// Copyright (c) 2010 libmv authors. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. #include "libmv/multiview/resection_kernel.h" #include "libmv/multiview/robust_estimation.h" #include "libmv/multiview/robust_resection.h" #include "libmv/numeric/numeric.h" namespace libmv { // Estimate robustly the the projection matrix of a uncalibrated // camera from 6 or more 3D points and their images. double ResectionRobust(const Mat2X &x_image, const Mat4X &X_world, double max_error, Mat34 *P, vector<int> *inliers, double outliers_probability) { // The threshold is on the sum of the squared errors. double threshold = Square(max_error); double best_score = HUGE_VAL; typedef libmv::resection::kernel::Kernel Kernel; Kernel kernel(x_image, X_world); *P = Estimate(kernel, MLEScorer<Kernel>(threshold), inliers, &best_score, outliers_probability); if (best_score == HUGE_VAL) return HUGE_VAL; else return std::sqrt(best_score / 2.0); } } // namespace libmv