roipooling.py 2.22 KB
Newer Older
Alexey Suhov's avatar
Alexey Suhov committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
"""
 Copyright (c) 2018-2019 Intel Corporation

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

      http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
"""

import logging as log
import numpy as np

from mo.front.common.layout import get_batch_dim, get_features_dim, get_height_dim, get_width_dim, shape_for_layout
from mo.graph.graph import Node


def roipooling_infer(node: Node):
    """
    Sets shape of output node according specified parameters input blobs and node
    Sets number from the first input blob, channels from the second one, height and width are specified
    Parameters
    ----------
    node
    """
    shapes = [node.in_node(i).shape for i in range(len(node.in_nodes()))]
    if any(s is None for s in shapes):
        return
    if len(node.in_nodes()) == 4:  # TensorFlow case of CropAndResize operation
        crop_size = node.in_node(3).value
        if crop_size is None:
            log.error('The ROIPooling size is not known for node {}'.format(node.soft_get('name')))
            return
        if not isinstance(crop_size, np.ndarray) or len(crop_size) != 2:
            log.error('The ROIPooling size is should have 2 elements for node {}'.format(node.soft_get('name')))
        node.pooled_h = crop_size[0]
        node.pooled_w = crop_size[1]
        node.graph.remove_edge(node.in_node(3).id, node.id)
        node.graph.remove_edge(node.in_node(2).id, node.id)

    layout = node.graph.graph['layout']
    assert len(layout) == 4

    node.out_node().shape = shape_for_layout(layout,
                                             batch=shapes[1][get_batch_dim(layout, 4)],
                                             features=shapes[0][get_features_dim(layout, 4)],
                                             height=node.pooled_h,
                                             width=node.pooled_w)