#!/usr/bin/env python """ Copyright (C) 2018-2019 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import print_function import sys import os from argparse import ArgumentParser, SUPPRESS import cv2 import numpy as np import logging as log from time import time from openvino.inference_engine import IENetwork, IECore def build_argparser(): parser = ArgumentParser(add_help=False) args = parser.add_argument_group('Options') args.add_argument('-h', '--help', action='help', default=SUPPRESS, help='Show this help message and exit.') args.add_argument("-m", "--model", help="Required. Path to an .xml file with a trained model.", required=True, type=str) args.add_argument("-i", "--input", help="Required. Path to a folder with images or path to an image files", required=True, type=str, nargs="+") args.add_argument("-l", "--cpu_extension", help="Optional. Required for CPU custom layers. " "MKLDNN (CPU)-targeted custom layers. Absolute path to a shared library with the" " kernels implementations.", type=str, default=None) args.add_argument("-d", "--device", help="Optional. Specify the target device to infer on; CPU, GPU, FPGA, HDDL, MYRIAD or HETERO: is " "acceptable. The sample will look for a suitable plugin for device specified. Default " "value is CPU", default="CPU", type=str) args.add_argument("--labels", help="Optional. Path to a labels mapping file", default=None, type=str) args.add_argument("-nt", "--number_top", help="Optional. Number of top results", default=10, type=int) return parser def main(): log.basicConfig(format="[ %(levelname)s ] %(message)s", level=log.INFO, stream=sys.stdout) args = build_argparser().parse_args() model_xml = args.model model_bin = os.path.splitext(model_xml)[0] + ".bin" # Plugin initialization for specified device and load extensions library if specified log.info("Creating Inference Engine") ie = IECore() if args.cpu_extension and 'CPU' in args.device: ie.add_extension(args.cpu_extension, "CPU") # Read IR log.info("Loading network files:\n\t{}\n\t{}".format(model_xml, model_bin)) net = IENetwork(model=model_xml, weights=model_bin) if "CPU" in args.device: supported_layers = ie.query_network(net, "CPU") not_supported_layers = [l for l in net.layers.keys() if l not in supported_layers] if len(not_supported_layers) != 0: log.error("Following layers are not supported by the plugin for specified device {}:\n {}". format(args.device, ', '.join(not_supported_layers))) log.error("Please try to specify cpu extensions library path in sample's command line parameters using -l " "or --cpu_extension command line argument") sys.exit(1) assert len(net.inputs.keys()) == 1, "Sample supports only single input topologies" assert len(net.outputs) == 1, "Sample supports only single output topologies" log.info("Preparing input blobs") input_blob = next(iter(net.inputs)) out_blob = next(iter(net.outputs)) net.batch_size = len(args.input) # Read and pre-process input images n, c, h, w = net.inputs[input_blob].shape images = np.ndarray(shape=(n, c, h, w)) for i in range(n): image = cv2.imread(args.input[i]) if image.shape[:-1] != (h, w): log.warning("Image {} is resized from {} to {}".format(args.input[i], image.shape[:-1], (h, w))) image = cv2.resize(image, (w, h)) image = image.transpose((2, 0, 1)) # Change data layout from HWC to CHW images[i] = image log.info("Batch size is {}".format(n)) # Loading model to the plugin log.info("Loading model to the plugin") exec_net = ie.load_network(network=net, device_name=args.device) # Start sync inference log.info("Starting inference in synchronous mode") res = exec_net.infer(inputs={input_blob: images}) # Processing output blob log.info("Processing output blob") res = res[out_blob] log.info("Top {} results: ".format(args.number_top)) if args.labels: with open(args.labels, 'r') as f: labels_map = [x.split(sep=' ', maxsplit=1)[-1].strip() for x in f] else: labels_map = None classid_str = "classid" probability_str = "probability" for i, probs in enumerate(res): probs = np.squeeze(probs) top_ind = np.argsort(probs)[-args.number_top:][::-1] print("Image {}\n".format(args.input[i])) print(classid_str, probability_str) print("{} {}".format('-' * len(classid_str), '-' * len(probability_str))) for id in top_ind: det_label = labels_map[id] if labels_map else "{}".format(id) label_length = len(det_label) space_num_before = (len(classid_str) - label_length) // 2 space_num_after = len(classid_str) - (space_num_before + label_length) + 2 space_num_before_prob = (len(probability_str) - len(str(probs[id]))) // 2 print("{}{}{}{}{:.7f}".format(' ' * space_num_before, det_label, ' ' * space_num_after, ' ' * space_num_before_prob, probs[id])) print("\n") log.info("This sample is an API example, for any performance measurements please use the dedicated benchmark_app tool\n") if __name__ == '__main__': sys.exit(main() or 0)