map.c 25.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
// Protocol Buffers - Google's data interchange format
// Copyright 2014 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "protobuf.h"

// -----------------------------------------------------------------------------
// Basic map operations on top of upb's strtable.
35 36 37 38 39 40 41 42 43 44 45
//
// Note that we roll our own `Map` container here because, as for
// `RepeatedField`, we want a strongly-typed container. This is so that any user
// errors due to incorrect map key or value types are raised as close as
// possible to the error site, rather than at some deferred point (e.g.,
// serialization).
//
// We build our `Map` on top of upb_strtable so that we're able to take
// advantage of the native_slot storage abstraction, as RepeatedField does.
// (This is not quite a perfect mapping -- see the key conversions below -- but
// gives us full support and error-checking for all value types for free.)
46 47 48 49 50 51
// -----------------------------------------------------------------------------

// Map values are stored using the native_slot abstraction (as with repeated
// field values), but keys are a bit special. Since we use a strtable, we need
// to store keys as sequences of bytes such that equality of those bytes maps
// one-to-one to equality of keys. We store strings directly (i.e., they map to
52 53 54 55 56 57 58 59
// their own bytes) and integers as native integers (using the native_slot
// abstraction).

// Note that there is another tradeoff here in keeping string keys as native
// strings rather than Ruby strings: traversing the Map requires conversion to
// Ruby string values on every traversal, potentially creating more garbage. We
// should consider ways to cache a Ruby version of the key if this becomes an
// issue later.
60 61 62 63 64 65

// Forms a key to use with the underlying strtable from a Ruby key value. |buf|
// must point to TABLE_KEY_BUF_LENGTH bytes of temporary space, used to
// construct a key byte sequence if needed. |out_key| and |out_length| provide
// the resulting key data/length.
#define TABLE_KEY_BUF_LENGTH 8  // sizeof(uint64_t)
66 67 68 69
static VALUE table_key(Map* self, VALUE key,
                       char* buf,
                       const char** out_key,
                       size_t* out_length) {
70 71 72 73 74
  switch (self->key_type) {
    case UPB_TYPE_BYTES:
    case UPB_TYPE_STRING:
      // Strings: use string content directly.
      Check_Type(key, T_STRING);
75
      key = native_slot_encode_and_freeze_string(self->key_type, key);
76 77 78 79 80 81
      *out_key = RSTRING_PTR(key);
      *out_length = RSTRING_LEN(key);
      break;

    case UPB_TYPE_BOOL:
    case UPB_TYPE_INT32:
82
    case UPB_TYPE_INT64:
83
    case UPB_TYPE_UINT32:
84 85
    case UPB_TYPE_UINT64:
      native_slot_set(self->key_type, Qnil, buf, key);
86
      *out_key = buf;
87
      *out_length = native_slot_size(self->key_type);
88 89 90 91 92 93 94 95
      break;

    default:
      // Map constructor should not allow a Map with another key type to be
      // constructed.
      assert(false);
      break;
  }
96 97

  return key;
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
}

static VALUE table_key_to_ruby(Map* self, const char* buf, size_t length) {
  switch (self->key_type) {
    case UPB_TYPE_BYTES:
    case UPB_TYPE_STRING: {
      VALUE ret = rb_str_new(buf, length);
      rb_enc_associate(ret,
                       (self->key_type == UPB_TYPE_BYTES) ?
                       kRubyString8bitEncoding : kRubyStringUtf8Encoding);
      return ret;
    }

    case UPB_TYPE_BOOL:
    case UPB_TYPE_INT32:
    case UPB_TYPE_INT64:
    case UPB_TYPE_UINT32:
    case UPB_TYPE_UINT64:
116
      return native_slot_get(self->key_type, Qnil, buf);
117 118 119

    default:
      assert(false);
120
      return Qnil;
121 122 123 124
  }
}

static void* value_memory(upb_value* v) {
125
  return (void*)(&v->val);
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
}

// -----------------------------------------------------------------------------
// Map container type.
// -----------------------------------------------------------------------------

const rb_data_type_t Map_type = {
  "Google::Protobuf::Map",
  { Map_mark, Map_free, NULL },
};

VALUE cMap;

Map* ruby_to_Map(VALUE _self) {
  Map* self;
  TypedData_Get_Struct(_self, Map, &Map_type, self);
  return self;
}

void Map_mark(void* _self) {
  Map* self = _self;

  rb_gc_mark(self->value_type_class);
149
  rb_gc_mark(self->parse_frame);
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

  if (self->value_type == UPB_TYPE_STRING ||
      self->value_type == UPB_TYPE_BYTES ||
      self->value_type == UPB_TYPE_MESSAGE) {
    upb_strtable_iter it;
    for (upb_strtable_begin(&it, &self->table);
         !upb_strtable_done(&it);
         upb_strtable_next(&it)) {
      upb_value v = upb_strtable_iter_value(&it);
      void* mem = value_memory(&v);
      native_slot_mark(self->value_type, mem);
    }
  }
}

void Map_free(void* _self) {
  Map* self = _self;
  upb_strtable_uninit(&self->table);
  xfree(self);
}

VALUE Map_alloc(VALUE klass) {
  Map* self = ALLOC(Map);
  memset(self, 0, sizeof(Map));
  self->value_type_class = Qnil;
175
  return TypedData_Wrap_Struct(klass, &Map_type, self);
176 177
}

178
VALUE Map_set_frame(VALUE map, VALUE val) {
179
  Map* self = ruby_to_Map(map);
180 181
  self->parse_frame = val;
  return val;
182 183
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static bool needs_typeclass(upb_fieldtype_t type) {
  switch (type) {
    case UPB_TYPE_MESSAGE:
    case UPB_TYPE_ENUM:
      return true;
    default:
      return false;
  }
}

/*
 * call-seq:
 *     Map.new(key_type, value_type, value_typeclass = nil, init_hashmap = {})
 *     => new map
 *
 * Allocates a new Map container. This constructor may be called with 2, 3, or 4
 * arguments. The first two arguments are always present and are symbols (taking
 * on the same values as field-type symbols in message descriptors) that
 * indicate the type of the map key and value fields.
 *
 * The supported key types are: :int32, :int64, :uint32, :uint64, :bool,
 * :string, :bytes.
 *
 * The supported value types are: :int32, :int64, :uint32, :uint64, :bool,
 * :string, :bytes, :enum, :message.
 *
 * The third argument, value_typeclass, must be present if value_type is :enum
 * or :message. As in RepeatedField#new, this argument must be a message class
 * (for :message) or enum module (for :enum).
 *
 * The last argument, if present, provides initial content for map. Note that
 * this may be an ordinary Ruby hashmap or another Map instance with identical
216
 * key and value types. Also note that this argument may be present whether or
217 218
 * not value_typeclass is present (and it is unambiguously separate from
 * value_typeclass because value_typeclass's presence is strictly determined by
219 220 221 222
 * value_type). The contents of this initial hashmap or Map instance are
 * shallow-copied into the new Map: the original map is unmodified, but
 * references to underlying objects will be shared if the value type is a
 * message type.
223 224 225
 */
VALUE Map_init(int argc, VALUE* argv, VALUE _self) {
  Map* self = ruby_to_Map(_self);
226
  int init_value_arg;
227 228 229 230 231 232 233 234 235 236

  // We take either two args (:key_type, :value_type), three args (:key_type,
  // :value_type, "ValueMessageType"), or four args (the above plus an initial
  // hashmap).
  if (argc < 2 || argc > 4) {
    rb_raise(rb_eArgError, "Map constructor expects 2, 3 or 4 arguments.");
  }

  self->key_type = ruby_to_fieldtype(argv[0]);
  self->value_type = ruby_to_fieldtype(argv[1]);
237
  self->parse_frame = Qnil;
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

  // Check that the key type is an allowed type.
  switch (self->key_type) {
    case UPB_TYPE_INT32:
    case UPB_TYPE_INT64:
    case UPB_TYPE_UINT32:
    case UPB_TYPE_UINT64:
    case UPB_TYPE_BOOL:
    case UPB_TYPE_STRING:
    case UPB_TYPE_BYTES:
      // These are OK.
      break;
    default:
      rb_raise(rb_eArgError, "Invalid key type for map.");
  }

254
  init_value_arg = 2;
255 256 257 258 259 260
  if (needs_typeclass(self->value_type) && argc > 2) {
    self->value_type_class = argv[2];
    validate_type_class(self->value_type, self->value_type_class);
    init_value_arg = 3;
  }

261 262 263
  // Table value type is always UINT64: this ensures enough space to store the
  // native_slot value.
  if (!upb_strtable_init(&self->table, UPB_CTYPE_UINT64)) {
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
    rb_raise(rb_eRuntimeError, "Could not allocate table.");
  }

  if (argc > init_value_arg) {
    Map_merge_into_self(_self, argv[init_value_arg]);
  }

  return Qnil;
}

/*
 * call-seq:
 *     Map.each(&block)
 *
 * Invokes &block on each |key, value| pair in the map, in unspecified order.
 * Note that Map also includes Enumerable; map thus acts like a normal Ruby
 * sequence.
 */
VALUE Map_each(VALUE _self) {
  Map* self = ruby_to_Map(_self);

  upb_strtable_iter it;
  for (upb_strtable_begin(&it, &self->table);
       !upb_strtable_done(&it);
       upb_strtable_next(&it)) {

    VALUE key = table_key_to_ruby(
        self, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it));

    upb_value v = upb_strtable_iter_value(&it);
    void* mem = value_memory(&v);
    VALUE value = native_slot_get(self->value_type,
                                  self->value_type_class,
                                  mem);

    rb_yield_values(2, key, value);
  }

  return Qnil;
}

/*
 * call-seq:
 *     Map.keys => [list_of_keys]
 *
 * Returns the list of keys contained in the map, in unspecified order.
 */
VALUE Map_keys(VALUE _self) {
  Map* self = ruby_to_Map(_self);

  VALUE ret = rb_ary_new();
  upb_strtable_iter it;
  for (upb_strtable_begin(&it, &self->table);
       !upb_strtable_done(&it);
       upb_strtable_next(&it)) {

    VALUE key = table_key_to_ruby(
        self, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it));

    rb_ary_push(ret, key);
  }

  return ret;
}

/*
 * call-seq:
 *     Map.values => [list_of_values]
 *
 * Returns the list of values contained in the map, in unspecified order.
 */
VALUE Map_values(VALUE _self) {
  Map* self = ruby_to_Map(_self);

  VALUE ret = rb_ary_new();
  upb_strtable_iter it;
  for (upb_strtable_begin(&it, &self->table);
       !upb_strtable_done(&it);
       upb_strtable_next(&it)) {

    upb_value v = upb_strtable_iter_value(&it);
    void* mem = value_memory(&v);
    VALUE value = native_slot_get(self->value_type,
                                  self->value_type_class,
                                  mem);

    rb_ary_push(ret, value);
  }

  return ret;
}

/*
 * call-seq:
 *     Map.[](key) => value
 *
 * Accesses the element at the given key. Throws an exception if the key type is
 * incorrect. Returns nil when the key is not present in the map.
 */
VALUE Map_index(VALUE _self, VALUE key) {
  Map* self = ruby_to_Map(_self);

  char keybuf[TABLE_KEY_BUF_LENGTH];
  const char* keyval = NULL;
  size_t length = 0;
369
  upb_value v;
370
  key = table_key(self, key, keybuf, &keyval, &length);
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

  if (upb_strtable_lookup2(&self->table, keyval, length, &v)) {
    void* mem = value_memory(&v);
    return native_slot_get(self->value_type, self->value_type_class, mem);
  } else {
    return Qnil;
  }
}

/*
 * call-seq:
 *     Map.[]=(key, value) => value
 *
 * Inserts or overwrites the value at the given key with the given new value.
 * Throws an exception if the key type is incorrect. Returns the new value that
 * was just inserted.
 */
VALUE Map_index_set(VALUE _self, VALUE key, VALUE value) {
  Map* self = ruby_to_Map(_self);

  char keybuf[TABLE_KEY_BUF_LENGTH];
  const char* keyval = NULL;
  size_t length = 0;
394 395
  upb_value v;
  void* mem;
396
  key = table_key(self, key, keybuf, &keyval, &length);
397

398
  mem = value_memory(&v);
399 400 401
  native_slot_set(self->value_type, self->value_type_class, mem, value);

  // Replace any existing value by issuing a 'remove' operation first.
402
  upb_strtable_remove2(&self->table, keyval, length, NULL);
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
  if (!upb_strtable_insert2(&self->table, keyval, length, v)) {
    rb_raise(rb_eRuntimeError, "Could not insert into table");
  }

  // Ruby hashmap's :[]= method also returns the inserted value.
  return value;
}

/*
 * call-seq:
 *     Map.has_key?(key) => bool
 *
 * Returns true if the given key is present in the map. Throws an exception if
 * the key has the wrong type.
 */
VALUE Map_has_key(VALUE _self, VALUE key) {
  Map* self = ruby_to_Map(_self);

  char keybuf[TABLE_KEY_BUF_LENGTH];
  const char* keyval = NULL;
  size_t length = 0;
424
  key = table_key(self, key, keybuf, &keyval, &length);
425

426
  if (upb_strtable_lookup2(&self->table, keyval, length, NULL)) {
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
    return Qtrue;
  } else {
    return Qfalse;
  }
}

/*
 * call-seq:
 *     Map.delete(key) => old_value
 *
 * Deletes the value at the given key, if any, returning either the old value or
 * nil if none was present. Throws an exception if the key is of the wrong type.
 */
VALUE Map_delete(VALUE _self, VALUE key) {
  Map* self = ruby_to_Map(_self);

  char keybuf[TABLE_KEY_BUF_LENGTH];
  const char* keyval = NULL;
  size_t length = 0;
446
  upb_value v;
447
  key = table_key(self, key, keybuf, &keyval, &length);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

  if (upb_strtable_remove2(&self->table, keyval, length, &v)) {
    void* mem = value_memory(&v);
    return native_slot_get(self->value_type, self->value_type_class, mem);
  } else {
    return Qnil;
  }
}

/*
 * call-seq:
 *     Map.clear
 *
 * Removes all entries from the map.
 */
VALUE Map_clear(VALUE _self) {
  Map* self = ruby_to_Map(_self);

  // Uninit and reinit the table -- this is faster than iterating and doing a
  // delete-lookup on each key.
  upb_strtable_uninit(&self->table);
469
  if (!upb_strtable_init(&self->table, UPB_CTYPE_INT64)) {
470 471 472 473 474 475 476 477 478 479 480 481 482
    rb_raise(rb_eRuntimeError, "Unable to re-initialize table");
  }
  return Qnil;
}

/*
 * call-seq:
 *     Map.length
 *
 * Returns the number of entries (key-value pairs) in the map.
 */
VALUE Map_length(VALUE _self) {
  Map* self = ruby_to_Map(_self);
483
  return ULL2NUM(upb_strtable_count(&self->table));
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
}

static VALUE Map_new_this_type(VALUE _self) {
  Map* self = ruby_to_Map(_self);
  VALUE new_map = Qnil;
  VALUE key_type = fieldtype_to_ruby(self->key_type);
  VALUE value_type = fieldtype_to_ruby(self->value_type);
  if (self->value_type_class != Qnil) {
    new_map = rb_funcall(CLASS_OF(_self), rb_intern("new"), 3,
                         key_type, value_type, self->value_type_class);
  } else {
    new_map = rb_funcall(CLASS_OF(_self), rb_intern("new"), 2,
                         key_type, value_type);
  }
  return new_map;
}

/*
 * call-seq:
 *     Map.dup => new_map
 *
 * Duplicates this map with a shallow copy. References to all non-primitive
 * element objects (e.g., submessages) are shared.
 */
VALUE Map_dup(VALUE _self) {
  Map* self = ruby_to_Map(_self);
  VALUE new_map = Map_new_this_type(_self);
  Map* new_self = ruby_to_Map(new_map);

  upb_strtable_iter it;
  for (upb_strtable_begin(&it, &self->table);
       !upb_strtable_done(&it);
       upb_strtable_next(&it)) {

    upb_value v = upb_strtable_iter_value(&it);
    void* mem = value_memory(&v);
    upb_value dup;
    void* dup_mem = value_memory(&dup);
    native_slot_dup(self->value_type, dup_mem, mem);

    if (!upb_strtable_insert2(&new_self->table,
                              upb_strtable_iter_key(&it),
                              upb_strtable_iter_keylength(&it),
                              dup)) {
      rb_raise(rb_eRuntimeError, "Error inserting value into new table");
    }
  }

  return new_map;
}

// Used by Google::Protobuf.deep_copy but not exposed directly.
VALUE Map_deep_copy(VALUE _self) {
  Map* self = ruby_to_Map(_self);
  VALUE new_map = Map_new_this_type(_self);
  Map* new_self = ruby_to_Map(new_map);

  upb_strtable_iter it;
  for (upb_strtable_begin(&it, &self->table);
       !upb_strtable_done(&it);
       upb_strtable_next(&it)) {

    upb_value v = upb_strtable_iter_value(&it);
    void* mem = value_memory(&v);
    upb_value dup;
    void* dup_mem = value_memory(&dup);
    native_slot_deep_copy(self->value_type, dup_mem, mem);

    if (!upb_strtable_insert2(&new_self->table,
                              upb_strtable_iter_key(&it),
                              upb_strtable_iter_keylength(&it),
                              dup)) {
      rb_raise(rb_eRuntimeError, "Error inserting value into new table");
    }
  }

  return new_map;
}

/*
 * call-seq:
 *     Map.==(other) => boolean
 *
 * Compares this map to another. Maps are equal if they have identical key sets,
 * and for each key, the values in both maps compare equal. Elements are
 * compared as per normal Ruby semantics, by calling their :== methods (or
 * performing a more efficient comparison for primitive types).
 *
 * Maps with dissimilar key types or value types/typeclasses are never equal,
 * even if value comparison (for example, between integers and floats) would
 * have otherwise indicated that every element has equal value.
 */
VALUE Map_eq(VALUE _self, VALUE _other) {
  Map* self = ruby_to_Map(_self);
578 579
  Map* other;
  upb_strtable_iter it;
580 581 582 583 584 585 586 587 588

  // Allow comparisons to Ruby hashmaps by converting to a temporary Map
  // instance. Slow, but workable.
  if (TYPE(_other) == T_HASH) {
    VALUE other_map = Map_new_this_type(_self);
    Map_merge_into_self(other_map, _other);
    _other = other_map;
  }

589
  other = ruby_to_Map(_other);
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

  if (self == other) {
    return Qtrue;
  }
  if (self->key_type != other->key_type ||
      self->value_type != other->value_type ||
      self->value_type_class != other->value_type_class) {
    return Qfalse;
  }
  if (upb_strtable_count(&self->table) != upb_strtable_count(&other->table)) {
    return Qfalse;
  }

  // For each member of self, check that an equal member exists at the same key
  // in other.
  for (upb_strtable_begin(&it, &self->table);
       !upb_strtable_done(&it);
       upb_strtable_next(&it)) {

    upb_value v = upb_strtable_iter_value(&it);
    void* mem = value_memory(&v);
    upb_value other_v;
    void* other_mem = value_memory(&other_v);

    if (!upb_strtable_lookup2(&other->table,
                              upb_strtable_iter_key(&it),
                              upb_strtable_iter_keylength(&it),
                              &other_v)) {
      // Not present in other map.
      return Qfalse;
    }

    if (!native_slot_eq(self->value_type, mem, other_mem)) {
      // Present, but value not equal.
      return Qfalse;
    }
  }

  return Qtrue;
}

/*
 * call-seq:
 *     Map.hash => hash_value
 *
 * Returns a hash value based on this map's contents.
 */
VALUE Map_hash(VALUE _self) {
  Map* self = ruby_to_Map(_self);

  st_index_t h = rb_hash_start(0);
  VALUE hash_sym = rb_intern("hash");

  upb_strtable_iter it;
  for (upb_strtable_begin(&it, &self->table);
       !upb_strtable_done(&it);
       upb_strtable_next(&it)) {
    VALUE key = table_key_to_ruby(
        self, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it));

    upb_value v = upb_strtable_iter_value(&it);
    void* mem = value_memory(&v);
    VALUE value = native_slot_get(self->value_type,
                                  self->value_type_class,
                                  mem);

    h = rb_hash_uint(h, NUM2LONG(rb_funcall(key, hash_sym, 0)));
    h = rb_hash_uint(h, NUM2LONG(rb_funcall(value, hash_sym, 0)));
  }

  return INT2FIX(h);
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
/*
 * call-seq:
 *     Map.to_h => {}
 *
 * Returns a Ruby Hash object containing all the values within the map
 */
VALUE Map_to_h(VALUE _self) {
  Map* self = ruby_to_Map(_self);
  VALUE hash = rb_hash_new();
  upb_strtable_iter it;
  for (upb_strtable_begin(&it, &self->table);
       !upb_strtable_done(&it);
       upb_strtable_next(&it)) {
    VALUE key = table_key_to_ruby(
        self, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it));
    upb_value v = upb_strtable_iter_value(&it);
    void* mem = value_memory(&v);
    VALUE value = native_slot_get(self->value_type,
                                  self->value_type_class,
                                  mem);

    if (self->value_type == UPB_TYPE_MESSAGE) {
      value = Message_to_h(value);
    }
    rb_hash_aset(hash, key, value);
  }
  return hash;
}

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
/*
 * call-seq:
 *     Map.inspect => string
 *
 * Returns a string representing this map's elements. It will be formatted as
 * "{key => value, key => value, ...}", with each key and value string
 * representation computed by its own #inspect method.
 */
VALUE Map_inspect(VALUE _self) {
  Map* self = ruby_to_Map(_self);

  VALUE str = rb_str_new2("{");

  bool first = true;
  VALUE inspect_sym = rb_intern("inspect");

  upb_strtable_iter it;
  for (upb_strtable_begin(&it, &self->table);
       !upb_strtable_done(&it);
       upb_strtable_next(&it)) {
    VALUE key = table_key_to_ruby(
        self, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it));

    upb_value v = upb_strtable_iter_value(&it);
    void* mem = value_memory(&v);
    VALUE value = native_slot_get(self->value_type,
                                  self->value_type_class,
                                  mem);

    if (!first) {
      str = rb_str_cat2(str, ", ");
    } else {
      first = false;
    }
    str = rb_str_append(str, rb_funcall(key, inspect_sym, 0));
727
    str = rb_str_cat2(str, "=>");
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
    str = rb_str_append(str, rb_funcall(value, inspect_sym, 0));
  }

  str = rb_str_cat2(str, "}");
  return str;
}

/*
 * call-seq:
 *     Map.merge(other_map) => map
 *
 * Copies key/value pairs from other_map into a copy of this map. If a key is
 * set in other_map and this map, the value from other_map overwrites the value
 * in the new copy of this map. Returns the new copy of this map with merged
 * contents.
 */
VALUE Map_merge(VALUE _self, VALUE hashmap) {
  VALUE dupped = Map_dup(_self);
  return Map_merge_into_self(dupped, hashmap);
}

static int merge_into_self_callback(VALUE key, VALUE value, VALUE self) {
  Map_index_set(self, key, value);
  return ST_CONTINUE;
}

// Used only internally -- shared by #merge and #initialize.
VALUE Map_merge_into_self(VALUE _self, VALUE hashmap) {
  if (TYPE(hashmap) == T_HASH) {
    rb_hash_foreach(hashmap, merge_into_self_callback, _self);
  } else if (RB_TYPE_P(hashmap, T_DATA) && RTYPEDDATA_P(hashmap) &&
             RTYPEDDATA_TYPE(hashmap) == &Map_type) {

    Map* self = ruby_to_Map(_self);
    Map* other = ruby_to_Map(hashmap);
763
    upb_strtable_iter it;
764 765 766 767 768 769 770 771 772 773 774 775

    if (self->key_type != other->key_type ||
        self->value_type != other->value_type ||
        self->value_type_class != other->value_type_class) {
      rb_raise(rb_eArgError, "Attempt to merge Map with mismatching types");
    }

    for (upb_strtable_begin(&it, &other->table);
         !upb_strtable_done(&it);
         upb_strtable_next(&it)) {

      // Replace any existing value by issuing a 'remove' operation first.
776
      upb_value v;
777 778 779 780 781 782
      upb_value oldv;
      upb_strtable_remove2(&self->table,
                           upb_strtable_iter_key(&it),
                           upb_strtable_iter_keylength(&it),
                           &oldv);

783
      v = upb_strtable_iter_value(&it);
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
      upb_strtable_insert2(&self->table,
                           upb_strtable_iter_key(&it),
                           upb_strtable_iter_keylength(&it),
                           v);
    }
  } else {
    rb_raise(rb_eArgError, "Unknown type merging into Map");
  }
  return _self;
}

// Internal method: map iterator initialization (used for serialization).
void Map_begin(VALUE _self, Map_iter* iter) {
  Map* self = ruby_to_Map(_self);
  iter->self = self;
  upb_strtable_begin(&iter->it, &self->table);
}

void Map_next(Map_iter* iter) {
  upb_strtable_next(&iter->it);
}

bool Map_done(Map_iter* iter) {
  return upb_strtable_done(&iter->it);
}

VALUE Map_iter_key(Map_iter* iter) {
  return table_key_to_ruby(
      iter->self,
      upb_strtable_iter_key(&iter->it),
      upb_strtable_iter_keylength(&iter->it));
}

VALUE Map_iter_value(Map_iter* iter) {
  upb_value v = upb_strtable_iter_value(&iter->it);
  void* mem = value_memory(&v);
  return native_slot_get(iter->self->value_type,
                         iter->self->value_type_class,
                         mem);
}

void Map_register(VALUE module) {
  VALUE klass = rb_define_class_under(module, "Map", rb_cObject);
  rb_define_alloc_func(klass, Map_alloc);
  rb_gc_register_address(&cMap);
829
  cMap = klass;
830 831 832 833 834 835 836 837 838 839 840 841 842 843

  rb_define_method(klass, "initialize", Map_init, -1);
  rb_define_method(klass, "each", Map_each, 0);
  rb_define_method(klass, "keys", Map_keys, 0);
  rb_define_method(klass, "values", Map_values, 0);
  rb_define_method(klass, "[]", Map_index, 1);
  rb_define_method(klass, "[]=", Map_index_set, 2);
  rb_define_method(klass, "has_key?", Map_has_key, 1);
  rb_define_method(klass, "delete", Map_delete, 1);
  rb_define_method(klass, "clear", Map_clear, 0);
  rb_define_method(klass, "length", Map_length, 0);
  rb_define_method(klass, "dup", Map_dup, 0);
  rb_define_method(klass, "==", Map_eq, 1);
  rb_define_method(klass, "hash", Map_hash, 0);
844 845
  rb_define_method(klass, "to_hash", Map_to_h, 0);
  rb_define_method(klass, "to_h", Map_to_h, 0);
846 847 848 849
  rb_define_method(klass, "inspect", Map_inspect, 0);
  rb_define_method(klass, "merge", Map_merge, 1);
  rb_include_module(klass, rb_mEnumerable);
}