#include <iostream> #include "opencv2/imgproc.hpp" #include "opencv2/ximgproc.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/highgui.hpp" using namespace std; using namespace cv; using namespace cv::ximgproc; int main(int argc, char** argv) { std::string in; cv::CommandLineParser parser(argc, argv, "{@input|../samples/data/corridor.jpg|input image}{help h||show help message}"); if (parser.has("help")) { parser.printMessage(); return 0; } in = parser.get<string>("@input"); Mat image = imread(in, IMREAD_GRAYSCALE); if( image.empty() ) { return -1; } // Create LSD detector Ptr<LineSegmentDetector> lsd = createLineSegmentDetector(); vector<Vec4f> lines_lsd; // Create FLD detector // Param Default value Description // length_threshold 10 - Segments shorter than this will be discarded // distance_threshold 1.41421356 - A point placed from a hypothesis line // segment farther than this will be // regarded as an outlier // canny_th1 50 - First threshold for // hysteresis procedure in Canny() // canny_th2 50 - Second threshold for // hysteresis procedure in Canny() // canny_aperture_size 3 - Aperturesize for the sobel // operator in Canny() // do_merge false - If true, incremental merging of segments // will be perfomred int length_threshold = 10; float distance_threshold = 1.41421356f; double canny_th1 = 50.0; double canny_th2 = 50.0; int canny_aperture_size = 3; bool do_merge = false; Ptr<FastLineDetector> fld = createFastLineDetector(length_threshold, distance_threshold, canny_th1, canny_th2, canny_aperture_size, do_merge); vector<Vec4f> lines_fld; // Because of some CPU's power strategy, it seems that the first running of // an algorithm takes much longer. So here we run both of the algorithmes 10 // times to see each algorithm's processing time with sufficiently warmed-up // CPU performance. for(int run_count = 0; run_count < 10; run_count++) { lines_lsd.clear(); int64 start_lsd = getTickCount(); lsd->detect(image, lines_lsd); // Detect the lines with LSD double freq = getTickFrequency(); double duration_ms_lsd = double(getTickCount() - start_lsd) * 1000 / freq; std::cout << "Elapsed time for LSD: " << duration_ms_lsd << " ms." << std::endl; lines_fld.clear(); int64 start = getTickCount(); // Detect the lines with FLD fld->detect(image, lines_fld); double duration_ms = double(getTickCount() - start) * 1000 / freq; std::cout << "Ealpsed time for FLD " << duration_ms << " ms." << std::endl; } // Show found lines with LSD Mat line_image_lsd(image); lsd->drawSegments(line_image_lsd, lines_lsd); imshow("LSD result", line_image_lsd); // Show found lines with FLD Mat line_image_fld(image); fld->drawSegments(line_image_fld, lines_fld); imshow("FLD result", line_image_fld); waitKey(); return 0; }