/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::dnn; #if HAVE_PROTOBUF #include "caffe.pb.h" #include <iostream> #include <fstream> #include <sstream> #include <algorithm> #include <google/protobuf/message.h> #include <google/protobuf/text_format.h> #include <google/protobuf/io/zero_copy_stream_impl.h> #include "caffe_io.hpp" using ::google::protobuf::RepeatedField; using ::google::protobuf::RepeatedPtrField; using ::google::protobuf::Message; using ::google::protobuf::Descriptor; using ::google::protobuf::FieldDescriptor; using ::google::protobuf::Reflection; namespace { template<typename T> static cv::String toString(const T &v) { std::ostringstream ss; ss << v; return ss.str(); } class CaffeImporter : public Importer { caffe::NetParameter net; caffe::NetParameter netBinary; public: CaffeImporter(const char *pototxt, const char *caffeModel) { ReadNetParamsFromTextFileOrDie(pototxt, &net); if (caffeModel && caffeModel[0]) ReadNetParamsFromBinaryFileOrDie(caffeModel, &netBinary); } void addParam(const Message &msg, const FieldDescriptor *field, cv::dnn::LayerParams ¶ms) { const Reflection *refl = msg.GetReflection(); int type = field->cpp_type(); bool isRepeated = field->is_repeated(); const std::string &name = field->name(); #define SET_UP_FILED(getter, arrayConstr, gtype) \ if (isRepeated) { \ const RepeatedField<gtype> &v = refl->GetRepeatedField<gtype>(msg, field); \ params.set(name, DictValue::arrayConstr(v.begin(), (int)v.size())); \ } \ else { \ params.set(name, refl->getter(msg, field)); \ } switch (type) { case FieldDescriptor::CPPTYPE_INT32: SET_UP_FILED(GetInt32, arrayInt, ::google::protobuf::int32); break; case FieldDescriptor::CPPTYPE_UINT32: SET_UP_FILED(GetUInt32, arrayInt, ::google::protobuf::uint32); break; case FieldDescriptor::CPPTYPE_INT64: SET_UP_FILED(GetInt32, arrayInt, ::google::protobuf::int64); break; case FieldDescriptor::CPPTYPE_UINT64: SET_UP_FILED(GetUInt32, arrayInt, ::google::protobuf::uint64); break; case FieldDescriptor::CPPTYPE_BOOL: SET_UP_FILED(GetBool, arrayInt, bool); break; case FieldDescriptor::CPPTYPE_DOUBLE: SET_UP_FILED(GetDouble, arrayReal, double); break; case FieldDescriptor::CPPTYPE_FLOAT: SET_UP_FILED(GetFloat, arrayReal, float); break; case FieldDescriptor::CPPTYPE_STRING: if (isRepeated) { const RepeatedPtrField<std::string> &v = refl->GetRepeatedPtrField<std::string>(msg, field); params.set(name, DictValue::arrayString(v.begin(), (int)v.size())); } else { params.set(name, refl->GetString(msg, field)); } break; case FieldDescriptor::CPPTYPE_ENUM: if (isRepeated) { int size = refl->FieldSize(msg, field); std::vector<cv::String> buf(size); for (int i = 0; i < size; i++) buf[i] = refl->GetRepeatedEnum(msg, field, i)->name(); params.set(name, DictValue::arrayString(buf.begin(), size)); } else { params.set(name, refl->GetEnum(msg, field)->name()); } break; default: CV_Error(Error::StsError, "Unknown type \"" + String(field->type_name()) + "\" in prototxt"); break; } } inline static bool ends_with_param(const std::string &str) { static const std::string _param("_param"); return (str.size() >= _param.size()) && str.compare(str.size() - _param.size(), _param.size(), _param) == 0; } void extractLayerParams(const Message &msg, cv::dnn::LayerParams ¶ms, bool isInternal = false) { const Descriptor *msgDesc = msg.GetDescriptor(); const Reflection *msgRefl = msg.GetReflection(); for (int fieldId = 0; fieldId < msgDesc->field_count(); fieldId++) { const FieldDescriptor *fd = msgDesc->field(fieldId); if (!isInternal && !ends_with_param(fd->name())) continue; bool hasData = fd->is_required() || (fd->is_optional() && msgRefl->HasField(msg, fd)) || (fd->is_repeated() && msgRefl->FieldSize(msg, fd) > 0); if (!hasData) continue; if (fd->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) { if (fd->is_repeated()) //Extract only first item! extractLayerParams(msgRefl->GetRepeatedMessage(msg, fd, 0), params, true); else extractLayerParams(msgRefl->GetMessage(msg, fd), params, true); } else { addParam(msg, fd, params); } } } BlobShape blobShapeFromProto(const caffe::BlobProto &pbBlob) { if (pbBlob.has_num() || pbBlob.has_channels() || pbBlob.has_height() || pbBlob.has_width()) { return BlobShape(pbBlob.num(), pbBlob.channels(), pbBlob.height(), pbBlob.width()); } else if (pbBlob.has_shape()) { const caffe::BlobShape &_shape = pbBlob.shape(); BlobShape shape = BlobShape::all(_shape.dim_size()); for (int i = 0; i < _shape.dim_size(); i++) shape[i] = (int)_shape.dim(i); return shape; } else { CV_Error(Error::StsError, "Unknown shape of input blob"); return BlobShape(); } } void blobFromProto(const caffe::BlobProto &pbBlob, cv::dnn::Blob &dstBlob) { BlobShape shape = blobShapeFromProto(pbBlob); dstBlob.create(shape, CV_32F); CV_Assert(pbBlob.data_size() == (int)dstBlob.matRefConst().total()); CV_DbgAssert(pbBlob.GetDescriptor()->FindFieldByLowercaseName("data")->cpp_type() == FieldDescriptor::CPPTYPE_FLOAT); float *dstData = dstBlob.matRef().ptr<float>(); for (int i = 0; i < pbBlob.data_size(); i++) dstData[i] = pbBlob.data(i); } void extractBinaryLayerParms(const caffe::LayerParameter& layer, LayerParams& layerParams) { const std::string &name = layer.name(); int li; for (li = 0; li != netBinary.layer_size(); li++) { if (netBinary.layer(li).name() == name) break; } if (li == netBinary.layer_size() || netBinary.layer(li).blobs_size() == 0) return; const caffe::LayerParameter &binLayer = netBinary.layer(li); layerParams.blobs.resize(binLayer.blobs_size()); for (int bi = 0; bi < binLayer.blobs_size(); bi++) { blobFromProto(binLayer.blobs(bi), layerParams.blobs[bi]); } } struct BlobNote { BlobNote(const std::string &_name, int _layerId, int _outNum) : name(_name.c_str()), layerId(_layerId), outNum(_outNum) {} const char *name; int layerId, outNum; }; std::vector<BlobNote> addedBlobs; std::map<String, int> layerCounter; void populateNet(Net dstNet) { int layersSize = net.layer_size(); layerCounter.clear(); addedBlobs.clear(); addedBlobs.reserve(layersSize + 1); //setup input layer names { std::vector<String> netInputs(net.input_size()); for (int inNum = 0; inNum < net.input_size(); inNum++) { addedBlobs.push_back(BlobNote(net.input(inNum), 0, inNum)); netInputs[inNum] = net.input(inNum); } dstNet.setNetInputs(netInputs); } for (int li = 0; li < layersSize; li++) { const caffe::LayerParameter &layer = net.layer(li); String name = layer.name(); String type = layer.type(); LayerParams layerParams; extractLayerParams(layer, layerParams); extractBinaryLayerParms(layer, layerParams); int repetitions = layerCounter[name]++; if (repetitions) name += String("_") + toString(repetitions); int id = dstNet.addLayer(name, type, layerParams); for (int inNum = 0; inNum < layer.bottom_size(); inNum++) addInput(layer.bottom(inNum), id, inNum, dstNet); for (int outNum = 0; outNum < layer.top_size(); outNum++) addOutput(layer, id, outNum); } addedBlobs.clear(); } void addOutput(const caffe::LayerParameter &layer, int layerId, int outNum) { const std::string &name = layer.top(outNum); bool haveDups = false; for (int idx = (int)addedBlobs.size() - 1; idx >= 0; idx--) { if (addedBlobs[idx].name == name) { haveDups = true; break; } } if (haveDups) { bool isInplace = layer.bottom_size() > outNum && layer.bottom(outNum) == name; if (!isInplace) CV_Error(Error::StsBadArg, "Duplicate blobs produced by multiple sources"); } addedBlobs.push_back(BlobNote(name, layerId, outNum)); } void addInput(const std::string &name, int layerId, int inNum, Net &dstNet) { int idx; for (idx = (int)addedBlobs.size() - 1; idx >= 0; idx--) { if (addedBlobs[idx].name == name) break; } if (idx < 0) { CV_Error(Error::StsObjectNotFound, "Can't find output blob \"" + name + "\""); return; } dstNet.connect(addedBlobs[idx].layerId, addedBlobs[idx].outNum, layerId, inNum); } ~CaffeImporter() { } }; } Ptr<Importer> cv::dnn::createCaffeImporter(const String &prototxt, const String &caffeModel) { return Ptr<Importer>(new CaffeImporter(prototxt.c_str(), caffeModel.c_str())); } #else //HAVE_PROTOBUF Ptr<Importer> cv::dnn::createCaffeImporter(const String&, const String&) { CV_Error(cv::Error::StsNotImplemented, "libprotobuf required to import data from Caffe models"); return Ptr<Importer>(); } #endif //HAVE_PROTOBUF Net cv::dnn::readNetFromCaffe(const String &prototxt, const String &caffeModel /*= String()*/) { Ptr<Importer> caffeImporter; try { caffeImporter = createCaffeImporter(prototxt, caffeModel); } catch(...) { } Net net; if (caffeImporter) caffeImporter->populateNet(net); return net; }