"""
 Copyright (c) 2018 Intel Corporation

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

      http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
"""

import networkx as nx
import numpy as np

from mo.graph.graph import create_edge
from mo.middle.pattern_match import apply_pattern
from mo.ops.op import Op, PermuteAttrs
from mo.ops.reshape import Reshape


def mean_to_avgpool_action(graph: nx.MultiDiGraph, matches: dict):
    if matches['axis'].value is None or matches['input'].shape is None:
        return
    dims = len(matches['input'].shape)
    ones = np.ones(dims, dtype=np.int64)
    mean = graph.node[matches['mean'].node]
    mean['stride'] = np.array(ones)
    # TODO: need to check axis with real layout
    spatial_dims = np.array(matches['axis'].value)
    mean['spatial_dims'] = spatial_dims
    mean['pad'] = np.zeros((dims, 2), np.int64)
    mean['pad_spatial_shape'] = np.array(mean['pad'][spatial_dims])
    window = np.array(ones)
    window[spatial_dims] = matches['input'].shape[spatial_dims]
    mean['window'] = window
    mean['TF_op'] = mean['op']
    mean['op'] = 'AvgPool'
    mean['pool_method'] = 'avg'
    mean['rounding_type'] = 'ceil'
    mean['exclude_pad'] = 'true'
    mean['kernel_spatial'] = window[spatial_dims]
    graph.remove_edge(matches['axis'].node, matches['mean'].node)
    mean['permute_attrs'] = PermuteAttrs().update_attrs(attrs=[('pad', 'input:0'),
                                                               ('stride', 'input:0'),
                                                               ('window', 'input:0'),
                                                               ('spatial_dims', 'input:0')])

    if matches['mean'].keep_dims == False:
        output = matches['mean'].out_node()
        pool_node = matches['mean']

        # Keep dims for AvgPool
        shape = np.array(output.shape)
        for idx in spatial_dims:
            shape = np.insert(shape, idx, 1)

        graph.remove_edge(pool_node.id, output.id)
        # Create new data for pool with all dims
        pool_data = Op.create_data_node(graph, pool_node, {'shape': np.array(shape)})
        # Create and connect reshape node
        reshape_op = Reshape(graph, {'dim': np.array(output.shape)})
        reshape_node = reshape_op.create_node([pool_data], dict(name='Reshape_',
                                                                permute_attrs=PermuteAttrs().update_attrs(attrs=[('dim', 'output:0')])))
        create_edge(reshape_node, output)


def mean_to_avgpool(graph: nx.MultiDiGraph):
    """
    Translate Mean as a average pooling with kernel size equals to reduced dimensions and with no padding.
    """
    apply_pattern(
        graph,
        nodes=[
            ('input', dict(kind='data')),
            ('axis', dict(kind='data')),
            ('mean', dict(kind='op', op='Mean'))],
        edges=[
            ('input', 'mean', {'in': 0}),
            ('axis', 'mean', {'in': 1})],
        action=mean_to_avgpool_action
    )
    return graph