kernels.cpp 5.31 KB
Newer Older
1 2 3 4
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
5
// Copyright (C) 2018 Intel Corporation
6 7 8 9 10 11 12 13


#include "precomp.hpp"

#include <ade/util/zip_range.hpp>   // util::indexed
#include <ade/graph.hpp>
#include <ade/passes/check_cycles.hpp>

14
#include <opencv2/gapi/gcompoundkernel.hpp> // compound::backend()
15 16 17 18 19 20 21 22

#include "compiler/gmodel.hpp"
#include "compiler/passes/passes.hpp"

#include "api/gbackend_priv.hpp"
#include "backends/common/gbackend.hpp"
#include "compiler/gmodelbuilder.hpp"
#include "logger.hpp"    // GAPI_LOG
23
#include "api/gproto_priv.hpp" // is_dynamic, rewrap
24 25 26 27 28 29 30 31 32 33 34 35 36 37

namespace
{
    struct ImplInfo
    {
        cv::GKernelImpl impl;
        cv::GArgs       in_args;
    };

    // Generaly the algorithm is following
    //
    // 1. Get GCompoundKernel implementation
    // 2. Create GCompoundContext
    // 3. Run GCompoundKernel with GCompoundContext
38
    // 4. Build subgraph from inputs/outputs GCompoundKernel
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    // 5. Replace compound node to subgraph

    void expand(ade::Graph& g, ade::NodeHandle nh, const ImplInfo& impl_info)
    {
        cv::gimpl::GModel::Graph gr(g);
        auto compound_impl = cv::util::any_cast<cv::detail::GCompoundKernel>(impl_info.impl.opaque);

        // GCompoundContext instantiates its own objects
        // in accordance with the RcDescs from in_args
        cv::detail::GCompoundContext context(impl_info.in_args);
        compound_impl.apply(context);

        cv::GProtoArgs ins, outs;
        ins.reserve(context.m_args.size());
        outs.reserve(context.m_results.size());

        // Inputs can be non-dynamic types.
        // Such inputs are not used when building a graph
        for (const auto& arg : context.m_args)
        {
            if (cv::gimpl::proto::is_dynamic(arg))
            {
                ins.emplace_back(cv::gimpl::proto::rewrap(arg));
            }
        }

        ade::util::transform(context.m_results, std::back_inserter(outs), &cv::gimpl::proto::rewrap);

        cv::gimpl::GModelBuilder builder(g);

        // Build the subgraph graph which will need to replace the compound node
        const auto& proto_slots = builder.put(ins, outs);

        const auto& in_nhs  = std::get<2>(proto_slots);
        const auto& out_nhs = std::get<3>(proto_slots);

        auto sorted_in_nhs  = cv::gimpl::GModel::orderedInputs(gr, nh);
        auto sorted_out_nhs = cv::gimpl::GModel::orderedOutputs(gr, nh);

        // Reconnect expanded kernels from graph data objects
        // to subgraph data objects, then drop that graph data objects
        for (const auto& it : ade::util::zip(in_nhs, sorted_in_nhs))
        {
            const auto& subgr_in_nh = std::get<0>(it);
            const auto& comp_in_nh  = std::get<1>(it);

            cv::gimpl::GModel::redirectReaders(gr, subgr_in_nh, comp_in_nh);
            gr.erase(subgr_in_nh);
        }

        gr.erase(nh);

        for (const auto& it : ade::util::zip(out_nhs, sorted_out_nhs))
        {
            const auto& subgr_out_nh = std::get<0>(it);
            const auto& comp_out_nh  = std::get<1>(it);

            cv::gimpl::GModel::redirectWriter(gr, subgr_out_nh, comp_out_nh);
            gr.erase(subgr_out_nh);
        }
    }
}
// This pass, given the kernel package, selects a kernel implementation
// for every operation in the graph
void cv::gimpl::passes::resolveKernels(ade::passes::PassContext   &ctx,
104
                                       const gapi::GKernelPackage &kernels)
105 106 107 108 109 110 111 112 113 114 115
{
    std::unordered_set<cv::gapi::GBackend> active_backends;

    GModel::Graph gr(ctx.graph);
    for (const auto &nh : gr.nodes())
    {
        if (gr.metadata(nh).get<NodeType>().t == NodeType::OP)
        {
            auto &op = gr.metadata(nh).get<Op>();
            cv::gapi::GBackend selected_backend;
            cv::GKernelImpl    selected_impl;
116
            std::tie(selected_backend, selected_impl) = kernels.lookup(op.k.name);
117 118 119 120 121 122 123 124 125 126 127 128 129 130

            selected_backend.priv().unpackKernel(ctx.graph, nh, selected_impl);
            op.backend = selected_backend;
            active_backends.insert(selected_backend);
        }
    }
    gr.metadata().set(ActiveBackends{active_backends});
}

void cv::gimpl::passes::expandKernels(ade::passes::PassContext &ctx, const gapi::GKernelPackage &kernels)
{
    GModel::Graph gr(ctx.graph);

    // Repeat the loop while there are compound kernels.
131
    // Restart procedure after every successful unrolling
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    bool has_compound_kernel = true;
    while (has_compound_kernel)
    {
        has_compound_kernel = false;
        for (const auto& nh : gr.nodes())
        {
            if (gr.metadata(nh).get<NodeType>().t == NodeType::OP)
            {
                const auto& op = gr.metadata(nh).get<Op>();

                cv::gapi::GBackend selected_backend;
                cv::GKernelImpl    selected_impl;
                std::tie(selected_backend, selected_impl) = kernels.lookup(op.k.name);

                if (selected_backend == cv::gapi::compound::backend())
                {
                    has_compound_kernel = true;
                    expand(ctx.graph, nh, ImplInfo{selected_impl, op.args});
                    break;
                }
            }
        }
    }
    GAPI_LOG_INFO(NULL, "Final graph: " << ctx.graph.nodes().size() << " nodes" << std::endl);
}