/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include <fstream> using namespace std; using namespace cv; using namespace cvtest; using namespace optflow; static string getDataDir() { return TS::ptr()->get_data_path(); } static string getRubberWhaleFrame1() { return getDataDir() + "optflow/RubberWhale1.png"; } static string getRubberWhaleFrame2() { return getDataDir() + "optflow/RubberWhale2.png"; } static string getRubberWhaleGroundTruth() { return getDataDir() + "optflow/RubberWhale.flo"; } static bool isFlowCorrect(float u) { return !cvIsNaN(u) && (fabs(u) < 1e9); } static bool isFlowCorrect(double u) { return !cvIsNaN(u) && (fabs(u) < 1e9); } static float calcRMSE(Mat flow1, Mat flow2) { float sum = 0; int counter = 0; const int rows = flow1.rows; const int cols = flow1.cols; for (int y = 0; y < rows; ++y) { for (int x = 0; x < cols; ++x) { Vec2f flow1_at_point = flow1.at<Vec2f>(y, x); Vec2f flow2_at_point = flow2.at<Vec2f>(y, x); float u1 = flow1_at_point[0]; float v1 = flow1_at_point[1]; float u2 = flow2_at_point[0]; float v2 = flow2_at_point[1]; if (isFlowCorrect(u1) && isFlowCorrect(u2) && isFlowCorrect(v1) && isFlowCorrect(v2)) { sum += (u1 - u2) * (u1 - u2) + (v1 - v2) * (v1 - v2); counter++; } } } return (float)sqrt(sum / (1e-9 + counter)); } static float calcAvgEPE(vector< pair<Point2i, Point2i> > corr, Mat flow) { double sum = 0; int counter = 0; for (size_t i = 0; i < corr.size(); ++i) { Vec2f flow1_at_point = Point2f(corr[i].second - corr[i].first); Vec2f flow2_at_point = flow.at<Vec2f>(corr[i].first.y, corr[i].first.x); double u1 = (double)flow1_at_point[0]; double v1 = (double)flow1_at_point[1]; double u2 = (double)flow2_at_point[0]; double v2 = (double)flow2_at_point[1]; if (isFlowCorrect(u1) && isFlowCorrect(u2) && isFlowCorrect(v1) && isFlowCorrect(v2)) { sum += sqrt((u1 - u2) * (u1 - u2) + (v1 - v2) * (v1 - v2)); counter++; } } return (float)(sum / counter); } bool readRubberWhale(Mat &dst_frame_1, Mat &dst_frame_2, Mat &dst_GT) { const string frame1_path = getRubberWhaleFrame1(); const string frame2_path = getRubberWhaleFrame2(); const string gt_flow_path = getRubberWhaleGroundTruth(); dst_frame_1 = imread(frame1_path); dst_frame_2 = imread(frame2_path); dst_GT = readOpticalFlow(gt_flow_path); if (dst_frame_1.empty() || dst_frame_2.empty() || dst_GT.empty()) return false; else return true; } TEST(DenseOpticalFlow_SimpleFlow, ReferenceAccuracy) { Mat frame1, frame2, GT; ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); float target_RMSE = 0.37f; Mat flow; Ptr<DenseOpticalFlow> algo; algo = createOptFlow_SimpleFlow(); algo->calc(frame1, frame2, flow); ASSERT_EQ(GT.rows, flow.rows); ASSERT_EQ(GT.cols, flow.cols); EXPECT_LE(calcRMSE(GT, flow), target_RMSE); } TEST(DenseOpticalFlow_DeepFlow, ReferenceAccuracy) { Mat frame1, frame2, GT; ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); float target_RMSE = 0.35f; cvtColor(frame1, frame1, COLOR_BGR2GRAY); cvtColor(frame2, frame2, COLOR_BGR2GRAY); Mat flow; Ptr<DenseOpticalFlow> algo; algo = createOptFlow_DeepFlow(); algo->calc(frame1, frame2, flow); ASSERT_EQ(GT.rows, flow.rows); ASSERT_EQ(GT.cols, flow.cols); EXPECT_LE(calcRMSE(GT, flow), target_RMSE); } TEST(DenseOpticalFlow_SparseToDenseFlow, ReferenceAccuracy) { Mat frame1, frame2, GT; ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); float target_RMSE = 0.52f; Mat flow; Ptr<DenseOpticalFlow> algo; algo = createOptFlow_SparseToDense(); algo->calc(frame1, frame2, flow); ASSERT_EQ(GT.rows, flow.rows); ASSERT_EQ(GT.cols, flow.cols); EXPECT_LE(calcRMSE(GT, flow), target_RMSE); } TEST(DenseOpticalFlow_DIS, ReferenceAccuracy) { Mat frame1, frame2, GT; ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); int presets[] = {DISOpticalFlow::PRESET_ULTRAFAST, DISOpticalFlow::PRESET_FAST, DISOpticalFlow::PRESET_MEDIUM}; float target_RMSE[] = {0.86f, 0.74f, 0.49f}; cvtColor(frame1, frame1, COLOR_BGR2GRAY); cvtColor(frame2, frame2, COLOR_BGR2GRAY); Ptr<DenseOpticalFlow> algo; // iterate over presets: for (int i = 0; i < 3; i++) { Mat flow; algo = createOptFlow_DIS(presets[i]); algo->calc(frame1, frame2, flow); ASSERT_EQ(GT.rows, flow.rows); ASSERT_EQ(GT.cols, flow.cols); EXPECT_LE(calcRMSE(GT, flow), target_RMSE[i]); } } TEST(DenseOpticalFlow_VariationalRefinement, ReferenceAccuracy) { Mat frame1, frame2, GT; ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); float target_RMSE = 0.86f; cvtColor(frame1, frame1, COLOR_BGR2GRAY); cvtColor(frame2, frame2, COLOR_BGR2GRAY); Ptr<VariationalRefinement> var_ref; var_ref = createVariationalFlowRefinement(); var_ref->setAlpha(20.0f); var_ref->setDelta(5.0f); var_ref->setGamma(10.0f); var_ref->setSorIterations(25); var_ref->setFixedPointIterations(25); Mat flow(frame1.size(), CV_32FC2); flow.setTo(0.0f); var_ref->calc(frame1, frame2, flow); ASSERT_EQ(GT.rows, flow.rows); ASSERT_EQ(GT.cols, flow.cols); EXPECT_LE(calcRMSE(GT, flow), target_RMSE); } TEST(DenseOpticalFlow_PCAFlow, ReferenceAccuracy) { Mat frame1, frame2, GT; ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); const float target_RMSE = 0.55f; Mat flow; Ptr<DenseOpticalFlow> algo = createOptFlow_PCAFlow(); algo->calc(frame1, frame2, flow); ASSERT_EQ(GT.rows, flow.rows); ASSERT_EQ(GT.cols, flow.cols); EXPECT_LE(calcRMSE(GT, flow), target_RMSE); } TEST(DenseOpticalFlow_GlobalPatchColliderDCT, ReferenceAccuracy) { Mat frame1, frame2, GT; ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); const Size sz = frame1.size() / 2; frame1 = frame1(Rect(0, 0, sz.width, sz.height)); frame2 = frame2(Rect(0, 0, sz.width, sz.height)); GT = GT(Rect(0, 0, sz.width, sz.height)); vector<Mat> img1, img2, gt; vector< pair<Point2i, Point2i> > corr; img1.push_back(frame1); img2.push_back(frame2); gt.push_back(GT); Ptr< GPCForest<5> > forest = GPCForest<5>::create(); forest->train(img1, img2, gt, GPCTrainingParams(8, 3, GPC_DESCRIPTOR_DCT, false)); forest->findCorrespondences(frame1, frame2, corr); ASSERT_LE(7500U, corr.size()); ASSERT_LE(calcAvgEPE(corr, GT), 0.5f); } TEST(DenseOpticalFlow_GlobalPatchColliderWHT, ReferenceAccuracy) { Mat frame1, frame2, GT; ASSERT_TRUE(readRubberWhale(frame1, frame2, GT)); const Size sz = frame1.size() / 2; frame1 = frame1(Rect(0, 0, sz.width, sz.height)); frame2 = frame2(Rect(0, 0, sz.width, sz.height)); GT = GT(Rect(0, 0, sz.width, sz.height)); vector<Mat> img1, img2, gt; vector< pair<Point2i, Point2i> > corr; img1.push_back(frame1); img2.push_back(frame2); gt.push_back(GT); Ptr< GPCForest<5> > forest = GPCForest<5>::create(); forest->train(img1, img2, gt, GPCTrainingParams(8, 3, GPC_DESCRIPTOR_WHT, false)); forest->findCorrespondences(frame1, frame2, corr); ASSERT_LE(7000U, corr.size()); ASSERT_LE(calcAvgEPE(corr, GT), 0.5f); }