/*#******************************************************************************
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
**
** By downloading, copying, installing or using the software you agree to this license.
** If you do not agree to this license, do not download, install,
** copy or use the software.
**
**
** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping.
**
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
**
**  Creation - enhancement process 2007-2011
**      Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
**
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
** Refer to the following research paper for more information:
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
**
** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
** ====> more informations in the above cited Jeanny Heraults's book.
**
**                          License Agreement
**               For Open Source Computer Vision Library
**
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
**
**               For Human Visual System tools (bioinspired)
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
**
** Third party copyrights are property of their respective owners.
**
** Redistribution and use in source and binary forms, with or without modification,
** are permitted provided that the following conditions are met:
**
** * Redistributions of source code must retain the above copyright notice,
**    this list of conditions and the following disclaimer.
**
** * Redistributions in binary form must reproduce the above copyright notice,
**    this list of conditions and the following disclaimer in the documentation
**    and/or other materials provided with the distribution.
**
** * The name of the copyright holders may not be used to endorse or promote products
**    derived from this software without specific prior written permission.
**
** This software is provided by the copyright holders and contributors "as is" and
** any express or implied warranties, including, but not limited to, the implied
** warranties of merchantability and fitness for a particular purpose are disclaimed.
** In no event shall the Intel Corporation or contributors be liable for any direct,
** indirect, incidental, special, exemplary, or consequential damages
** (including, but not limited to, procurement of substitute goods or services;
** loss of use, data, or profits; or business interruption) however caused
** and on any theory of liability, whether in contract, strict liability,
** or tort (including negligence or otherwise) arising in any way out of
** the use of this software, even if advised of the possibility of such damage.
*******************************************************************************/

/**
* @class RetinaColor a color multilexing/demultiplexing (demosaicing) based on a human vision inspiration. Different mosaicing strategies can be used, included random sampling !
* => please take a look at the nice and efficient demosaicing strategy introduced by B.Chaix de Lavarene, take a look at the cited paper for more mathematical details
* @brief Retina color sampling model which allows classical bayer sampling, random and potentially several other method ! Low color errors on corners !
* -> Based on the research of:
*		.Brice Chaix Lavarene (chaix@lis.inpg.fr)
*		.Jeanny Herault (herault@lis.inpg.fr)
*		.David Alleyson (david.alleyson@upmf-grenoble.fr)
*      .collaboration: alexandre benoit (benoit.alexandre.vision@gmail.com or benoit@lis.inpg.fr)
* Please cite: B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
* @author Alexandre BENOIT, benoit.alexandre.vision@gmail.com, LISTIC / Gipsa-Lab, France: www.gipsa-lab.inpg.fr/
* Creation date 2007
*/

#ifndef RETINACOLOR_HPP_
#define RETINACOLOR_HPP_

#include "basicretinafilter.hpp"

//#define __RETINACOLORDEBUG //define RETINACOLORDEBUG in order to display debug data

namespace cv
{
namespace bioinspired
{
    class RetinaColor: public BasicRetinaFilter
    {
    public:
        /**
        * @typedef which allows to select the type of photoreceptors color sampling
        */

        /**
        * constructor of the retina color processing model
        * @param NBrows: number of rows of the input image
        * @param NBcolumns: number of columns of the input image
        * @param samplingMethod: the chosen color sampling method
        */
        RetinaColor(const unsigned int NBrows, const unsigned int NBcolumns, const int samplingMethod=RETINA_COLOR_BAYER);

        /**
        * standard destructor
        */
        virtual ~RetinaColor();

        /**
        * function that clears all buffers of the object
        */
        void clearAllBuffers();

        /**
        * resize retina color filter object (resize all allocated buffers)
        * @param NBrows: the new height size
        * @param NBcolumns: the new width size
        */
        void resize(const unsigned int NBrows, const unsigned int NBcolumns);


        /**
        * color multiplexing function: a demultiplexed RGB frame of size M*N*3 is transformed into a multiplexed M*N*1 pixels frame where each pixel is either Red, or Green or Blue
        * @param inputRGBFrame: the input RGB frame to be processed
        * @return, nothing but the multiplexed frame is available by the use of the getMultiplexedFrame() function
        */
        inline void runColorMultiplexing(const std::valarray<float> &inputRGBFrame) { runColorMultiplexing(inputRGBFrame, *_multiplexedFrame); }

        /**
        * color multiplexing function: a demultipleed RGB frame of size M*N*3 is transformed into a multiplexed M*N*1 pixels frame where each pixel is either Red, or Green or Blue if using RGB images
        * @param demultiplexedInputFrame: the demultiplexed input frame to be processed of size M*N*3
        * @param multiplexedFrame: the resulting multiplexed frame
        */
        void runColorMultiplexing(const std::valarray<float> &demultiplexedInputFrame, std::valarray<float> &multiplexedFrame);

        /**
        * color demultiplexing function: a multiplexed frame of size M*N*1 pixels is transformed into a RGB demultiplexed M*N*3 pixels frame
        * @param multiplexedColorFrame: the input multiplexed frame to be processed
        * @param adaptiveFiltering: specifies if an adaptive filtering has to be perform rather than standard filtering (adaptive filtering allows a better rendering)
        * @param maxInputValue: the maximum input data value (should be 255 for 8 bits images but it can change in the case of High Dynamic Range Images (HDRI)
        * @return, nothing but the output demultiplexed frame is available by the use of the getDemultiplexedColorFrame() function, also use getLuminance() and getChrominance() in order to retreive either luminance or chrominance
        */
        void runColorDemultiplexing(const std::valarray<float> &multiplexedColorFrame, const bool adaptiveFiltering=false, const float maxInputValue=255.0);

        /**
        * activate color saturation as the final step of the color demultiplexing process
        * -> this saturation is a sigmoide function applied to each channel of the demultiplexed image.
        * @param saturateColors: boolean that activates color saturation (if true) or desactivate (if false)
        * @param colorSaturationValue: the saturation factor
        * */
        void setColorSaturation(const bool saturateColors=true, const float colorSaturationValue=4.0) { _saturateColors=saturateColors; _colorSaturationValue=colorSaturationValue; }

        /**
        * set parameters of the low pass spatio-temporal filter used to retreive the low chrominance
        * @param beta: gain of the filter (generally set to zero)
        * @param tau: time constant of the filter (unit is frame for video processing), typically 0 when considering static processing, 1 or more if a temporal smoothing effect is required
        * @param k: spatial constant of the filter (unit is pixels), typical value is 2.5
        */
        void setChrominanceLPfilterParameters(const float beta, const float tau, const float k) { setLPfilterParameters(beta, tau, k); }

        /**
        * apply to the retina color output the Krauskopf transformation which leads to an opponent color system: output colorspace if Acr1cr2 if input of the retina was LMS color space
        * @param result: the input buffer to fill with the transformed colorspace retina output
        * @return true if process ended successfully
        */
        bool applyKrauskopfLMS2Acr1cr2Transform(std::valarray<float> &result);

        /**
        * apply to the retina color output the CIE Lab color transformation
        * @param result: the input buffer to fill with the transformed colorspace retina output
        * @return true if process ended successfully
        */
        bool applyLMS2LabTransform(std::valarray<float> &result);

        /**
        * @return the multiplexed frame result (use this after function runColorMultiplexing)
        */
        inline const std::valarray<float> &getMultiplexedFrame() const { return *_multiplexedFrame; }

        /**
        * @return the demultiplexed frame result (use this after function runColorDemultiplexing)
        */
        inline const std::valarray<float> &getDemultiplexedColorFrame() const { return _demultiplexedColorFrame; }

        /**
        * @return the luminance of the processed frame (use this after function runColorDemultiplexing)
        */
        inline const std::valarray<float> &getLuminance() const { return *_luminance; }

        /**
        * @return the chrominance of the processed frame (use this after function runColorDemultiplexing)
        */
        inline const std::valarray<float> &getChrominance() const { return _chrominance; }

        /**
        * standard 0 to 255 image clipping function appled to RGB images (of size M*N*3 pixels)
        * @param inputOutputBuffer: the image to be normalized (rewrites the input), if no parameter, then, the built in buffer reachable by getOutput() function is normalized
        * @param maxOutputValue: the maximum value allowed at the output (values superior to it would be clipped
        */
        void clipRGBOutput_0_maxInputValue(float *inputOutputBuffer, const float maxOutputValue=255.0);

        /**
        * standard 0 to 255 image normalization function appled to RGB images (of size M*N*3 pixels)
        * @param maxOutputValue: the maximum value allowed at the output (values superior to it would be clipped
        */
        void normalizeRGBOutput_0_maxOutputValue(const float maxOutputValue=255.0);

        /**
        * return the color sampling map: a Nrows*Mcolumns image in which each pixel value is the ofsset adress which gives the adress of the sampled pixel on an Nrows*Mcolumns*3 color image ordered by layers: layer1, layer2, layer3
        */
        inline const std::valarray<unsigned int> &getSamplingMap() const { return _colorSampling; }

        /**
        * function used (to bypass processing) to manually set the color output
        * @param demultiplexedImage: the color image (luminance+chrominance) which has to be written in the object buffer
        */
        inline void setDemultiplexedColorFrame(const std::valarray<float> &demultiplexedImage) { _demultiplexedColorFrame=demultiplexedImage; }

    protected:

        // private functions
        int _samplingMethod;
        bool _saturateColors;
        float _colorSaturationValue;
        // links to parent buffers (more convienient names
        TemplateBuffer<float> *_luminance;
        std::valarray<float> *_multiplexedFrame;
        // instance buffers
        std::valarray<unsigned int> _colorSampling; // table (size (_nbRows*_nbColumns) which specifies the color of each pixel
        std::valarray<float> _RGBmosaic;
        std::valarray<float> _tempMultiplexedFrame;
        std::valarray<float> _demultiplexedTempBuffer;
        std::valarray<float> _demultiplexedColorFrame;
        std::valarray<float> _chrominance;
        std::valarray<float> _colorLocalDensity;// buffer which contains the local density of the R, G and B photoreceptors for a normalization use
        std::valarray<float> _imageGradient;

        // variables
        float _pR, _pG, _pB; // probabilities of color R, G and B
        bool _objectInit;

        // protected functions
        void _initColorSampling();
        void _interpolateImageDemultiplexedImage(float *inputOutputBuffer);
        void _interpolateSingleChannelImage111(float *inputOutputBuffer);
        void _interpolateBayerRGBchannels(float *inputOutputBuffer);
        void _applyRIFfilter(const float *sourceBuffer, float *destinationBuffer);
        void _getNormalizedContoursImage(const float *inputFrame, float *outputFrame);
        // -> special adaptive filters dedicated to low pass filtering on the chrominance (skeeps filtering on the edges)
        void _adaptiveSpatialLPfilter(const float *inputFrame,  float *outputFrame);
        void _adaptiveHorizontalCausalFilter_addInput(const float *inputFrame, float *outputFrame, const unsigned int IDrowStart, const unsigned int IDrowEnd); // TBB parallelized
        void _adaptiveVerticalAnticausalFilter_multGain(float *outputFrame, const unsigned int IDcolumnStart, const unsigned int IDcolumnEnd);
        void _computeGradient(const float *luminance);
        void _normalizeOutputs_0_maxOutputValue(void);

        // color space transform
        void _applyImageColorSpaceConversion(const std::valarray<float> &inputFrame, std::valarray<float> &outputFrame, const float *transformTable);

#ifdef MAKE_PARALLEL
        /******************************************************
        ** IF some parallelizing thread methods are available, then, main loops are parallelized using these functors
        ** ==> main idea paralellise main filters loops, then, only the most used methods are parallelized... TODO : increase the number of parallelised methods as necessary
        ** ==> functors names = Parallel_$$$ where $$$= the name of the serial method that is parallelised
        ** ==> functors constructors can differ from the parameters used with their related serial functions
        */

        /* Template :
        class Parallel_ : public cv::ParallelLoopBody
        {
        private:

        public:
        Parallel_()
        : {}

        virtual void operator()( const cv::Range& r ) const {

        }
        }:
        */
        class Parallel_adaptiveHorizontalCausalFilter_addInput: public cv::ParallelLoopBody
        {
        private:
            float *outputFrame;
            const float *inputFrame, *imageGradient;
            unsigned int nbColumns;
        public:
            Parallel_adaptiveHorizontalCausalFilter_addInput(const float *inputImg, float *bufferToProcess, const float *imageGrad, const unsigned int nbCols)
                :outputFrame(bufferToProcess), inputFrame(inputImg), imageGradient(imageGrad), nbColumns(nbCols) { }

            virtual void operator()( const Range& r ) const CV_OVERRIDE
            {
                float* outputPTR=outputFrame+r.start*nbColumns;
                const float* inputPTR=inputFrame+r.start*nbColumns;
                const float *imageGradientPTR= imageGradient+r.start*nbColumns;
                for (int IDrow=r.start; IDrow!=r.end; ++IDrow)
                {
                    float result=0;
                    for (unsigned int index=0; index<nbColumns; ++index)
                    {
                        result = *(inputPTR++) + (*imageGradientPTR++)* result;
                        *(outputPTR++) = result;
                    }
                }
            }
        };

        class Parallel_adaptiveVerticalAnticausalFilter_multGain: public cv::ParallelLoopBody
        {
        private:
            float *outputFrame;
            const float *imageGradient;
            unsigned int nbRows, nbColumns;
            float filterParam_gain;
        public:
            Parallel_adaptiveVerticalAnticausalFilter_multGain(float *bufferToProcess, const float *imageGrad, const unsigned int nbRws, const unsigned int nbCols, const float  gain)
                :outputFrame(bufferToProcess), imageGradient(imageGrad), nbRows(nbRws), nbColumns(nbCols), filterParam_gain(gain) { }

            virtual void operator()( const Range& r ) const CV_OVERRIDE {
                float* offset=outputFrame+nbColumns*nbRows-nbColumns;
                const float* gradOffset= imageGradient+nbColumns*nbRows-nbColumns;
                for (int IDcolumn=r.start; IDcolumn!=r.end; ++IDcolumn)
                {
                    float result=0;
                    float *outputPTR=offset+IDcolumn;
                    const float *imageGradientPTR=gradOffset+IDcolumn;
                    for (unsigned int index=0; index<nbRows; ++index)
                    {
                        result = *(outputPTR) + *(imageGradientPTR) * result;
                        *(outputPTR) = filterParam_gain*result;
                        outputPTR-=nbColumns;
                        imageGradientPTR-=nbColumns;
                    }
                }
            }
        };

        class Parallel_computeGradient: public cv::ParallelLoopBody
        {
        protected:
            float *imageGradient;
            const float *luminance;
            unsigned int nbColumns, doubleNbColumns, nbRows, nbPixels;
        public:
            Parallel_computeGradient(const unsigned int nbCols, const unsigned int nbRws, const float *lum, float *imageGrad)
            :imageGradient(imageGrad), luminance(lum), nbColumns(nbCols), doubleNbColumns(2*nbCols), nbRows(nbRws), nbPixels(nbRws*nbCols) { }

            virtual void operator()( const Range& r ) const CV_OVERRIDE {
                for (int idLine=r.start;idLine!=r.end;++idLine)
                {
                    for (unsigned int idColumn=2;idColumn<nbColumns-2;++idColumn)
                    {
                        const unsigned int pixelIndex=idColumn+nbColumns*idLine;

                        // horizontal and vertical local gradients
                        const float verticalGrad=fabs(luminance[pixelIndex+nbColumns]-luminance[pixelIndex-nbColumns]);
                        const float horizontalGrad=fabs(luminance[pixelIndex+1]-luminance[pixelIndex-1]);

                        // neighborhood horizontal and vertical gradients
                        const float verticalGrad_p=fabs(luminance[pixelIndex]-luminance[pixelIndex-doubleNbColumns]);
                        const float horizontalGrad_p=fabs(luminance[pixelIndex]-luminance[pixelIndex-2]);
                        const float verticalGrad_n=fabs(luminance[pixelIndex+doubleNbColumns]-luminance[pixelIndex]);
                        const float horizontalGrad_n=fabs(luminance[pixelIndex+2]-luminance[pixelIndex]);

                        const float horizontalGradient=0.5f*horizontalGrad+0.25f*(horizontalGrad_p+horizontalGrad_n);
                        const float verticalGradient=0.5f*verticalGrad+0.25f*(verticalGrad_p+verticalGrad_n);

                        // compare local gradient means and fill the appropriate filtering coefficient value that will be used in adaptative filters
                        if (horizontalGradient<verticalGradient)
                        {
                            imageGradient[pixelIndex+nbPixels]=0.06f;
                            imageGradient[pixelIndex]=0.57f;
                        }
                        else
                        {
                            imageGradient[pixelIndex+nbPixels]=0.57f;
                            imageGradient[pixelIndex]=0.06f;
                        }
                    }
                }
            }
        };

#endif
    };
}// end of namespace bioinspired
}// end of namespace cv

#endif /*RETINACOLOR_HPP_*/