conformance_test.cc 10.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <stdarg.h>
#include <string>

#include "conformance.pb.h"
35
#include "conformance_test.h"
36
#include <google/protobuf/stubs/common.h>
37
#include <google/protobuf/stubs/stringprintf.h>
38 39 40 41 42 43 44 45 46 47
#include <google/protobuf/wire_format_lite.h>

using conformance::ConformanceRequest;
using conformance::ConformanceResponse;
using conformance::TestAllTypes;
using google::protobuf::Descriptor;
using google::protobuf::FieldDescriptor;
using google::protobuf::internal::WireFormatLite;
using std::string;

48
namespace {
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

/* Routines for building arbitrary protos *************************************/

// We would use CodedOutputStream except that we want more freedom to build
// arbitrary protos (even invalid ones).

const string empty;

string cat(const string& a, const string& b,
           const string& c = empty,
           const string& d = empty,
           const string& e = empty,
           const string& f = empty,
           const string& g = empty,
           const string& h = empty,
           const string& i = empty,
           const string& j = empty,
           const string& k = empty,
           const string& l = empty) {
  string ret;
  ret.reserve(a.size() + b.size() + c.size() + d.size() + e.size() + f.size() +
              g.size() + h.size() + i.size() + j.size() + k.size() + l.size());
  ret.append(a);
  ret.append(b);
  ret.append(c);
  ret.append(d);
  ret.append(e);
  ret.append(f);
  ret.append(g);
  ret.append(h);
  ret.append(i);
  ret.append(j);
  ret.append(k);
  ret.append(l);
  return ret;
}

// The maximum number of bytes that it takes to encode a 64-bit varint.
#define VARINT_MAX_LEN 10

size_t vencode64(uint64_t val, char *buf) {
  if (val == 0) { buf[0] = 0; return 1; }
  size_t i = 0;
  while (val) {
    uint8_t byte = val & 0x7fU;
    val >>= 7;
    if (val) byte |= 0x80U;
    buf[i++] = byte;
  }
  return i;
}

string varint(uint64_t x) {
  char buf[VARINT_MAX_LEN];
  size_t len = vencode64(x, buf);
  return string(buf, len);
}

// TODO: proper byte-swapping for big-endian machines.
string fixed32(void *data) { return string(static_cast<char*>(data), 4); }
string fixed64(void *data) { return string(static_cast<char*>(data), 8); }

string delim(const string& buf) { return cat(varint(buf.size()), buf); }
string uint32(uint32_t u32) { return fixed32(&u32); }
string uint64(uint64_t u64) { return fixed64(&u64); }
string flt(float f) { return fixed32(&f); }
string dbl(double d) { return fixed64(&d); }
string zz32(int32_t x) { return varint(WireFormatLite::ZigZagEncode32(x)); }
string zz64(int64_t x) { return varint(WireFormatLite::ZigZagEncode64(x)); }

string tag(uint32_t fieldnum, char wire_type) {
  return varint((fieldnum << 3) | wire_type);
}

string submsg(uint32_t fn, const string& buf) {
  return cat( tag(fn, WireFormatLite::WIRETYPE_LENGTH_DELIMITED), delim(buf) );
}

#define UNKNOWN_FIELD 666

uint32_t GetFieldNumberForType(WireFormatLite::FieldType type, bool repeated) {
  const Descriptor* d = TestAllTypes().GetDescriptor();
  for (int i = 0; i < d->field_count(); i++) {
    const FieldDescriptor* f = d->field(i);
    if (static_cast<WireFormatLite::FieldType>(f->type()) == type &&
        f->is_repeated() == repeated) {
      return f->number();
    }
  }
  GOOGLE_LOG(FATAL) << "Couldn't find field with type " << (int)type;
  return 0;
}

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
}  // anonymous namespace

namespace google {
namespace protobuf {

void ConformanceTestSuite::ReportSuccess() {
  successes_++;
}

void ConformanceTestSuite::ReportFailure(const char *fmt, ...) {
  va_list args;
  va_start(args, fmt);
  StringAppendV(&output_, fmt, args);
  va_end(args);
  failures_++;
}

void ConformanceTestSuite::RunTest(const ConformanceRequest& request,
                                   ConformanceResponse* response) {
  string serialized_request;
  string serialized_response;
  request.SerializeToString(&serialized_request);

  runner_->RunTest(serialized_request, &serialized_response);

  if (!response->ParseFromString(serialized_response)) {
    response->Clear();
    response->set_runtime_error("response proto could not be parsed.");
  }

  if (verbose_) {
    StringAppendF(&output_, "conformance test: request=%s, response=%s\n",
                  request.ShortDebugString().c_str(),
                  response->ShortDebugString().c_str());
  }
}

void ConformanceTestSuite::DoExpectParseFailureForProto(const string& proto,
                                                        int line) {
  ConformanceRequest request;
  ConformanceResponse response;
  request.set_protobuf_payload(proto);

  // We don't expect output, but if the program erroneously accepts the protobuf
  // we let it send its response as this.  We must not leave it unspecified.
  request.set_requested_output(ConformanceRequest::PROTOBUF);

  RunTest(request, &response);
  if (response.result_case() == ConformanceResponse::kParseError) {
    ReportSuccess();
  } else {
    ReportFailure("Should have failed, but didn't. Line: %d, Request: %s, "
                  "response: %s\n",
                  line,
                  request.ShortDebugString().c_str(),
                  response.ShortDebugString().c_str());
  }
}

// Expect that this precise protobuf will cause a parse error.
#define ExpectParseFailureForProto(proto) DoExpectParseFailureForProto(proto, __LINE__)

// Expect that this protobuf will cause a parse error, even if it is followed
// by valid protobuf data.  We can try running this twice: once with this
// data verbatim and once with this data followed by some valid data.
//
// TODO(haberman): implement the second of these.
#define ExpectHardParseFailureForProto(proto) DoExpectParseFailureForProto(proto, __LINE__)


void ConformanceTestSuite::TestPrematureEOFForType(
    WireFormatLite::FieldType type) {
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
  // Incomplete values for each wire type.
  static const string incompletes[6] = {
    string("\x80"),     // VARINT
    string("abcdefg"),  // 64BIT
    string("\x80"),     // DELIMITED (partial length)
    string(),           // START_GROUP (no value required)
    string(),           // END_GROUP (no value required)
    string("abc")       // 32BIT
  };

  uint32_t fieldnum = GetFieldNumberForType(type, false);
  uint32_t rep_fieldnum = GetFieldNumberForType(type, true);
  WireFormatLite::WireType wire_type =
      WireFormatLite::WireTypeForFieldType(type);
  const string& incomplete = incompletes[wire_type];

  // EOF before a known non-repeated value.
  ExpectParseFailureForProto(tag(fieldnum, wire_type));

  // EOF before a known repeated value.
  ExpectParseFailureForProto(tag(rep_fieldnum, wire_type));

  // EOF before an unknown value.
  ExpectParseFailureForProto(tag(UNKNOWN_FIELD, wire_type));

  // EOF inside a known non-repeated value.
  ExpectParseFailureForProto(
      cat( tag(fieldnum, wire_type), incomplete ));

  // EOF inside a known repeated value.
  ExpectParseFailureForProto(
      cat( tag(rep_fieldnum, wire_type), incomplete ));

  // EOF inside an unknown value.
  ExpectParseFailureForProto(
      cat( tag(UNKNOWN_FIELD, wire_type), incomplete ));

  if (wire_type == WireFormatLite::WIRETYPE_LENGTH_DELIMITED) {
    // EOF in the middle of delimited data for known non-repeated value.
    ExpectParseFailureForProto(
        cat( tag(fieldnum, wire_type), varint(1) ));

    // EOF in the middle of delimited data for known repeated value.
    ExpectParseFailureForProto(
        cat( tag(rep_fieldnum, wire_type), varint(1) ));

    // EOF in the middle of delimited data for unknown value.
    ExpectParseFailureForProto(
        cat( tag(UNKNOWN_FIELD, wire_type), varint(1) ));

    if (type == WireFormatLite::TYPE_MESSAGE) {
      // Submessage ends in the middle of a value.
      string incomplete_submsg =
          cat( tag(WireFormatLite::TYPE_INT32, WireFormatLite::WIRETYPE_VARINT),
                incompletes[WireFormatLite::WIRETYPE_VARINT] );
      ExpectHardParseFailureForProto(
          cat( tag(fieldnum, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
               varint(incomplete_submsg.size()),
               incomplete_submsg ));
    }
  } else if (type != WireFormatLite::TYPE_GROUP) {
    // Non-delimited, non-group: eligible for packing.

    // Packed region ends in the middle of a value.
    ExpectHardParseFailureForProto(
        cat( tag(rep_fieldnum, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
             varint(incomplete.size()),
             incomplete ));

    // EOF in the middle of packed region.
    ExpectParseFailureForProto(
        cat( tag(rep_fieldnum, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
             varint(1) ));
  }
}

290 291 292 293 294 295
void ConformanceTestSuite::RunSuite(ConformanceTestRunner* runner,
                                    std::string* output) {
  runner_ = runner;
  output_.clear();
  successes_ = 0;
  failures_ = 0;
296 297

  for (int i = 1; i <= FieldDescriptor::MAX_TYPE; i++) {
298
    if (i == FieldDescriptor::TYPE_GROUP) continue;
299 300 301
    TestPrematureEOFForType(static_cast<WireFormatLite::FieldType>(i));
  }

302 303 304 305 306 307
  StringAppendF(&output_,
                "CONFORMANCE SUITE FINISHED: completed %d tests, %d successes, "
                "%d failures.\n",
                successes_ + failures_, successes_, failures_);

  output->assign(output_);
308
}
309 310 311

}  // namespace protobuf
}  // namespace google