data_augmentation_ext_test.py 2.96 KB
Newer Older
1
"""
2
 Copyright (C) 2017-2020 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

      http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
"""

import unittest
from unittest.mock import patch

import numpy as np

from extensions.front.caffe.data_augmentation_ext import DataAugmentationFrontExtractor
from extensions.ops.data_augmentation import DataAugmentationOp
from mo.utils.unittest.extractors import FakeMultiParam
from mo.utils.unittest.graph import FakeNode
from mo.ops.op import Op


class FakeDAProtoLayer:
    def __init__(self, val):
        self.augmentation_param = val


class TestDA(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        Op.registered_ops['DataAugmentation'] = DataAugmentationOp

    def test_da_no_pb_no_ml(self):
        self.assertRaises(AttributeError, DataAugmentationFrontExtractor.extract, None)

    @patch('extensions.front.caffe.data_augmentation_ext.merge_attrs')
    def test_da_ext_ideal_numbers(self, merge_attrs_mock):
        params = {
            'crop_width': 0,
            'crop_height': 0,
            'write_augmented': "",
            'max_multiplier': 255.0,
            'augment_during_test': True,
            'recompute_mean': 0,
            'write_mean': "",
            'mean_per_pixel': False,
            'mean': 0,
            'mode': "add",
            'bottomwidth': 0,
            'bottomheight': 0,
            'num': 0,
            'chromatic_eigvec': [0.0]

        }
        merge_attrs_mock.return_value = {
            **params,
            'test': 54,
            'test2': 'test3'
        }
        fake_pl = FakeDAProtoLayer(FakeMultiParam(params))
        fake_node = FakeNode(fake_pl, None)

        DataAugmentationFrontExtractor.extract(fake_node)
        exp_res = {
            'type': 'DataAugmentation',
            'op': 'DataAugmentation',
            'crop_width': 0,
            'crop_height': 0,
            'write_augmented': "",
            'max_multiplier': 255.0,
            'augment_during_test': 1,
            'recompute_mean': 0,
            'write_mean': "",
            'mean_per_pixel': 0,
            'mean': 0,
            'mode': "add",
            'bottomwidth': 0,
            'bottomheight': 0,
            'num': 0,
            'chromatic_eigvec': [0.0],
            'infer': DataAugmentationOp.data_augmentation_infer
        }

        for key in exp_res.keys():
            if key in ('chromatic_eigvec',):
                np.testing.assert_equal(exp_res[key], fake_node[key])
            else:
                self.assertEqual(exp_res[key], fake_node[key])