/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2014, Biagio Montesano, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" using namespace cv; using namespace cv::line_descriptor; /****************************************************************************************\ * Regression tests for line detector comparing keylines. * \****************************************************************************************/ const std::string LINE_DESCRIPTOR_DIR = "line_descriptor"; const std::string IMAGE_FILENAME = "cameraman.jpg"; template<class Distance> class CV_BD_DescriptorsTest : public cvtest::BaseTest { public: typedef typename Distance::ValueType ValueType; typedef typename Distance::ResultType DistanceType; CV_BD_DescriptorsTest( std::string fs, DistanceType _maxDist ): maxDist(_maxDist) { bd = BinaryDescriptor::createBinaryDescriptor(); fs_name = fs; } protected: // void compareDescriptors( const Mat& validDescriptors, const Mat& calcDescriptors ); // void createVecFromMat( Mat& inputMat, std::vector<KeyLine>& output ); // virtual bool writeDescriptors( Mat& descs ); // virtual Mat readDescriptors(); // void emptyDataTest(); // void regressionTest(); // virtual void run( int ); Ptr<BinaryDescriptor> bd; std::string fs_name; const DistanceType maxDist; Distance distance; //}; void compareDescriptors( const Mat& validDescriptors, const Mat& calcDescriptors ) { if( validDescriptors.size != calcDescriptors.size || validDescriptors.type() != calcDescriptors.type() ) { ts->printf( cvtest::TS::LOG, "Valid and computed descriptors matrices must have the same size and type.\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } CV_Assert( validDescriptors.type() == CV_8U ); int dimension = validDescriptors.cols; DistanceType curMaxDist = std::numeric_limits<DistanceType>::min(); for ( int y = 0; y < validDescriptors.rows; y++ ) { DistanceType dist = distance( validDescriptors.ptr<ValueType>( y ), calcDescriptors.ptr<ValueType>( y ), dimension ); if( dist > curMaxDist ) curMaxDist = dist; } std::stringstream ss; ss << "Max distance between valid and computed descriptors " << curMaxDist; if( curMaxDist < maxDist ) ss << "." << std::endl; else { ss << ">" << maxDist << " - bad accuracy!" << "\n"; ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); } ts->printf( cvtest::TS::LOG, ss.str().c_str() ); } Mat readDescriptors() { Mat descriptors; FileStorage fs( std::string( ts->get_data_path() ) + LINE_DESCRIPTOR_DIR + "/" + fs_name, FileStorage::READ ); fs["descriptors"] >> descriptors; return descriptors; } bool writeDescriptors( Mat& descs ) { FileStorage fs( std::string( ts->get_data_path() ) + LINE_DESCRIPTOR_DIR + "/" + fs_name, FileStorage::WRITE ); fs << "descriptors" << descs; return true; } void createMatFromVec( const std::vector<KeyLine>& linesVec, Mat& output ) { output = Mat( (int) linesVec.size(), 17, CV_32FC1 ); for ( int i = 0; i < (int) linesVec.size(); i++ ) { std::vector<float> klData; KeyLine kl = linesVec[i]; klData.push_back( kl.angle ); klData.push_back( (float) kl.class_id ); klData.push_back( kl.ePointInOctaveX ); klData.push_back( kl.ePointInOctaveY ); klData.push_back( kl.endPointX ); klData.push_back( kl.endPointY ); klData.push_back( kl.lineLength ); klData.push_back( (float) kl.numOfPixels ); klData.push_back( (float) kl.octave ); klData.push_back( kl.pt.x ); klData.push_back( kl.pt.y ); klData.push_back( kl.response ); klData.push_back( kl.sPointInOctaveX ); klData.push_back( kl.sPointInOctaveY ); klData.push_back( kl.size ); klData.push_back( kl.startPointX ); klData.push_back( kl.startPointY ); float* pointerToRow = output.ptr<float>( i ); for ( int j = 0; j < 17; j++ ) { *pointerToRow = klData[j]; pointerToRow++; } } } void createVecFromMat( Mat& inputMat, std::vector<KeyLine>& output ) { for ( int i = 0; i < inputMat.rows; i++ ) { std::vector<float> tempFloat; KeyLine kl; float* pointerToRow = inputMat.ptr<float>( i ); for ( int j = 0; j < 17; j++ ) { tempFloat.push_back( *pointerToRow ); pointerToRow++; } kl.angle = tempFloat[0]; kl.class_id = (int) tempFloat[1]; kl.ePointInOctaveX = tempFloat[2]; kl.ePointInOctaveY = tempFloat[3]; kl.endPointX = tempFloat[4]; kl.endPointY = tempFloat[5]; kl.lineLength = tempFloat[6]; kl.numOfPixels = (int) tempFloat[7]; kl.octave = (int) tempFloat[8]; kl.pt.x = tempFloat[9]; kl.pt.y = tempFloat[10]; kl.response = tempFloat[11]; kl.sPointInOctaveX = tempFloat[12]; kl.sPointInOctaveY = tempFloat[13]; kl.size = tempFloat[14]; kl.startPointX = tempFloat[15]; kl.startPointY = tempFloat[16]; output.push_back( kl ); } } void emptyDataTest() { assert( bd ); // One image. Mat image; std::vector<KeyLine> keypoints; Mat descriptors; try { bd->compute( image, keypoints, descriptors ); } catch ( ... ) { ts->printf( cvtest::TS::LOG, "compute() on empty image and empty keypoints must not generate exception (1).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); } image.create( 50, 50, CV_8UC3 ); try { bd->compute( image, keypoints, descriptors ); } catch ( ... ) { ts->printf( cvtest::TS::LOG, "compute() on nonempty image and empty keylines must not generate exception (1).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); } // Several images. std::vector<Mat> images; std::vector<std::vector<KeyLine> > keylinesCollection; std::vector<Mat> descriptorsCollection; try { bd->compute( images, keylinesCollection, descriptorsCollection ); } catch ( ... ) { ts->printf( cvtest::TS::LOG, "compute() on empty images and empty keylines collection must not generate exception (2).\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); } } void regressionTest() { assert( bd ); // Read the test image. std::string imgFilename = std::string( ts->get_data_path() ) + LINE_DESCRIPTOR_DIR + "/" + IMAGE_FILENAME; Mat img = imread( imgFilename ); if( img.empty() ) { ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } std::vector<KeyLine> keylines; FileStorage fs( std::string( ts->get_data_path() ) + LINE_DESCRIPTOR_DIR + "/edl_detector_keylines_cameraman.yaml", FileStorage::READ ); if( fs.isOpened() ) { //read( fs.getFirstTopLevelNode(), keypoints ); /* load keylines */ Mat loadedKeylines; fs["keylines"] >> loadedKeylines; createVecFromMat( loadedKeylines, keylines ); /* compute descriptors */ Mat calcDescriptors; double t = (double) getTickCount(); bd->compute( img, keylines, calcDescriptors ); t = getTickCount() - t; ts->printf( cvtest::TS::LOG, "\nAverage time of computing one descriptor = %g ms.\n", t / ( (double) getTickFrequency() * 1000. ) / calcDescriptors.rows ); if( calcDescriptors.rows != (int) keylines.size() ) { ts->printf( cvtest::TS::LOG, "Count of computed descriptors and keylines count must be equal.\n" ); ts->printf( cvtest::TS::LOG, "Count of keylines is %d.\n", (int) keylines.size() ); ts->printf( cvtest::TS::LOG, "Count of computed descriptors is %d.\n", calcDescriptors.rows ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); return; } if( calcDescriptors.cols != bd->descriptorSize() / 8 || calcDescriptors.type() != bd->descriptorType() ) { ts->printf( cvtest::TS::LOG, "Incorrect descriptor size or descriptor type.\n" ); ts->printf( cvtest::TS::LOG, "Expected size is %d.\n", bd->descriptorSize() ); ts->printf( cvtest::TS::LOG, "Calculated size is %d.\n", calcDescriptors.cols ); ts->printf( cvtest::TS::LOG, "Expected type is %d.\n", bd->descriptorType() ); ts->printf( cvtest::TS::LOG, "Calculated type is %d.\n", calcDescriptors.type() ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); return; } // TODO read and write descriptor extractor parameters and check them Mat validDescriptors = readDescriptors(); if( !validDescriptors.empty() ) compareDescriptors( validDescriptors, calcDescriptors ); else { if( !writeDescriptors( calcDescriptors ) ) { ts->printf( cvtest::TS::LOG, "Descriptors can not be written.\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } } } else { ts->printf( cvtest::TS::LOG, "Compute and write keylines.\n" ); fs.open( std::string( ts->get_data_path() ) + LINE_DESCRIPTOR_DIR + "/edl_detector_keylines_cameraman.yaml", FileStorage::WRITE ); if( fs.isOpened() ) { bd->detect( img, keylines ); Mat keyLinesToYaml; createMatFromVec( keylines, keyLinesToYaml ); fs << "keylines" << keyLinesToYaml; } else { ts->printf( cvtest::TS::LOG, "File for writting keylines can not be opened.\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } } } void run( int ) { if( !bd ) { ts->printf( cvtest::TS::LOG, "Feature detector is empty.\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } emptyDataTest(); regressionTest(); ts->set_failed_test_info( cvtest::TS::OK ); } private: CV_BD_DescriptorsTest& operator=( const CV_BD_DescriptorsTest& ) { return *this; } }; /****************************************************************************************\ * Tests registrations * \****************************************************************************************/ TEST( BinaryDescriptor_Descriptors, regression ) { CV_BD_DescriptorsTest<Hamming> test( std::string( "lbd_descriptors_cameraman" ), 1 ); test.safe_run(); }