/*******************************************************************************
* Copyright 2016-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <assert.h>
#include "mkldnn.h"

#include "c_types_map.hpp"
#include "type_helpers.hpp"
#include "utils.hpp"

using namespace mkldnn::impl;
using namespace mkldnn::impl::utils;
using namespace mkldnn::impl::status;
using namespace mkldnn::impl::prop_kind;
using namespace mkldnn::impl::alg_kind;
using namespace mkldnn::impl::types;

namespace {
status_t bnrm_desc_init(batch_normalization_desc_t *bnrm_desc,
        prop_kind_t prop_kind, const memory_desc_t *data_desc,
        const memory_desc_t *diff_data_desc, float epsilon, unsigned flags) {
    bool args_ok = true
        && !any_null(bnrm_desc, data_desc)
        && one_of(prop_kind, forward_training, forward_inference,
                backward_data, backward)
        && IMPLICATION(prop_kind & backward, diff_data_desc != nullptr);
    if (!args_ok) return invalid_arguments;

    auto bd = batch_normalization_desc_t();
    bd.primitive_kind = primitive_kind::batch_normalization;
    bd.prop_kind = prop_kind;

    bd.data_desc = *data_desc;
    bd.diff_data_desc = zero_md();
    if ( one_of(bd.prop_kind,backward_data, backward) )
        bd.diff_data_desc = *diff_data_desc;

    dims_t scaleshift_dims = { 2, data_desc->dims[1] };
    mkldnn_memory_desc_init(&bd.data_scaleshift_desc, 2, scaleshift_dims,
            data_type::f32, mkldnn_nc);
    bd.diff_data_scaleshift_desc = zero_md();
    if (bd.prop_kind == backward) {
        mkldnn_memory_desc_init(&bd.diff_data_scaleshift_desc, 2,
                scaleshift_dims, data_type::f32, mkldnn_nc);
    }

    dims_t stats_dims = { data_desc->dims[1] };
    mkldnn_memory_desc_init(&bd.mean_desc, 1, stats_dims,
            data_type::f32, mkldnn_x);
    mkldnn_memory_desc_init(&bd.variance_desc, 1, stats_dims,
            data_type::f32, mkldnn_x);

    bd.batch_norm_epsilon = epsilon;

    unsigned bnorm_flags =
        mkldnn_use_global_stats | mkldnn_use_scaleshift | mkldnn_fuse_bn_relu;
    if ((~bnorm_flags & flags) != 0) return invalid_arguments;

    bd.flags = flags;

    bool consistency = true
        && utils::one_of(bd.data_desc.ndims, 2, 4, 5);
    if (bd.prop_kind == backward_data)
        consistency = consistency
            && utils::one_of(bd.diff_data_desc.ndims, 2, 4, 5)
            && array_cmp(bd.diff_data_desc.dims, bd.data_desc.dims,
                    bd.diff_data_desc.ndims);
    if (!consistency) return invalid_arguments;

    *bnrm_desc = bd;
    return success;
}
}

status_t mkldnn_batch_normalization_forward_desc_init(
        batch_normalization_desc_t *bnrm_desc, prop_kind_t prop_kind,
        const memory_desc_t *data_desc, float epsilon, unsigned flags) {
    if (!one_of(prop_kind, forward_training, forward_inference))
        return invalid_arguments;
    return bnrm_desc_init(bnrm_desc, prop_kind, data_desc, nullptr,
            epsilon, flags);
}

status_t mkldnn_batch_normalization_backward_desc_init(
        batch_normalization_desc_t *bnrm_desc, prop_kind_t prop_kind,
        const memory_desc_t *diff_data_desc, const memory_desc_t *data_desc,
        float epsilon, unsigned flags) {
    if (!one_of(prop_kind, backward, backward_data))
        return invalid_arguments;
    return bnrm_desc_init(bnrm_desc, prop_kind, data_desc, diff_data_desc,
            epsilon, flags);
}

// vim: et ts=4 sw=4 cindent cino^=l0,\:0,N-s