#include <opencv2/core.hpp>
#include <opencv2/sfm.hpp>
#include <opencv2/viz.hpp>

#include <iostream>
#include <fstream>

using namespace std;
using namespace cv;
using namespace cv::sfm;

static void help() {
  cout
      << "\n------------------------------------------------------------------\n"
      << " This program shows the camera trajectory reconstruction capabilities\n"
      << " in the OpenCV Structure From Motion (SFM) module.\n"
      << " \n"
      << " Usage:\n"
      << "        example_sfm_trajectory_reconstruction <path_to_tracks_file> <f> <cx> <cy>\n"
      << " where: is the tracks file absolute path into your system. \n"
      << " \n"
      << "        The file must have the following format: \n"
      << "        row1 : x1 y1 x2 y2 ... x36 y36 for track 1\n"
      << "        row2 : x1 y1 x2 y2 ... x36 y36 for track 2\n"
      << "        etc\n"
      << " \n"
      << "        i.e. a row gives the 2D measured position of a point as it is tracked\n"
      << "        through frames 1 to 36.  If there is no match found in a view then x\n"
      << "        and y are -1.\n"
      << " \n"
      << "        Each row corresponds to a different point.\n"
      << " \n"
      << "        f  is the focal lenght in pixels. \n"
      << "        cx is the image principal point x coordinates in pixels. \n"
      << "        cy is the image principal point y coordinates in pixels. \n"
      << "------------------------------------------------------------------\n\n"
      << endl;
}


/* Build the following structure data
 *
 *            frame1           frame2           frameN
 *  track1 | (x11,y11) | -> | (x12,y12) | -> | (x1N,y1N) |
 *  track2 | (x21,y11) | -> | (x22,y22) | -> | (x2N,y2N) |
 *  trackN | (xN1,yN1) | -> | (xN2,yN2) | -> | (xNN,yNN) |
 *
 *
 *  In case a marker (x,y) does not appear in a frame its
 *  values will be (-1,-1).
 */

static void parser_2D_tracks(const String &_filename, std::vector<Mat> &points2d )
{
  ifstream myfile(_filename.c_str());

  if (!myfile.is_open())
  {
    cout << "Unable to read file: " << _filename << endl;
    exit(0);

  } else {

    double x, y;
    string line_str;
    int n_frames = 0, n_tracks = 0;

    // extract data from text file

    vector<vector<Vec2d> > tracks;
    for ( ; getline(myfile,line_str); ++n_tracks)
    {
      istringstream line(line_str);

      vector<Vec2d> track;
      for ( n_frames = 0; line >> x >> y; ++n_frames)
      {
        if ( x > 0 && y > 0)
          track.push_back(Vec2d(x,y));
        else
          track.push_back(Vec2d(-1));
      }
      tracks.push_back(track);
    }

    // embed data in reconstruction api format

    for (int i = 0; i < n_frames; ++i)
    {
      Mat_<double> frame(2, n_tracks);

      for (int j = 0; j < n_tracks; ++j)
      {
        frame(0,j) = tracks[j][i][0];
        frame(1,j) = tracks[j][i][1];
      }
      points2d.push_back(Mat(frame));
    }

    myfile.close();
  }

}


/* Keyboard callback to control 3D visualization
 */

bool camera_pov = false;

static void keyboard_callback(const viz::KeyboardEvent &event, void* cookie)
{
  if ( event.action == 0 &&!event.symbol.compare("s") )
    camera_pov = !camera_pov;
}


/* Sample main code
 */

int main(int argc, char** argv)
{
  // Read input parameters

  if ( argc != 5 )
  {
    help();
    exit(0);
  }

  // Read 2D points from text file
  std::vector<Mat> points2d;
  parser_2D_tracks( argv[1], points2d );

  // Set the camera calibration matrix
  const double f  = atof(argv[2]),
               cx = atof(argv[3]), cy = atof(argv[4]);

  Matx33d K = Matx33d( f, 0, cx,
                       0, f, cy,
                       0, 0,  1);

  /// Reconstruct the scene using the 2d correspondences

  bool is_projective = true;
  vector<Mat> Rs_est, ts_est, points3d_estimated;
  reconstruct(points2d, Rs_est, ts_est, K, points3d_estimated, is_projective);

  // Print output

  cout << "\n----------------------------\n" << endl;
  cout << "Reconstruction: " << endl;
  cout << "============================" << endl;
  cout << "Estimated 3D points: " << points3d_estimated.size() << endl;
  cout << "Estimated cameras: " << Rs_est.size() << endl;
  cout << "Refined intrinsics: " << endl << K << endl << endl;

  cout << "3D Visualization: " << endl;
  cout << "============================" << endl;


  /// Create 3D windows
  viz::Viz3d window_est("Estimation Coordinate Frame");
             window_est.setBackgroundColor(); // black by default
             window_est.registerKeyboardCallback(&keyboard_callback);

  // Create the pointcloud
  cout << "Recovering points  ... ";

  // recover estimated points3d
  vector<Vec3f> point_cloud_est;
  for (int i = 0; i < points3d_estimated.size(); ++i)
    point_cloud_est.push_back(Vec3f(points3d_estimated[i]));

  cout << "[DONE]" << endl;


  /// Recovering cameras
  cout << "Recovering cameras ... ";

  vector<Affine3d> path_est;
  for (size_t i = 0; i < Rs_est.size(); ++i)
    path_est.push_back(Affine3d(Rs_est[i],ts_est[i]));

  cout << "[DONE]" << endl;

  /// Add cameras
  cout << "Rendering Trajectory  ... ";

  /// Wait for key 'q' to close the window
  cout << endl << "Press:                       " << endl;
  cout <<         " 's' to switch the camera pov" << endl;
  cout <<         " 'q' to close the windows    " << endl;


  if ( path_est.size() > 0 )
  {
    // animated trajectory
    int idx = 0, forw = -1, n = static_cast<int>(path_est.size());

    while(!window_est.wasStopped())
    {
      /// Render points as 3D cubes
      for (size_t i = 0; i < point_cloud_est.size(); ++i)
      {
        Vec3d point = point_cloud_est[i];
        Affine3d point_pose(Mat::eye(3,3,CV_64F), point);

        char buffer[50];
        sprintf (buffer, "%d", static_cast<int>(i));

        viz::WCube cube_widget(Point3f(0.1,0.1,0.0), Point3f(0.0,0.0,-0.1), true, viz::Color::blue());
                   cube_widget.setRenderingProperty(viz::LINE_WIDTH, 2.0);
        window_est.showWidget("Cube"+String(buffer), cube_widget, point_pose);
      }

      Affine3d cam_pose = path_est[idx];

      viz::WCameraPosition cpw(0.25); // Coordinate axes
      viz::WCameraPosition cpw_frustum(K, 0.3, viz::Color::yellow()); // Camera frustum

      if ( camera_pov )
        window_est.setViewerPose(cam_pose);
      else
      {
        // render complete trajectory
        window_est.showWidget("cameras_frames_and_lines_est", viz::WTrajectory(path_est, viz::WTrajectory::PATH, 1.0, viz::Color::green()));

        window_est.showWidget("CPW", cpw, cam_pose);
        window_est.showWidget("CPW_FRUSTUM", cpw_frustum, cam_pose);
      }

      // update trajectory index (spring effect)
      forw *= (idx==n || idx==0) ? -1: 1; idx += forw;

      // frame rate 1s
      window_est.spinOnce(1, true);
      window_est.removeAllWidgets();
    }

  }

  return 0;
}