/*#******************************************************************************
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
**
** By downloading, copying, installing or using the software you agree to this license.
** If you do not agree to this license, do not download, install,
** copy or use the software.
**
**
** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping.
**
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
**
**  Creation - enhancement process 2007-2011
**      Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
**
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
** Refer to the following research paper for more information:
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
**
** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
** ====> more informations in the above cited Jeanny Heraults's book.
**
**                          License Agreement
**               For Open Source Computer Vision Library
**
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
**
**               For Human Visual System tools (bioinspired)
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
**
** Third party copyrights are property of their respective owners.
**
** Redistribution and use in source and binary forms, with or without modification,
** are permitted provided that the following conditions are met:
**
** * Redistributions of source code must retain the above copyright notice,
**    this list of conditions and the following disclaimer.
**
** * Redistributions in binary form must reproduce the above copyright notice,
**    this list of conditions and the following disclaimer in the documentation
**    and/or other materials provided with the distribution.
**
** * The name of the copyright holders may not be used to endorse or promote products
**    derived from this software without specific prior written permission.
**
** This software is provided by the copyright holders and contributors "as is" and
** any express or implied warranties, including, but not limited to, the implied
** warranties of merchantability and fitness for a particular purpose are disclaimed.
** In no event shall the Intel Corporation or contributors be liable for any direct,
** indirect, incidental, special, exemplary, or consequential damages
** (including, but not limited to, procurement of substitute goods or services;
** loss of use, data, or profits; or business interruption) however caused
** and on any theory of liability, whether in contract, strict liability,
** or tort (including negligence or otherwise) arising in any way out of
** the use of this software, even if advised of the possibility of such damage.
*******************************************************************************/

#include "precomp.hpp"
#include "imagelogpolprojection.hpp"

#include <cmath>
#include <iostream>

// @author Alexandre BENOIT, benoit.alexandre.vision@gmail.com, LISTIC : www.listic.univ-savoie.fr, Gipsa-Lab, France: www.gipsa-lab.inpg.fr/

namespace cv
{
namespace bioinspired
{
// constructor
ImageLogPolProjection::ImageLogPolProjection(const unsigned int nbRows, const unsigned int nbColumns, const PROJECTIONTYPE projection, const bool colorModeCapable)
:BasicRetinaFilter(nbRows, nbColumns),
 _sampledFrame(0),
 _tempBuffer(_localBuffer),
 _transformTable(0),
 _irregularLPfilteredFrame(_filterOutput)
{
    _inputDoubleNBpixels=nbRows*nbColumns*2;
    _selectedProjection = projection;
    _reductionFactor=0;
    _initOK=false;
    _usefullpixelIndex=0;
    _colorModeCapable=colorModeCapable;
#ifdef IMAGELOGPOLPROJECTION_DEBUG
    std::cout<<"ImageLogPolProjection::allocating"<<std::endl;
#endif
    if (_colorModeCapable)
    {
        _tempBuffer.resize(nbRows*nbColumns*3);
    }
#ifdef IMAGELOGPOLPROJECTION_DEBUG
    std::cout<<"ImageLogPolProjection::done"<<std::endl;
#endif

    clearAllBuffers();
}

// destructor
ImageLogPolProjection::~ImageLogPolProjection()
{

}


// reset buffers method
void ImageLogPolProjection::clearAllBuffers()
{
    _sampledFrame=0;
    _tempBuffer=0;
    BasicRetinaFilter::clearAllBuffers();
}

/**
* resize retina color filter object (resize all allocated buffers)
* @param NBrows: the new height size
* @param NBcolumns: the new width size
*/
void ImageLogPolProjection::resize(const unsigned int NBrows, const unsigned int NBcolumns)
{
    BasicRetinaFilter::resize(NBrows, NBcolumns);
    initProjection(_reductionFactor, _samplingStrenght);

    // reset buffers method
    clearAllBuffers();

}

// init functions depending on the projection type
bool ImageLogPolProjection::initProjection(const double reductionFactor, const double samplingStrenght)
{
    switch(_selectedProjection)
    {
    case RETINALOGPROJECTION:
        return _initLogRetinaSampling(reductionFactor, samplingStrenght);
        break;
    case CORTEXLOGPOLARPROJECTION:
        return _initLogPolarCortexSampling(reductionFactor, samplingStrenght);
        break;
    default:
        std::cout<<"ImageLogPolProjection::no projection setted up... performing default retina projection... take care"<<std::endl;
        return _initLogRetinaSampling(reductionFactor, samplingStrenght);
        break;
    }
}

// -> private init functions dedicated to each projection
bool ImageLogPolProjection::_initLogRetinaSampling(const double reductionFactor, const double samplingStrenght)
{
    _initOK=false;

    if (_selectedProjection!=RETINALOGPROJECTION)
    {
        std::cerr<<"ImageLogPolProjection::initLogRetinaSampling: could not initialize logPolar projection for a log projection system\n -> you probably chose the wrong init function, use initLogPolarCortexSampling() instead"<<std::endl;
        return false;
    }
    if (reductionFactor<1.0)
    {
        std::cerr<<"ImageLogPolProjection::initLogRetinaSampling: reduction factor must be superior to 0, skeeping initialisation..."<<std::endl;
        return false;
    }

    // compute image output size
    _outputNBrows=predictOutputSize(this->getNBrows(), reductionFactor);
    _outputNBcolumns=predictOutputSize(this->getNBcolumns(), reductionFactor);
    _outputNBpixels=_outputNBrows*_outputNBcolumns;
    _outputDoubleNBpixels=_outputNBrows*_outputNBcolumns*2;

#ifdef IMAGELOGPOLPROJECTION_DEBUG
    std::cout<<"ImageLogPolProjection::initLogRetinaSampling: Log resampled image resampling factor: "<<reductionFactor<<", strenght:"<<samplingStrenght<<std::endl;
    std::cout<<"ImageLogPolProjection::initLogRetinaSampling: Log resampled image size: "<<_outputNBrows<<"*"<<_outputNBcolumns<<std::endl;
#endif

    // setup progressive prefilter that will be applied BEFORE log sampling
    setProgressiveFilterConstants_CentredAccuracy(0.f, 0.f, 0.99f);

    // (re)create the image output buffer and transform table if the reduction factor changed
    _sampledFrame.resize(_outputNBpixels*(1+(unsigned int)_colorModeCapable*2));

    // specifiying new reduction factor after preliminar checks
    _reductionFactor=reductionFactor;
    _samplingStrenght=samplingStrenght;

    // compute the rlim for symetric rows/columns sampling, then, the rlim is based on the smallest dimension
    _minDimension=(double)(_filterOutput.getNBrows() < _filterOutput.getNBcolumns() ? _filterOutput.getNBrows() : _filterOutput.getNBcolumns());

    // input frame dimensions dependent log sampling:
    //double rlim=1.0/reductionFactor*(minDimension/2.0+samplingStrenght);

    // input frame dimensions INdependent log sampling:
    _azero=(1.0+reductionFactor*std::sqrt(samplingStrenght))/(reductionFactor*reductionFactor*samplingStrenght-1.0);
    _alim=(1.0+_azero)/reductionFactor;
#ifdef IMAGELOGPOLPROJECTION_DEBUG
    std::cout<<"ImageLogPolProjection::initLogRetinaSampling: rlim= "<<rlim<<std::endl;
    std::cout<<"ImageLogPolProjection::initLogRetinaSampling: alim= "<<alim<<std::endl;
#endif

    // get half frame size
    unsigned int halfOutputRows = _outputNBrows/2-1;
    unsigned int halfOutputColumns = _outputNBcolumns/2-1;
    unsigned int halfInputRows = _filterOutput.getNBrows()/2-1;
    unsigned int halfInputColumns = _filterOutput.getNBcolumns()/2-1;

    // computing log sampling matrix by computing quarters of images
    // the original new image center (_filterOutput.getNBrows()/2, _filterOutput.getNBcolumns()/2) being at coordinate (_filterOutput.getNBrows()/(2*_reductionFactor), _filterOutput.getNBcolumns()/(2*_reductionFactor))

    // -> use a temporary transform table which is bigger than the final one, we only report pixels coordinates that are included in the sampled picture
    std::valarray<unsigned int> tempTransformTable(2*_outputNBpixels); // the structure would be: (pixelInputCoordinate n)(pixelOutputCoordinate n)(pixelInputCoordinate n+1)(pixelOutputCoordinate n+1)
    _usefullpixelIndex=0;

    double rMax=0;
    halfInputRows<halfInputColumns ? rMax=(double)(halfInputRows*halfInputRows):rMax=(double)(halfInputColumns*halfInputColumns);

    for (unsigned int idRow=0;idRow<halfOutputRows; ++idRow)
    {
        for (unsigned int idColumn=0;idColumn<halfOutputColumns; ++idColumn)
        {
            // get the pixel position in the original picture

            // -> input frame dimensions dependent log sampling:
            //double scale = samplingStrenght/(rlim-(double)std::sqrt(idRow*idRow+idColumn*idColumn));

            // -> input frame dimensions INdependent log sampling:
            double scale=getOriginalRadiusLength((double)std::sqrt((double)(idRow*idRow+idColumn*idColumn)));
#ifdef IMAGELOGPOLPROJECTION_DEBUG
            std::cout<<"ImageLogPolProjection::initLogRetinaSampling: scale= "<<scale<<std::endl;
            std::cout<<"ImageLogPolProjection::initLogRetinaSampling: scale2= "<<scale2<<std::endl;
#endif
            if (scale < 0) ///check it later
                scale = 10000;

#ifdef IMAGELOGPOLPROJECTION_DEBUG
            //            std::cout<<"ImageLogPolProjection::initLogRetinaSampling: scale= "<<scale<<std::endl;
#endif

            unsigned int u=(unsigned int)floor((double)idRow*scale);
            unsigned int v=(unsigned int)floor((double)idColumn*scale);

            // manage border effects
            double length=u*u+v*v;
            double radiusRatio=std::sqrt(rMax/length);

#ifdef IMAGELOGPOLPROJECTION_DEBUG
            std::cout<<"ImageLogPolProjection::(inputH, inputW)="<<halfInputRows<<", "<<halfInputColumns<<", Rmax2="<<rMax<<std::endl;
            std::cout<<"before ==> ImageLogPolProjection::(u, v)="<<u<<", "<<v<<", r="<<u*u+v*v<<std::endl;
            std::cout<<"ratio ="<<radiusRatio<<std::endl;
#endif

            if (radiusRatio < 1.0)
            {
                u=(unsigned int)floor(radiusRatio*double(u));
                v=(unsigned int)floor(radiusRatio*double(v));
            }
#ifdef IMAGELOGPOLPROJECTION_DEBUG
            std::cout<<"after ==> ImageLogPolProjection::(u, v)="<<u<<", "<<v<<", r="<<u*u+v*v<<std::endl;
            std::cout<<"ImageLogPolProjection::("<<(halfOutputRows-idRow)<<", "<<idColumn+halfOutputColumns<<") <- ("<<halfInputRows-u<<", "<<v+halfInputColumns<<")"<<std::endl;
            std::cout<<(halfOutputRows-idRow)+(halfOutputColumns+idColumn)*_outputNBrows<<" -> "<<(halfInputRows-u)+_filterOutput.getNBrows()*(halfInputColumns+v)<<std::endl;
#endif

            if ((u<halfInputRows)&&(v<halfInputColumns))
            {

#ifdef IMAGELOGPOLPROJECTION_DEBUG
                std::cout<<"*** VALID ***"<<std::endl;
#endif

                // set pixel coordinate of the input picture in the transform table at the current log sampled pixel
                // 1st quadrant
                tempTransformTable[_usefullpixelIndex++]=(halfOutputColumns+idColumn)+(halfOutputRows-idRow)*_outputNBcolumns;
                tempTransformTable[_usefullpixelIndex++]=_filterOutput.getNBcolumns()*(halfInputRows-u)+(halfInputColumns+v);
                // 2nd quadrant
                tempTransformTable[_usefullpixelIndex++]=(halfOutputColumns+idColumn)+(halfOutputRows+idRow)*_outputNBcolumns;
                tempTransformTable[_usefullpixelIndex++]=_filterOutput.getNBcolumns()*(halfInputRows+u)+(halfInputColumns+v);
                // 3rd quadrant
                tempTransformTable[_usefullpixelIndex++]=(halfOutputColumns-idColumn)+(halfOutputRows-idRow)*_outputNBcolumns;
                tempTransformTable[_usefullpixelIndex++]=_filterOutput.getNBcolumns()*(halfInputRows-u)+(halfInputColumns-v);
                // 4td quadrant
                tempTransformTable[_usefullpixelIndex++]=(halfOutputColumns-idColumn)+(halfOutputRows+idRow)*_outputNBcolumns;
                tempTransformTable[_usefullpixelIndex++]=_filterOutput.getNBcolumns()*(halfInputRows+u)+(halfInputColumns-v);
            }
        }
    }

    // (re)creating and filling the transform table
    _transformTable.resize(_usefullpixelIndex);
    memcpy(&_transformTable[0], &tempTransformTable[0], sizeof(unsigned int)*_usefullpixelIndex);

    // reset all buffers
    clearAllBuffers();

#ifdef IMAGELOGPOLPROJECTION_DEBUG
    std::cout<<"ImageLogPolProjection::initLogRetinaSampling: init done successfully"<<std::endl;
#endif
    _initOK=true;
    return _initOK;
}

bool ImageLogPolProjection::_initLogPolarCortexSampling(const double reductionFactor, const double)
{
    _initOK=false;

    if (_selectedProjection!=CORTEXLOGPOLARPROJECTION)
    {
        std::cerr<<"ImageLogPolProjection::could not initialize log projection for a logPolar projection system\n -> you probably chose the wrong init function, use initLogRetinaSampling() instead"<<std::endl;
        return false;
    }

    if (reductionFactor<1.0)
    {
        std::cerr<<"ImageLogPolProjection::reduction factor must be superior to 0, skeeping initialisation..."<<std::endl;
        return false;
    }

    // compute the smallest image size
    unsigned int minDimension=(_filterOutput.getNBrows() < _filterOutput.getNBcolumns() ? _filterOutput.getNBrows() : _filterOutput.getNBcolumns());
    // specifiying new reduction factor after preliminar checks
    _reductionFactor=reductionFactor;
    // compute image output size
    _outputNBrows=(unsigned int)((double)minDimension/reductionFactor);
    _outputNBcolumns=(unsigned int)((double)minDimension/reductionFactor);
    _outputNBpixels=_outputNBrows*_outputNBcolumns;
    _outputDoubleNBpixels=_outputNBrows*_outputNBcolumns*2;

    // get half frame size
    //unsigned int halfOutputRows = _outputNBrows/2-1;
    //unsigned int halfOutputColumns = _outputNBcolumns/2-1;
    unsigned int halfInputRows = _filterOutput.getNBrows()/2-1;
    unsigned int halfInputColumns = _filterOutput.getNBcolumns()/2-1;


#ifdef IMAGELOGPOLPROJECTION_DEBUG
    std::cout<<"ImageLogPolProjection::Log resampled image size: "<<_outputNBrows<<"*"<<_outputNBcolumns<<std::endl;
#endif

    // setup progressive prefilter that will be applied BEFORE log sampling
    setProgressiveFilterConstants_CentredAccuracy(0.f, 0.f, 0.99f);

    // (re)create the image output buffer and transform table if the reduction factor changed
    _sampledFrame.resize(_outputNBpixels*(1+(unsigned int)_colorModeCapable*2));

    // create the radius and orientation axis and fill them, radius E [0;1], orientation E[-pi, pi]
    std::valarray<double> radiusAxis(_outputNBcolumns);
    double radiusStep=2.30/(double)_outputNBcolumns;
    for (unsigned int i=0;i<_outputNBcolumns;++i)
    {
        radiusAxis[i]=i*radiusStep;
    }
    std::valarray<double> orientationAxis(_outputNBrows);
    double orientationStep=-2.0*CV_PI/(double)_outputNBrows;
    for (unsigned int io=0;io<_outputNBrows;++io)
    {
        orientationAxis[io]=io*orientationStep;
    }
    // -> use a temporay transform table which is bigger than the final one, we only report pixels coordinates that are included in the sampled picture
    std::valarray<unsigned int> tempTransformTable(2*_outputNBpixels); // the structure would be: (pixelInputCoordinate n)(pixelOutputCoordinate n)(pixelInputCoordinate n+1)(pixelOutputCoordinate n+1)
    _usefullpixelIndex=0;

    //std::cout<<"ImageLogPolProjection::Starting cortex projection"<<std::endl;
    // compute transformation, get theta and Radius in reagrd of the output sampled pixel
    double diagonalLenght=std::sqrt((double)(_outputNBcolumns*_outputNBcolumns+_outputNBrows*_outputNBrows));
    for (unsigned int radiusIndex=0;radiusIndex<_outputNBcolumns;++radiusIndex)
        for(unsigned int orientationIndex=0;orientationIndex<_outputNBrows;++orientationIndex)
        {
            double x=1.0+sinh(radiusAxis[radiusIndex])*cos(orientationAxis[orientationIndex]);
            double y=sinh(radiusAxis[radiusIndex])*sin(orientationAxis[orientationIndex]);
            // get the input picture coordinate
            double R=diagonalLenght*std::sqrt(x*x+y*y)/(5.0+std::sqrt(x*x+y*y));
            double theta=atan2(y,x);
            // convert input polar coord into cartesian/C compatble coordinate
            unsigned int columnIndex=(unsigned int)(cos(theta)*R)+halfInputColumns;
            unsigned int rowIndex=(unsigned int)(sin(theta)*R)+halfInputRows;
            //std::cout<<"ImageLogPolProjection::R="<<R<<" / Theta="<<theta<<" / (x, y)="<<columnIndex<<", "<<rowIndex<<std::endl;
            if ((columnIndex<_filterOutput.getNBcolumns())&&(columnIndex>0)&&(rowIndex<_filterOutput.getNBrows())&&(rowIndex>0))
            {
                // set coordinate
                tempTransformTable[_usefullpixelIndex++]=radiusIndex+orientationIndex*_outputNBcolumns;
                tempTransformTable[_usefullpixelIndex++]= columnIndex+rowIndex*_filterOutput.getNBcolumns();
            }
        }

    // (re)creating and filling the transform table
    _transformTable.resize(_usefullpixelIndex);
    memcpy(&_transformTable[0], &tempTransformTable[0], sizeof(unsigned int)*_usefullpixelIndex);

    // reset all buffers
    clearAllBuffers();
    _initOK=true;
    return true;
}

// action function
std::valarray<float> &ImageLogPolProjection::runProjection(const std::valarray<float> &inputFrame, const bool colorMode)
{
    if (_colorModeCapable&&colorMode)
    {
        // progressive filtering and storage of the result in _tempBuffer
        _spatiotemporalLPfilter_Irregular(get_data(inputFrame), &_irregularLPfilteredFrame[0]);
        _spatiotemporalLPfilter_Irregular(&_irregularLPfilteredFrame[0], &_tempBuffer[0]); // warning, temporal issue may occur, if the temporal constant is not NULL !!!

        _spatiotemporalLPfilter_Irregular(get_data(inputFrame)+_filterOutput.getNBpixels(), &_irregularLPfilteredFrame[0]);
        _spatiotemporalLPfilter_Irregular(&_irregularLPfilteredFrame[0], &_tempBuffer[0]+_filterOutput.getNBpixels());

        _spatiotemporalLPfilter_Irregular(get_data(inputFrame)+_filterOutput.getNBpixels()*2, &_irregularLPfilteredFrame[0]);
        _spatiotemporalLPfilter_Irregular(&_irregularLPfilteredFrame[0], &_tempBuffer[0]+_filterOutput.getNBpixels()*2);

        // applying image projection/resampling
        register unsigned int *transformTablePTR=&_transformTable[0];
        for (unsigned int i=0 ; i<_usefullpixelIndex ; i+=2, transformTablePTR+=2)
        {
#ifdef IMAGELOGPOLPROJECTION_DEBUG
            std::cout<<"ImageLogPolProjection::i:"<<i<<"output(max="<<_outputNBpixels<<")="<<_transformTable[i]<<" / intput(max="<<_filterOutput.getNBpixels()<<")="<<_transformTable[i+1]<<std::endl;
#endif
            _sampledFrame[*(transformTablePTR)]=_tempBuffer[*(transformTablePTR+1)];
            _sampledFrame[*(transformTablePTR)+_outputNBpixels]=_tempBuffer[*(transformTablePTR+1)+_filterOutput.getNBpixels()];
            _sampledFrame[*(transformTablePTR)+_outputDoubleNBpixels]=_tempBuffer[*(transformTablePTR+1)+_inputDoubleNBpixels];
        }

#ifdef IMAGELOGPOLPROJECTION_DEBUG
        std::cout<<"ImageLogPolProjection::runProjection: color image projection OK"<<std::endl;
#endif
        //normalizeGrayOutput_0_maxOutputValue(_sampledFrame, _outputNBpixels);
    }else
    {
        _spatiotemporalLPfilter_Irregular(get_data(inputFrame), &_irregularLPfilteredFrame[0]);
        _spatiotemporalLPfilter_Irregular(&_irregularLPfilteredFrame[0], &_irregularLPfilteredFrame[0]);
        // applying image projection/resampling
        register unsigned int *transformTablePTR=&_transformTable[0];
        for (unsigned int i=0 ; i<_usefullpixelIndex ; i+=2, transformTablePTR+=2)
        {
#ifdef IMAGELOGPOLPROJECTION_DEBUG
            std::cout<<"i:"<<i<<"output(max="<<_outputNBpixels<<")="<<_transformTable[i]<<" / intput(max="<<_filterOutput.getNBpixels()<<")="<<_transformTable[i+1]<<std::endl;
#endif
            _sampledFrame[*(transformTablePTR)]=_irregularLPfilteredFrame[*(transformTablePTR+1)];
        }
        //normalizeGrayOutput_0_maxOutputValue(_sampledFrame, _outputNBpixels);
#ifdef IMAGELOGPOLPROJECTION_DEBUG
        std::cout<<"ImageLogPolProjection::runProjection: gray level image projection OK"<<std::endl;
#endif
    }

    return _sampledFrame;
}

}// end of namespace bioinspired
}// end of namespace cv