/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "../precomp.hpp"
#include "layers_common.hpp"
#include "prior_box_layer.hpp"
#include <float.h>
#include <algorithm>
#include <cmath>

namespace cv
{
namespace dnn
{

const std::string PriorBoxLayer::_layerName = std::string("PriorBox");

bool PriorBoxLayer::getParameterDict(const LayerParams &params,
                                     const std::string &parameterName,
                                     DictValue& result)
{
    if (!params.has(parameterName))
    {
        return false;
    }

    result = params.get(parameterName);
    return true;
}

template<typename T>
T PriorBoxLayer::getParameter(const LayerParams &params,
                              const std::string &parameterName,
                              const size_t &idx,
                              const bool required,
                              const T& defaultValue)
{
    DictValue dictValue;
    bool success = getParameterDict(params, parameterName, dictValue);
    if(!success)
    {
        if(required)
        {
            std::string message = _layerName;
            message += " layer parameter does not contain ";
            message += parameterName;
            message += " parameter.";
            CV_Error(Error::StsBadArg, message);
        }
        else
        {
            return defaultValue;
        }
    }
    return dictValue.get<T>(idx);
}

void PriorBoxLayer::getAspectRatios(const LayerParams &params)
{
    DictValue aspectRatioParameter;
    bool aspectRatioRetieved = getParameterDict(params, "aspect_ratio", aspectRatioParameter);
    CV_Assert(aspectRatioRetieved);

    for (int i = 0; i < aspectRatioParameter.size(); ++i)
    {
        float aspectRatio = aspectRatioParameter.get<float>(i);
        bool alreadyExists = false;

        for (size_t j = 0; j < _aspectRatios.size(); ++j)
        {
            if (fabs(aspectRatio - _aspectRatios[j]) < 1e-6)
            {
                alreadyExists = true;
                break;
            }
        }
        if (!alreadyExists)
        {
            _aspectRatios.push_back(aspectRatio);
            if (_flip)
            {
                _aspectRatios.push_back(1./aspectRatio);
            }
        }
    }
}

void PriorBoxLayer::getVariance(const LayerParams &params)
{
    DictValue varianceParameter;
    bool varianceParameterRetrieved = getParameterDict(params, "variance", varianceParameter);
    CV_Assert(varianceParameterRetrieved);

    int varianceSize = varianceParameter.size();
    if (varianceSize > 1)
    {
        // Must and only provide 4 variance.
        CV_Assert(varianceSize == 4);

        for (int i = 0; i < varianceSize; ++i)
        {
            float variance = varianceParameter.get<float>(i);
            CV_Assert(variance > 0);
            _variance.push_back(variance);
        }
    }
    else
    {
        if (varianceSize == 1)
        {
            float variance = varianceParameter.get<float>(0);
            CV_Assert(variance > 0);
            _variance.push_back(variance);
        }
        else
        {
            // Set default to 0.1.
            _variance.push_back(0.1f);
        }
    }
}

PriorBoxLayer::PriorBoxLayer(LayerParams &params) : Layer(params)
{
    _minSize = getParameter<unsigned>(params, "min_size");
    CV_Assert(_minSize > 0);

    _flip = getParameter<bool>(params, "flip");
    _clip = getParameter<bool>(params, "clip");

    _aspectRatios.clear();
    _aspectRatios.push_back(1.);

    getAspectRatios(params);
    getVariance(params);

    _numPriors = _aspectRatios.size();

    _maxSize = -1;
    if (params.has("max_size"))
    {
        _maxSize = params.get("max_size").get<float>(0);
        CV_Assert(_maxSize > _minSize);

        _numPriors += 1;
    }
}

void PriorBoxLayer::allocate(const std::vector<Blob*> &inputs, std::vector<Blob> &outputs)
{
    CV_Assert(inputs.size() == 2);

    _layerWidth = inputs[0]->cols();
    _layerHeight = inputs[0]->rows();

    _imageWidth = inputs[1]->cols();
    _imageHeight = inputs[1]->rows();

    _stepX = static_cast<float>(_imageWidth) / _layerWidth;
    _stepY = static_cast<float>(_imageHeight) / _layerHeight;

    // Since all images in a batch has same height and width, we only need to
    // generate one set of priors which can be shared across all images.
    size_t outNum = 1;
    // 2 channels. First channel stores the mean of each prior coordinate.
    // Second channel stores the variance of each prior coordinate.
    size_t outChannels = 2;
    _outChannelSize = _layerHeight * _layerWidth * _numPriors * 4;

    outputs[0].create(BlobShape(outNum, outChannels, _outChannelSize));
    outputs[0].matRef() = 0;
}

void PriorBoxLayer::forward(std::vector<Blob*> &inputs, std::vector<Blob> &outputs)
{
    (void)inputs; // to suppress unused parameter warning

    float* outputPtr = outputs[0].ptrf();

    // first prior: aspect_ratio = 1, size = min_size
    int idx = 0;
    for (size_t h = 0; h < _layerHeight; ++h)
    {
        for (size_t w = 0; w < _layerWidth; ++w)
        {
            _boxWidth = _boxHeight = _minSize;

            float center_x = (w + 0.5) * _stepX;
            float center_y = (h + 0.5) * _stepY;
            // xmin
            outputPtr[idx++] = (center_x - _boxWidth / 2.) / _imageWidth;
            // ymin
            outputPtr[idx++] = (center_y - _boxHeight / 2.) / _imageHeight;
            // xmax
            outputPtr[idx++] = (center_x + _boxWidth / 2.) / _imageWidth;
            // ymax
            outputPtr[idx++] = (center_y + _boxHeight / 2.) / _imageHeight;

            if (_maxSize > 0)
            {
                // second prior: aspect_ratio = 1, size = sqrt(min_size * max_size)
                _boxWidth = _boxHeight = sqrt(_minSize * _maxSize);
                // xmin
                outputPtr[idx++] = (center_x - _boxWidth / 2.) / _imageWidth;
                // ymin
                outputPtr[idx++] = (center_y - _boxHeight / 2.) / _imageHeight;
                // xmax
                outputPtr[idx++] = (center_x + _boxWidth / 2.) / _imageWidth;
                // ymax
                outputPtr[idx++] = (center_y + _boxHeight / 2.) / _imageHeight;
            }

            // rest of priors
            for (size_t r = 0; r < _aspectRatios.size(); ++r)
            {
                float ar = _aspectRatios[r];
                if (fabs(ar - 1.) < 1e-6)
                {
                    continue;
                }
                _boxWidth = _minSize * sqrt(ar);
                _boxHeight = _minSize / sqrt(ar);
                // xmin
                outputPtr[idx++] = (center_x - _boxWidth / 2.) / _imageWidth;
                // ymin
                outputPtr[idx++] = (center_y - _boxHeight / 2.) / _imageHeight;
                // xmax
                outputPtr[idx++] = (center_x + _boxWidth / 2.) / _imageWidth;
                // ymax
                outputPtr[idx++] = (center_y + _boxHeight / 2.) / _imageHeight;
            }
        }
    }
    // clip the prior's coordidate such that it is within [0, 1]
    if (_clip)
    {
        for (size_t d = 0; d < _outChannelSize; ++d)
        {
            outputPtr[d] = std::min<float>(std::max<float>(outputPtr[d], 0.), 1.);
        }
    }
    // set the variance.
    outputPtr = outputs[0].ptrf(0, 1);
    if(_variance.size() == 1)
    {
        Mat secondChannel(outputs[0].rows(), outputs[0].cols(), CV_32F, outputPtr);
        secondChannel.setTo(Scalar(_variance[0]));
    }
    else
    {
        int count = 0;
        for (size_t h = 0; h < _layerHeight; ++h)
        {
            for (size_t w = 0; w < _layerWidth; ++w)
            {
                for (size_t i = 0; i < _numPriors; ++i)
                {
                    for (int j = 0; j < 4; ++j)
                    {
                        outputPtr[count] = _variance[j];
                        ++count;
                    }
                }
            }
        }
    }
}
}
}