softmax.py 1.9 KB
Newer Older
Alexey Suhov's avatar
Alexey Suhov committed
1
"""
2
 Copyright (c) 2018-2019 Intel Corporation
Alexey Suhov's avatar
Alexey Suhov committed
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

      http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
"""

import numpy as np
import networkx as nx

20
from mo.graph.graph import Graph
Alexey Suhov's avatar
Alexey Suhov committed
21 22 23 24 25 26 27 28 29 30 31
from mo.ops.lin_op import Mul
from mo.ops.const import Const
from mo.front.common.replacement import FrontReplacementSubgraph


class SoftmaxFrontReplacementSubgraph(FrontReplacementSubgraph):
    enabled = True

    def pattern(self):
        return dict(
            nodes=[
32
                ('softmax', dict(type='SoftMax'))
Alexey Suhov's avatar
Alexey Suhov committed
33 34 35 36
            ],
            edges=[]
        )

37
    def replace_sub_graph(self, graph: Graph, match: dict):
Alexey Suhov's avatar
Alexey Suhov committed
38 39 40 41 42 43 44 45 46 47 48 49 50
        node = match['softmax']
        if 'temperature' in node and node['temperature'] != 1.0:
            in_node = node.in_node()
            out_nodes = [node for node in node.out_nodes().values()]
            graph.remove_edge(node.in_node().id, node.id)
            temperature = np.array([1.0 / node.temperature])
            scalar_value_op = Const(graph, dict(value=temperature, shape=temperature.shape,
                                                symbol_dict={'name': node.id + '/const'}))
            mul_op = Mul(graph, dict(name=node.id + '/mul_', symbol_dict={'name': node.id + '/mul_'}))
            mul_node = mul_op.create_node(inputs=[in_node, scalar_value_op.create_node()])
            edge_attrs = graph.get_edge_data(node.id, out_nodes[0].id)[0]
            graph.add_edges_from([(mul_node.id, node.id, edge_attrs)])