// This file is part of the OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // //[1] David S. Bolme et al. "Visual Object Tracking using Adaptive Correlation Filters" // http://www.cs.colostate.edu/~draper/papers/bolme_cvpr10.pdf // // // credits: // Kun-Hsin Chen: for initial c++ code // Cracki: for the idea of only converting the used patch to gray // #include "opencv2/tracking.hpp" namespace cv { namespace tracking { struct DummyModel : TrackerModel { virtual void modelUpdateImpl() CV_OVERRIDE {} virtual void modelEstimationImpl( const std::vector<Mat>& ) CV_OVERRIDE {} }; const double eps=0.00001; // for normalization const double rate=0.2; // learning rate const double psrThreshold=5.7; // no detection, if PSR is smaller than this struct MosseImpl CV_FINAL : TrackerMOSSE { protected: Point2d center; //center of the bounding box Size size; //size of the bounding box Mat hanWin; Mat G; //goal Mat H, A, B; //state // Element-wise division of complex numbers in src1 and src2 Mat divDFTs( const Mat &src1, const Mat &src2 ) const { Mat c1[2],c2[2],a1,a2,s1,s2,denom,re,im; // split into re and im per src cv::split(src1, c1); cv::split(src2, c2); // (Re2*Re2 + Im2*Im2) = denom // denom is same for both channels cv::multiply(c2[0], c2[0], s1); cv::multiply(c2[1], c2[1], s2); cv::add(s1, s2, denom); // (Re1*Re2 + Im1*Im1)/(Re2*Re2 + Im2*Im2) = Re cv::multiply(c1[0], c2[0], a1); cv::multiply(c1[1], c2[1], a2); cv::divide(a1+a2, denom, re, 1.0 ); // (Im1*Re2 - Re1*Im2)/(Re2*Re2 + Im2*Im2) = Im cv::multiply(c1[1], c2[0], a1); cv::multiply(c1[0], c2[1], a2); cv::divide(a1+a2, denom, im, -1.0); // Merge Re and Im back into a complex matrix Mat dst, chn[] = {re,im}; cv::merge(chn, 2, dst); return dst; } void preProcess( Mat &window ) const { window.convertTo(window, CV_32F); log(window + 1.0f, window); //normalize Scalar mean,StdDev; meanStdDev(window, mean, StdDev); window = (window-mean[0]) / (StdDev[0]+eps); //Gaussain weighting window = window.mul(hanWin); } double correlate( const Mat &image_sub, Point &delta_xy ) const { Mat IMAGE_SUB, RESPONSE, response; // filter in dft space dft(image_sub, IMAGE_SUB, DFT_COMPLEX_OUTPUT); mulSpectrums(IMAGE_SUB, H, RESPONSE, 0, true ); idft(RESPONSE, response, DFT_SCALE|DFT_REAL_OUTPUT); // update center position double maxVal; Point maxLoc; minMaxLoc(response, 0, &maxVal, 0, &maxLoc); delta_xy.x = maxLoc.x - int(response.size().width/2); delta_xy.y = maxLoc.y - int(response.size().height/2); // normalize response Scalar mean,std; meanStdDev(response, mean, std); return (maxVal-mean[0]) / (std[0]+eps); // PSR } Mat randWarp( const Mat& a ) const { cv::RNG rng(8031965); // random rotation double C=0.1; double ang = rng.uniform(-C,C); double c=cos(ang), s=sin(ang); // affine warp matrix Mat_<float> W(2,3); W << c + rng.uniform(-C,C), -s + rng.uniform(-C,C), 0, s + rng.uniform(-C,C), c + rng.uniform(-C,C), 0; // random translation Mat_<float> center_warp(2, 1); center_warp << a.cols/2, a.rows/2; W.col(2) = center_warp - (W.colRange(0, 2))*center_warp; Mat warped; warpAffine(a, warped, W, a.size(), BORDER_REFLECT); return warped; } virtual bool initImpl( const Mat& image, const Rect2d& boundingBox ) CV_OVERRIDE { model = makePtr<DummyModel>(); Mat img; if (image.channels() == 1) img = image; else cvtColor(image, img, COLOR_BGR2GRAY); int w = getOptimalDFTSize(int(boundingBox.width)); int h = getOptimalDFTSize(int(boundingBox.height)); //Get the center position int x1 = int(floor((2*boundingBox.x+boundingBox.width-w)/2)); int y1 = int(floor((2*boundingBox.y+boundingBox.height-h)/2)); center.x = x1 + (w)/2; center.y = y1 + (h)/2; size.width = w; size.height = h; Mat window; getRectSubPix(img, size, center, window); createHanningWindow(hanWin, size, CV_32F); // goal Mat g=Mat::zeros(size,CV_32F); g.at<float>(h/2, w/2) = 1; GaussianBlur(g, g, Size(-1,-1), 2.0); double maxVal; minMaxLoc(g, 0, &maxVal); g = g / maxVal; dft(g, G, DFT_COMPLEX_OUTPUT); // initial A,B and H A = Mat::zeros(G.size(), G.type()); B = Mat::zeros(G.size(), G.type()); for(int i=0; i<8; i++) { Mat window_warp = randWarp(window); preProcess(window_warp); Mat WINDOW_WARP, A_i, B_i; dft(window_warp, WINDOW_WARP, DFT_COMPLEX_OUTPUT); mulSpectrums(G , WINDOW_WARP, A_i, 0, true); mulSpectrums(WINDOW_WARP, WINDOW_WARP, B_i, 0, true); A+=A_i; B+=B_i; } H = divDFTs(A,B); return true; } virtual bool updateImpl( const Mat& image, Rect2d& boundingBox ) CV_OVERRIDE { if (H.empty()) // not initialized return false; Mat image_sub; getRectSubPix(image, size, center, image_sub); if (image_sub.channels() != 1) cvtColor(image_sub, image_sub, COLOR_BGR2GRAY); preProcess(image_sub); Point delta_xy; double PSR = correlate(image_sub, delta_xy); if (PSR < psrThreshold) return false; //update location center.x += delta_xy.x; center.y += delta_xy.y; Mat img_sub_new; getRectSubPix(image, size, center, img_sub_new); if (img_sub_new.channels() != 1) cvtColor(img_sub_new, img_sub_new, COLOR_BGR2GRAY); preProcess(img_sub_new); // new state for A and B Mat F, A_new, B_new; dft(img_sub_new, F, DFT_COMPLEX_OUTPUT); mulSpectrums(G, F, A_new, 0, true ); mulSpectrums(F, F, B_new, 0, true ); // update A ,B, and H A = A*(1-rate) + A_new*rate; B = B*(1-rate) + B_new*rate; H = divDFTs(A, B); // return tracked rect double x=center.x, y=center.y; int w = size.width, h=size.height; boundingBox = Rect2d(Point2d(x-0.5*w, y-0.5*h), Point2d(x+0.5*w, y+0.5*h)); return true; } public: MosseImpl() { isInit = 0; } // dummy implementation. virtual void read( const FileNode& ) CV_OVERRIDE {} virtual void write( FileStorage& ) const CV_OVERRIDE {} }; // MosseImpl } // tracking Ptr<TrackerMOSSE> TrackerMOSSE::create() { return makePtr<tracking::MosseImpl>(); } } // cv