""" Copyright (c) 2018-2019 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest import numpy as np from extensions.ops.regionyolo import RegionYoloOp from mo.front.common.extractors.utils import layout_attrs from mo.graph.graph import Node from mo.utils.unittest.graph import build_graph nodes_attributes = {'node_1': {'type': 'Identity', 'kind': 'op'}, 'region': {'type': 'RegionYolo', 'kind': 'op'}, 'node_3': {'type': 'Identity', 'kind': 'op'}, 'op_output': { 'kind': 'op', 'op': 'Result'} } class TestRegionYOLOCaffe(unittest.TestCase): def test_region_infer(self): graph = build_graph(nodes_attributes, [('node_1', 'region'), ('region', 'node_3'), ('node_3', 'op_output') ], {'node_3': {'shape': None}, 'node_1': {'shape': np.array([1, 3, 227, 227])}, 'region': {'axis': 1, 'end_axis': -1, 'do_softmax': 1, **layout_attrs()} }) graph.graph['layout'] = 'NCHW' reorg_node = Node(graph, 'region') RegionYoloOp.regionyolo_infer(reorg_node) exp_shape = np.array([1, 3 * 227 * 227]) res_shape = graph.node['node_3']['shape'] for i in range(0, len(exp_shape)): self.assertEqual(exp_shape[i], res_shape[i]) def test_region_infer_flatten(self): graph = build_graph(nodes_attributes, [('node_1', 'region'), ('region', 'node_3'), ('node_3', 'op_output') ], {'node_3': {'shape': None}, 'node_1': {'shape': np.array([1, 3, 227, 227])}, 'region': {'end_axis': 1, 'axis': 0, 'do_softmax': 1, **layout_attrs()} }) graph.graph['layout'] = 'NCHW' reorg_node = Node(graph, 'region') RegionYoloOp.regionyolo_infer(reorg_node) exp_shape = np.array([1 * 3, 227, 227]) res_shape = graph.node['node_3']['shape'] for i in range(0, len(exp_shape)): self.assertEqual(exp_shape[i], res_shape[i]) def test_region_infer_flatten_again(self): graph = build_graph(nodes_attributes, [('node_1', 'region'), ('region', 'node_3'), ('node_3', 'op_output') ], {'node_3': {'shape': None}, 'node_1': {'shape': np.array([1, 3, 227, 227])}, 'region': {'end_axis': 2, 'axis': 0, 'do_softmax': 1, **layout_attrs()} }) graph.graph['layout'] = 'NCHW' reorg_node = Node(graph, 'region') RegionYoloOp.regionyolo_infer(reorg_node) exp_shape = np.array([1 * 3 * 227, 227]) res_shape = graph.node['node_3']['shape'] for i in range(0, len(exp_shape)): self.assertEqual(exp_shape[i], res_shape[i]) def test_region_infer_do_softmax(self): graph = build_graph(nodes_attributes, [('node_1', 'region'), ('region', 'node_3'), ('node_3', 'op_output') ], {'node_3': {'shape': None}, 'node_1': {'shape': np.array([1, 3, 227, 227])}, 'region': {'do_softmax': 0, 'end_axis': -1, 'axis': 1, 'classes': 80, 'coords': 4, 'mask': np.array([6, 7, 8]), **layout_attrs()} }) graph.graph['layout'] = 'NCHW' reorg_node = Node(graph, 'region') RegionYoloOp.regionyolo_infer(reorg_node) exp_shape = np.array([1, (80 + 4 + 1) * 3, 227, 227]) res_shape = graph.node['node_3']['shape'] for i in range(0, len(exp_shape)): self.assertEqual(exp_shape[i], res_shape[i]) class TestRegionYOLOTF(unittest.TestCase): def test_region_infer(self): graph = build_graph(nodes_attributes, [('node_1', 'region'), ('region', 'node_3'), ('node_3', 'op_output') ], {'node_3': {'shape': None}, 'node_1': {'shape': np.array([1, 227, 227, 3])}, 'region': {'axis': 1, 'end_axis': -1, 'do_softmax': 1, **layout_attrs()} }) graph.graph['layout'] = 'NHWC' reorg_node = Node(graph, 'region') RegionYoloOp.regionyolo_infer(reorg_node) exp_shape = np.array([1, 3 * 227 * 227]) res_shape = graph.node['node_3']['shape'] for i in range(0, len(exp_shape)): self.assertEqual(exp_shape[i], res_shape[i]) def test_region_infer_do_softmax(self): graph = build_graph(nodes_attributes, [('node_1', 'region'), ('region', 'node_3'), ('node_3', 'op_output') ], {'node_3': {'shape': None}, 'node_1': {'shape': np.array([1, 227, 227, 3])}, 'region': {'do_softmax': 0, 'end_axis': -1, 'axis': 1, 'classes': 80, 'coords': 4, 'mask': np.array([6, 7, 8]), **layout_attrs()} }) graph.graph['layout'] = 'NHWC' reorg_node = Node(graph, 'region') RegionYoloOp.regionyolo_infer(reorg_node) exp_shape = np.array([1, 227, 227, (80 + 4 + 1) * 3]) res_shape = graph.node['node_3']['shape'] for i in range(0, len(exp_shape)): self.assertEqual(exp_shape[i], res_shape[i])