/*/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/video/tracking.hpp" #include "opencv2/imgproc.hpp" #include "time.h" #include<algorithm> #include<limits.h> #include<math.h> #include<opencv2/highgui.hpp> #include "tld_tracker.hpp" namespace cv {namespace tld { //debug functions and variables Rect2d etalon(14.0, 110.0, 20.0, 20.0); void drawWithRects(const Mat& img, std::vector<Rect2d>& blackOnes, Rect2d whiteOne) { Mat image; img.copyTo(image); if( whiteOne.width >= 0 ) rectangle( image, whiteOne, 255, 1, 1 ); for( int i = 0; i < (int)blackOnes.size(); i++ ) rectangle( image, blackOnes[i], 0, 1, 1 ); imshow("img", image); } void drawWithRects(const Mat& img, std::vector<Rect2d>& blackOnes, std::vector<Rect2d>& whiteOnes, String filename) { Mat image; static int frameCounter = 1; img.copyTo(image); for( int i = 0; i < (int)whiteOnes.size(); i++ ) rectangle( image, whiteOnes[i], 255, 1, 1 ); for( int i = 0; i < (int)blackOnes.size(); i++ ) rectangle( image, blackOnes[i], 0, 1, 1 ); imshow("img", image); if( filename.length() > 0 ) { char inbuf[100]; sprintf(inbuf, "%s%d.jpg", filename.c_str(), frameCounter); imwrite(inbuf, image); frameCounter++; } } void myassert(const Mat& img) { int count = 0; for( int i = 0; i < img.rows; i++ ) { for( int j = 0; j < img.cols; j++ ) { if( img.at<uchar>(i, j) == 0 ) count++; } } dprintf(("black: %d out of %d (%f)\n", count, img.rows * img.cols, 1.0 * count / img.rows / img.cols)); } void printPatch(const Mat_<uchar>& standardPatch) { for( int i = 0; i < standardPatch.rows; i++ ) { for( int j = 0; j < standardPatch.cols; j++ ) dprintf(("%5.2f, ", (double)standardPatch(i, j))); dprintf(("\n")); } } std::string type2str(const Mat& mat) { int type = mat.type(); std::string r; uchar depth = type & CV_MAT_DEPTH_MASK; uchar chans = (uchar)(1 + (type >> CV_CN_SHIFT)); switch ( depth ) { case CV_8U: r = "8U"; break; case CV_8S: r = "8S"; break; case CV_16U: r = "16U"; break; case CV_16S: r = "16S"; break; case CV_32S: r = "32S"; break; case CV_32F: r = "32F"; break; case CV_64F: r = "64F"; break; default: r = "User"; break; } r += "C"; r += (chans + '0'); return r; } //generic functions double scaleAndBlur(const Mat& originalImg, int scale, Mat& scaledImg, Mat& blurredImg, Size GaussBlurKernelSize, double scaleStep) { double dScale = 1.0; for( int i = 0; i < scale; i++, dScale *= scaleStep ); Size2d size = originalImg.size(); size.height /= dScale; size.width /= dScale; resize(originalImg, scaledImg, size); GaussianBlur(scaledImg, blurredImg, GaussBlurKernelSize, 0.0); return dScale; } void getClosestN(std::vector<Rect2d>& scanGrid, Rect2d bBox, int n, std::vector<Rect2d>& res) { if( n >= (int)scanGrid.size() ) { res.assign(scanGrid.begin(), scanGrid.end()); return; } std::vector<double> overlaps; overlaps.assign(n, 0.0); res.assign(scanGrid.begin(), scanGrid.begin() + n); for( int i = 0; i < n; i++ ) overlaps[i] = overlap(res[i], bBox); double otmp; Rect2d rtmp; for (int i = 1; i < n; i++) { int j = i; while (j > 0 && overlaps[j - 1] > overlaps[j]) { otmp = overlaps[j]; overlaps[j] = overlaps[j - 1]; overlaps[j - 1] = otmp; rtmp = res[j]; res[j] = res[j - 1]; res[j - 1] = rtmp; j--; } } for( int i = n; i < (int)scanGrid.size(); i++ ) { double o = 0.0; if( (o = overlap(scanGrid[i], bBox)) <= overlaps[0] ) continue; int j = 0; while( j < n && overlaps[j] < o ) j++; j--; for( int k = 0; k < j; overlaps[k] = overlaps[k + 1], res[k] = res[k + 1], k++ ); overlaps[j] = o; res[j] = scanGrid[i]; } } double variance(const Mat& img) { double p = 0, p2 = 0; for( int i = 0; i < img.rows; i++ ) { for( int j = 0; j < img.cols; j++ ) { p += img.at<uchar>(i, j); p2 += img.at<uchar>(i, j) * img.at<uchar>(i, j); } } p /= (img.cols * img.rows); p2 /= (img.cols * img.rows); return p2 - p * p; } double NCC(const Mat_<uchar>& patch1, const Mat_<uchar>& patch2) { CV_Assert( patch1.rows == patch2.rows ); CV_Assert( patch1.cols == patch2.cols ); int N = patch1.rows * patch1.cols; int s1 = 0, s2 = 0, n1 = 0, n2 = 0, prod = 0; for( int i = 0; i < patch1.rows; i++ ) { for( int j = 0; j < patch1.cols; j++ ) { int p1 = patch1(i, j), p2 = patch2(i, j); s1 += p1; s2 += p2; n1 += (p1 * p1); n2 += (p2 * p2); prod += (p1 * p2); } } double sq1 = sqrt(std::max(0.0, n1 - 1.0 * s1 * s1 / N)), sq2 = sqrt(std::max(0.0, n2 - 1.0 * s2 * s2 / N)); double ares = (sq2 == 0) ? sq1 / abs(sq1) : (prod - s1 * s2 / N) / sq1 / sq2; return ares; } int getMedian(const std::vector<int>& values, int size) { if( size == -1 ) size = (int)values.size(); std::vector<int> copy(values.begin(), values.begin() + size); std::sort(copy.begin(), copy.end()); if( size % 2 == 0 ) return (copy[size / 2 - 1] + copy[size / 2]) / 2; else return copy[(size - 1) / 2]; } double overlap(const Rect2d& r1, const Rect2d& r2) { double a1 = r1.area(), a2 = r2.area(), a0 = (r1&r2).area(); return a0 / (a1 + a2 - a0); } void resample(const Mat& img, const RotatedRect& r2, Mat_<uchar>& samples) { Mat_<float> M(2, 3), R(2, 2), Si(2, 2), s(2, 1), o(2, 1); R(0, 0) = (float)cos(r2.angle * CV_PI / 180); R(0, 1) = (float)(-sin(r2.angle * CV_PI / 180)); R(1, 0) = (float)sin(r2.angle * CV_PI / 180); R(1, 1) = (float)cos(r2.angle * CV_PI / 180); Si(0, 0) = (float)(samples.cols / r2.size.width); Si(0, 1) = 0.0f; Si(1, 0) = 0.0f; Si(1, 1) = (float)(samples.rows / r2.size.height); s(0, 0) = (float)samples.cols; s(1, 0) = (float)samples.rows; o(0, 0) = r2.center.x; o(1, 0) = r2.center.y; Mat_<float> A(2, 2), b(2, 1); A = Si * R; b = s / 2.0 - Si * R * o; A.copyTo(M.colRange(Range(0, 2))); b.copyTo(M.colRange(Range(2, 3))); warpAffine(img, samples, M, samples.size()); } void resample(const Mat& img, const Rect2d& r2, Mat_<uchar>& samples) { Mat_<float> M(2, 3); M(0, 0) = (float)(samples.cols / r2.width); M(0, 1) = 0.0f; M(0, 2) = (float)(-r2.x * samples.cols / r2.width); M(1, 0) = 0.0f; M(1, 1) = (float)(samples.rows / r2.height); M(1, 2) = (float)(-r2.y * samples.rows / r2.height); warpAffine(img, samples, M, samples.size()); } //other stuff void TLDEnsembleClassifier::stepPrefSuff(std::vector<Vec4b>& arr, int pos, int len, int gridSize) { #if 0 int step = len / (gridSize - 1), pref = (len - step * (gridSize - 1)) / 2; for( int i = 0; i < (int)(sizeof(x1) / sizeof(x1[0])); i++ ) arr[i] = pref + arr[i] * step; #else int total = len - gridSize; int quo = total / (gridSize - 1), rem = total % (gridSize - 1); int smallStep = quo, bigStep = quo + 1; int bigOnes = rem, smallOnes = gridSize - bigOnes - 1; int bigOnes_front = bigOnes / 2, bigOnes_back = bigOnes - bigOnes_front; for( int i = 0; i < (int)arr.size(); i++ ) { if( arr[i].val[pos] < bigOnes_back ) { arr[i].val[pos] = (uchar)(arr[i].val[pos] * bigStep + arr[i].val[pos]); continue; } if( arr[i].val[pos] < (bigOnes_front + smallOnes) ) { arr[i].val[pos] = (uchar)(bigOnes_front * bigStep + (arr[i].val[pos] - bigOnes_front) * smallStep + arr[i].val[pos]); continue; } if( arr[i].val[pos] < (bigOnes_front + smallOnes + bigOnes_back) ) { arr[i].val[pos] = (uchar)(bigOnes_front * bigStep + smallOnes * smallStep + (arr[i].val[pos] - (bigOnes_front + smallOnes)) * bigStep + arr[i].val[pos]); continue; } arr[i].val[pos] = (uchar)(len - 1); } #endif } void TLDEnsembleClassifier::prepareClassifier(int rowstep) { if( lastStep_ != rowstep ) { lastStep_ = rowstep; for( int i = 0; i < (int)offset.size(); i++ ) { offset[i].x = rowstep * measurements[i].val[0] + measurements[i].val[1]; offset[i].y = rowstep * measurements[i].val[2] + measurements[i].val[3]; } } } TLDEnsembleClassifier::TLDEnsembleClassifier(const std::vector<Vec4b>& meas, int beg, int end):lastStep_(-1) { int posSize = 1, mpc = end - beg; for( int i = 0; i < mpc; i++ ) posSize *= 2; posAndNeg.assign(posSize, Point2i(0, 0)); measurements.assign(meas.begin() + beg, meas.begin() + end); offset.assign(mpc, Point2i(0, 0)); } void TLDEnsembleClassifier::integrate(const Mat_<uchar>& patch, bool isPositive) { int position = code(patch.data, (int)patch.step[0]); if( isPositive ) posAndNeg[position].x++; else posAndNeg[position].y++; } double TLDEnsembleClassifier::posteriorProbability(const uchar* data, int rowstep) const { int position = code(data, rowstep); double posNum = (double)posAndNeg[position].x, negNum = (double)posAndNeg[position].y; if( posNum == 0.0 && negNum == 0.0 ) return 0.0; else return posNum / (posNum + negNum); } double TLDEnsembleClassifier::posteriorProbabilityFast(const uchar* data) const { int position = codeFast(data); double posNum = (double)posAndNeg[position].x, negNum = (double)posAndNeg[position].y; if( posNum == 0.0 && negNum == 0.0 ) return 0.0; else return posNum / (posNum + negNum); } int TLDEnsembleClassifier::codeFast(const uchar* data) const { int position = 0; for( int i = 0; i < (int)measurements.size(); i++ ) { position = position << 1; if( data[offset[i].x] < data[offset[i].y] ) position++; } return position; } int TLDEnsembleClassifier::code(const uchar* data, int rowstep) const { int position = 0; for( int i = 0; i < (int)measurements.size(); i++ ) { position = position << 1; if( *(data + rowstep * measurements[i].val[0] + measurements[i].val[1]) < *(data + rowstep * measurements[i].val[2] + measurements[i].val[3]) ) { position++; } } return position; } int TLDEnsembleClassifier::makeClassifiers(Size size, int measurePerClassifier, int gridSize, std::vector<TLDEnsembleClassifier>& classifiers) { std::vector<Vec4b> measurements; for( int i = 0; i < gridSize; i++ ) { for( int j = 0; j < gridSize; j++ ) { for( int k = 0; k < j; k++ ) { Vec4b m; m.val[0] = m.val[2] = (uchar)i; m.val[1] = (uchar)j; m.val[3] = (uchar)k; measurements.push_back(m); m.val[1] = m.val[3] = (uchar)i; m.val[0] = (uchar)j; m.val[2] = (uchar)k; measurements.push_back(m); } } } random_shuffle(measurements.begin(), measurements.end()); stepPrefSuff(measurements, 0, size.width, gridSize); stepPrefSuff(measurements, 1, size.width, gridSize); stepPrefSuff(measurements, 2, size.height, gridSize); stepPrefSuff(measurements, 3, size.height, gridSize); for( int i = 0, howMany = (int)measurements.size() / measurePerClassifier; i < howMany; i++ ) classifiers.push_back(TLDEnsembleClassifier(measurements, i * measurePerClassifier, (i + 1) * measurePerClassifier)); return (int)classifiers.size(); } }}