle *handle) {
  upb_json_printer *p = closure;
  CHK(putbytes(closure, handler_data, str, len, handle));
  print_data(p, ":", 1);
  return len;
}

static void set_enum_hd(upb_handlers *h,
                        const upb_fielddef *f,
                        upb_handlerattr *attr) {
  EnumHandlerData *hd = malloc(sizeof(EnumHandlerData));
  hd->enumdef = (const upb_enumdef *)upb_fielddef_subdef(f);
  hd->keyname = newstrpc(h, f);
  upb_handlers_addcleanup(h, hd, free);
  upb_handlerattr_sethandlerdata(attr, hd);
}

// Set up handlers for a mapentry submessage (i.e., an individual key/value pair
// in a map).
//
// TODO: Handle missing key, missing value, out-of-order key/value, or repeated
// key or value cases properly. The right way to do this is to allocate a
// temporary structure at the start of a mapentry submessage, store key and
// value data in it as key and value handlers are called, and then print the
// key/value pair once at the end of the submessage. If we don't do this, we
// should at least detect the case and throw an error. However, so far all of
// our sources that emit mapentry messages do so canonically (with one key
// field, and then one value field), so this is not a pressing concern at the
// moment.
void printer_sethandlers_mapentry(const void *closure, upb_handlers *h) {
11575
  UPB_UNUSED(closure);
11576 11577 11578 11579 11580 11581 11582
  const upb_msgdef *md = upb_handlers_msgdef(h);

  // A mapentry message is printed simply as '"key": value'. Rather than
  // special-case key and value for every type below, we just handle both
  // fields explicitly here.
  const upb_fielddef* key_field = upb_msgdef_itof(md, UPB_MAPENTRY_KEY);
  const upb_fielddef* value_field = upb_msgdef_itof(md, UPB_MAPENTRY_VALUE);
11583 11584

  upb_handlerattr empty_attr = UPB_HANDLERATTR_INITIALIZER;
11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683

  switch (upb_fielddef_type(key_field)) {
    case UPB_TYPE_INT32:
      upb_handlers_setint32(h, key_field, putmapkey_int32_t, &empty_attr);
      break;
    case UPB_TYPE_INT64:
      upb_handlers_setint64(h, key_field, putmapkey_int64_t, &empty_attr);
      break;
    case UPB_TYPE_UINT32:
      upb_handlers_setuint32(h, key_field, putmapkey_uint32_t, &empty_attr);
      break;
    case UPB_TYPE_UINT64:
      upb_handlers_setuint64(h, key_field, putmapkey_uint64_t, &empty_attr);
      break;
    case UPB_TYPE_BOOL:
      upb_handlers_setbool(h, key_field, putmapkey_bool, &empty_attr);
      break;
    case UPB_TYPE_STRING:
      upb_handlers_setstartstr(h, key_field, mapkeyval_startstr, &empty_attr);
      upb_handlers_setstring(h, key_field, mapkey_str, &empty_attr);
      upb_handlers_setendstr(h, key_field, mapkey_endstr, &empty_attr);
      break;
    case UPB_TYPE_BYTES:
      upb_handlers_setstring(h, key_field, mapkey_bytes, &empty_attr);
      break;
    default:
      assert(false);
      break;
  }

  switch (upb_fielddef_type(value_field)) {
    case UPB_TYPE_INT32:
      upb_handlers_setint32(h, value_field, putint32_t, &empty_attr);
      break;
    case UPB_TYPE_INT64:
      upb_handlers_setint64(h, value_field, putint64_t, &empty_attr);
      break;
    case UPB_TYPE_UINT32:
      upb_handlers_setuint32(h, value_field, putuint32_t, &empty_attr);
      break;
    case UPB_TYPE_UINT64:
      upb_handlers_setuint64(h, value_field, putuint64_t, &empty_attr);
      break;
    case UPB_TYPE_BOOL:
      upb_handlers_setbool(h, value_field, putbool, &empty_attr);
      break;
    case UPB_TYPE_FLOAT:
      upb_handlers_setfloat(h, value_field, putfloat, &empty_attr);
      break;
    case UPB_TYPE_DOUBLE:
      upb_handlers_setdouble(h, value_field, putdouble, &empty_attr);
      break;
    case UPB_TYPE_STRING:
      upb_handlers_setstartstr(h, value_field, mapkeyval_startstr, &empty_attr);
      upb_handlers_setstring(h, value_field, putstr, &empty_attr);
      upb_handlers_setendstr(h, value_field, mapvalue_endstr, &empty_attr);
      break;
    case UPB_TYPE_BYTES:
      upb_handlers_setstring(h, value_field, putbytes, &empty_attr);
      break;
    case UPB_TYPE_ENUM: {
      upb_handlerattr enum_attr = UPB_HANDLERATTR_INITIALIZER;
      set_enum_hd(h, value_field, &enum_attr);
      upb_handlers_setint32(h, value_field, mapvalue_enum, &enum_attr);
      upb_handlerattr_uninit(&enum_attr);
      break;
    }
    case UPB_TYPE_MESSAGE:
      // No handler necessary -- the submsg handlers will print the message
      // as appropriate.
      break;
  }

  upb_handlerattr_uninit(&empty_attr);
}

void printer_sethandlers(const void *closure, upb_handlers *h) {
  UPB_UNUSED(closure);
  const upb_msgdef *md = upb_handlers_msgdef(h);
  bool is_mapentry = upb_msgdef_mapentry(md);
  upb_handlerattr empty_attr = UPB_HANDLERATTR_INITIALIZER;

  if (is_mapentry) {
    // mapentry messages are sufficiently different that we handle them
    // separately.
    printer_sethandlers_mapentry(closure, h);
    return;
  }

  upb_handlers_setstartmsg(h, printer_startmsg, &empty_attr);
  upb_handlers_setendmsg(h, printer_endmsg, &empty_attr);

#define TYPE(type, name, ctype)                                               \
  case type:                                                                  \
    if (upb_fielddef_isseq(f)) {                                              \
      upb_handlers_set##name(h, f, repeated_##ctype, &empty_attr);            \
    } else {                                                                  \
      upb_handlers_set##name(h, f, scalar_##ctype, &name_attr);               \
    }                                                                         \
11684 11685
    break;

11686
  upb_msg_field_iter i;
11687
  upb_msg_field_begin(&i, md);
11688
  for(; !upb_msg_field_done(&i); upb_msg_field_next(&i)) {
11689 11690 11691 11692 11693
    const upb_fielddef *f = upb_msg_iter_field(&i);

    upb_handlerattr name_attr = UPB_HANDLERATTR_INITIALIZER;
    upb_handlerattr_sethandlerdata(&name_attr, newstrpc(h, f));

11694 11695 11696 11697
    if (upb_fielddef_ismap(f)) {
      upb_handlers_setstartseq(h, f, startmap, &name_attr);
      upb_handlers_setendseq(h, f, endmap, &name_attr);
    } else if (upb_fielddef_isseq(f)) {
11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714
      upb_handlers_setstartseq(h, f, startseq, &name_attr);
      upb_handlers_setendseq(h, f, endseq, &empty_attr);
    }

    switch (upb_fielddef_type(f)) {
      TYPE(UPB_TYPE_FLOAT,  float,  float);
      TYPE(UPB_TYPE_DOUBLE, double, double);
      TYPE(UPB_TYPE_BOOL,   bool,   bool);
      TYPE(UPB_TYPE_INT32,  int32,  int32_t);
      TYPE(UPB_TYPE_UINT32, uint32, uint32_t);
      TYPE(UPB_TYPE_INT64,  int64,  int64_t);
      TYPE(UPB_TYPE_UINT64, uint64, uint64_t);
      case UPB_TYPE_ENUM: {
        // For now, we always emit symbolic names for enums. We may want an
        // option later to control this behavior, but we will wait for a real
        // need first.
        upb_handlerattr enum_attr = UPB_HANDLERATTR_INITIALIZER;
11715
        set_enum_hd(h, f, &enum_attr);
11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761

        if (upb_fielddef_isseq(f)) {
          upb_handlers_setint32(h, f, repeated_enum, &enum_attr);
        } else {
          upb_handlers_setint32(h, f, scalar_enum, &enum_attr);
        }

        upb_handlerattr_uninit(&enum_attr);
        break;
      }
      case UPB_TYPE_STRING:
        if (upb_fielddef_isseq(f)) {
          upb_handlers_setstartstr(h, f, repeated_startstr, &empty_attr);
          upb_handlers_setstring(h, f, repeated_str, &empty_attr);
          upb_handlers_setendstr(h, f, repeated_endstr, &empty_attr);
        } else {
          upb_handlers_setstartstr(h, f, scalar_startstr, &name_attr);
          upb_handlers_setstring(h, f, scalar_str, &empty_attr);
          upb_handlers_setendstr(h, f, scalar_endstr, &empty_attr);
        }
        break;
      case UPB_TYPE_BYTES:
        // XXX: this doesn't support strings that span buffers yet. The base64
        // encoder will need to be made resumable for this to work properly.
        if (upb_fielddef_isseq(f)) {
          upb_handlers_setstring(h, f, repeated_bytes, &empty_attr);
        } else {
          upb_handlers_setstring(h, f, scalar_bytes, &name_attr);
        }
        break;
      case UPB_TYPE_MESSAGE:
        if (upb_fielddef_isseq(f)) {
          upb_handlers_setstartsubmsg(h, f, repeated_startsubmsg, &name_attr);
        } else {
          upb_handlers_setstartsubmsg(h, f, scalar_startsubmsg, &name_attr);
        }
        break;
    }

    upb_handlerattr_uninit(&name_attr);
  }

  upb_handlerattr_uninit(&empty_attr);
#undef TYPE
}

11762
static void json_printer_reset(upb_json_printer *p) {
11763 11764 11765 11766
  p->depth_ = 0;
}


11767 11768 11769 11770 11771 11772 11773 11774 11775 11776
/* Public API *****************************************************************/

upb_json_printer *upb_json_printer_create(upb_env *e, const upb_handlers *h,
                                          upb_bytessink *output) {
#ifndef NDEBUG
  size_t size_before = upb_env_bytesallocated(e);
#endif

  upb_json_printer *p = upb_env_malloc(e, sizeof(upb_json_printer));
  if (!p) return NULL;
11777 11778

  p->output_ = output;
11779 11780 11781 11782 11783 11784
  json_printer_reset(p);
  upb_sink_reset(&p->input_, h, p);

  // If this fails, increase the value in printer.h.
  assert(upb_env_bytesallocated(e) - size_before <= UPB_JSON_PRINTER_SIZE);
  return p;
11785 11786 11787 11788 11789 11790 11791 11792 11793 11794
}

upb_sink *upb_json_printer_input(upb_json_printer *p) {
  return &p->input_;
}

const upb_handlers *upb_json_printer_newhandlers(const upb_msgdef *md,
                                                 const void *owner) {
  return upb_handlers_newfrozen(md, owner, printer_sethandlers, NULL);
}