/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "../precomp.hpp" #include "layers_common.hpp" #include "lrn_layer.hpp" #include <opencv2/imgproc.hpp> #include <algorithm> namespace cv { namespace dnn { LRNLayer::LRNLayer(LayerParams ¶ms) : Layer(params) { String nrmType = params.get<String>("norm_region", "ACROSS_CHANNELS"); if (nrmType == "ACROSS_CHANNELS") type = CHANNEL_NRM; else if (nrmType == "WITHIN_CHANNEL") type = SPATIAL_NRM; else CV_Error(Error::StsBadArg, "Unknown region type \"" + nrmType + "\""); size = params.get<int>("local_size", 5); if (size % 2 != 1 || size <= 0) CV_Error(Error::StsBadArg, "LRN layer supports only positive odd values for local_size"); alpha = params.get<double>("alpha", 1); beta = params.get<double>("beta", 0.75); } void LRNLayer::allocate(const std::vector<Blob*> &inputs, std::vector<Blob> &outputs) { CV_Assert(inputs.size() == 1); outputs.resize(1); Vec4i shape = inputs[0]->shape4(); outputs[0].create(shape); shape[0] = 1; //maybe make shape[0] = 1 too bufBlob.create(shape); } void LRNLayer::forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs) { Blob &src = *inputs[0]; Blob &dst = outputs[0]; switch (type) { case CHANNEL_NRM: channelNoramlization(src, dst); break; case SPATIAL_NRM: spatialNormalization(src, dst); break; default: CV_Error(cv::Error::StsNotImplemented, "Unimplemented mode of LRN layer"); break; } } void LRNLayer::channelNoramlization(Blob &srcBlob, Blob &dstBlob) { CV_DbgAssert(srcBlob.ptr() != dstBlob.ptr()); int num = srcBlob.num(); int channels = srcBlob.channels(); int ksize = (size - 1) / 2; for (int n = 0; n < num; n++) { Mat accum = dstBlob.getPlane(n, channels-1); //trick for memory saving accum.setTo(0); for (int cn = 0; cn < std::min(ksize, channels); cn++) cv::accumulateSquare(srcBlob.getPlane(n, cn), accum); for (int cn = 0; cn < channels; cn++) { if (cn + ksize < channels) { cv::accumulateSquare(srcBlob.getPlane(n, cn + ksize), accum); } if (cn - ksize - 1 >= 0) { Mat left = srcBlob.getPlane(n, cn - ksize - 1); cv::subtract(accum, left.mul(left), accum); //subtractSquare } Mat dst = dstBlob.getPlane(n, cn); accum.convertTo(dst, dst.type(), alpha/size, 1); cv::pow(dst, beta, dst); cv::divide(srcBlob.getPlane(n, cn), dst, dst); } } } void LRNLayer::spatialNormalization(Blob &srcBlob, Blob &dstBlob) { int num = srcBlob.num(); int channels = srcBlob.channels(); for (int n = 0; n < num; n++) { for (int cn = 0; cn < channels; cn++) { Mat src = srcBlob.getPlane(n, cn); Mat dst = dstBlob.getPlane(n, cn); uchar *dataDst0 = dst.data; cv::pow(srcBlob.getPlane(n, cn), 2, dst); //TODO: check border type cv::boxFilter(dst, dst, dst.depth(), cv::Size(size, size), cv::Point(-1, -1), false, cv::BORDER_CONSTANT); dst.convertTo(dst, dst.type(), alpha/(size*size), 1); cv::pow(dst, beta, dst); cv::divide(src, dst, dst); CV_Assert(dataDst0 == dst.data); //debug } } } } }